1 | Augen zu und durch!

Gegeben ist das folgende reelle lineare Gleichungssystem mit Unbestimmten z, ..., 2z und einem
Parameter ¢:
3ro — 9x3 4+ 6x4 — 6b6x5 + 1dbxg = 6t+ 18
—x9 + 3x3 — 224 + 35 — 926 = —t—4
—2x9 + 6x3 — 4dxy + 65 — 18x¢ = -2
dro — 1223 + 8xy — 1225 + 36xg = 8t+28

(a) Bringen Sie die Koeffizientenmatrix mit Hilfe des GauBischen Eliminationsverfahrens auf Zeilen-
stufenform.

(b) Bestimmen Sie alle Werte ¢ € R, fiir die das Gleichungssystem eine Losung besitzt.

(¢c) Bestimmen Sie in den Féllen, in denen das Gleichungssystem eine Losung besitzt, den Lo-
sungsraum. Geben Sie dabei auch eine Basis des Losungsraums des zugehorigen homogenen
Gleichungssystems an.
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2 | Bitte wenden!
Welchen Rang haben die folgenden Matrizen? Bestimmen Sie zu allen Matrizen von vollem Rang die
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Inversen!
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3 | Potenzproblem %

Wir nennen eine quadratische Matrix A
nilpotent, wenn eine ihrer Potenzen A* (k € N)
die Nullmatrix ist. Eine strikte obere Dreiecks-
matriz ist eine Matrix (a; ;); ; mit a;; = 0 fiir
alle 2 > 5:

(a) Strikte obere Dreiecksmatrizen sind nil-
potent.
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(b) Fiir jede nilpotente n x n-Matrix A ist
1, — A invertierbar.
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(c) Welches Inverse hat die folgende Matrix?
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4 | Babel %
Seien OL, UL, OR und UR die folgenden Matrizen:

1 0 0 1
S
0 0 0 0
ar(0) we (s )

Als geordnete Basis des Vektorraums aller
reellen 2 x 2-Matrizen wahlt . ..

... Hans das Tupel (OL,OR,UL,UR),
Jaél das Tupel (OR,OL,UR,UL),
Sakura das Tupel (OR,UR,0L,UL) und
Hunapt das Tupel (OL — UR, OR,UL, OL + UR).

(q) Zeigen Sies%}éss das in der Tat allesamt
Basen sind. 'Mit welcher 4 x 4-Matrix wiirden

Hans, Jaél, Sakura und Hunapu jeweils die

Transpositionsabbildung

Matr(2 x 2) — Matg(2 x 2)
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