Mathematisches Institut Heinrich-Heine-Universität Prof. Dr. Stefan Schröer

Übungen p-adische Zahlen

Blatt 12

Aufgabe 1. Sein $n \geq 1$ eine natürliche Zahl. Zeigen Sie, daß der Bruch $p^{n-1}/n! \in \mathbb{Q}_p$ im Ganzheitsring $\mathbb{Z}_p \subset \mathbb{Q}_p$ enthalten ist.

Aufgabe 2. Sei $f = \sum a_i X^i \in \mathbb{C}_p[[X]]$. Angenommen, $\lim_{i \to \infty} v(a_i)/i = \infty$. Zeigen Sie, daß der Konvergenzradius dieser Potenzreihe $\rho = \infty$ ist.

Aufgabe 3. Sei $f \in \mathbb{F}_q[X_1, \dots, X_n]$ ein homogenes Polynom vom Grad d. Mit anderen Worten, jedes Monom in f hat die Form

$$\alpha X_1^{d_1} \dots X_n^{d_n}$$
 mit $d_1 + \dots + d_n = d$.

Sei N_s die Anzahl der Nullstellen von f über \mathbb{F}_{q^s} . Zeigen Sie, daß N_s-1 ein Vielfaches von q^s-1 ist.

Aufgabe 4. Wir fassen die Determinante als Polynom

$$f = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{j=1}^n X_{i,\sigma(j)}$$

in n^2 Unbestimmten X_{ij} , $1 \leq i, j \leq n$ auf. Sei $H \subset \mathbb{A}^{n^2}_{\mathbb{F}_p}$ die Hyperebene, welche durch die Gleichung f = 1 gegeben ist. Berechnen sie die zugehörige Zeta-Funktion

$$Z_H(T) = \exp(\sum_{s \ge 1} N_s T^s / s).$$

Abgabe: Bis Montag den 01.02. um 11:00 Uhr in den Zettelkästen.