Übungen zu Algebraische Geometrie II

Blatt 5

Aufgabe 1.* Sei \mathcal{F} eine kohärente Garbe auf dem projektiven Raum \mathbb{P}^n über einem Grundkörper k. Wir nehmen an, daß \mathcal{F} eine Wolkenkratzergarbe ist, also ihr Träger Supp $(\mathcal{F}) \subset \mathbb{P}^n$ aus endlich vielen abgeschlossenen Punkten besteht. Zeigen Sie, daß

$$\operatorname{Ext}^{i}(\mathcal{F},\mathcal{E})=0$$

für alle $0 \le i < n$ und alle lokal freien Garben \mathcal{E} gilt.

Aufgabe 2.* Sei \mathcal{F} eine kohärente Garbe auf dem projektivem Raum \mathbb{P}^n über einem Grundkörper k. Wir nehme an, daß \mathcal{F} eine *Torsionsgarbe* ist, also $\mathcal{F}_{\eta} = 0$. Zeigen Sie, daß dann $H^n(\mathbb{P}^n, \mathcal{F}) = 0$ gilt.

Aufgabe 3. Wir arbeiten über einem Grundkörper k. Betrachte die folgende lokal freier Garbe $\mathcal{E} = \mathcal{O}_{\mathbb{P}^2}(s) \oplus \mathcal{O}_{\mathbb{P}^2}(t)$ vom Rang zwei auf \mathbb{P}^2 . Drücken sie die Euler-Charakteristik

$$\chi(\mathcal{E}) = h^0(\mathcal{E}) - h^1(\mathcal{E}) + h^2(\mathcal{E})$$

durch ein quadratisches Polynom in den Chern-Zahlen $c_1 = s + t$ und $c_2 = st$ aus.

Aufgabe 4. Sei X ein topologischer Raum, $V \subset X$ eine offene Teilmenge, $j:V \to X$ die zugehörige Inklusionsabbildung, und \mathcal{F} eine abelsche Garbe auf V. Wir definieren eine abelsche Garbe $j_!(\mathcal{F})$ auf X als Garbifizierung der Prägarbe

$$U \longmapsto \begin{cases} \Gamma(U, \mathcal{F}) & \text{wenn } U \subset V; \\ 0 & \text{sonst,} \end{cases}$$

wobei die Restriktionsabbildungen die offensichtlichen sind.

- (i) Konstruieren Sie eine Inklusion von Prägarben $i_!(\mathcal{F}) \subset i_*(\mathcal{F})$.
- (ii) Zeigen Sie, daß der Funktor

$$(Ab/V) \longrightarrow (Ab/X), \quad \mathcal{F} \longmapsto i_!(\mathcal{F})$$

exakt ist.

(iii) Beweisen Sie, daß für alle abelsche Garbe \mathcal{G} auf X gilt:

$$\operatorname{Hom}(\mathcal{F},\mathcal{G}|_V) = \operatorname{Hom}(i_!(\mathcal{F}),\mathcal{G}).$$

(iv) Folgern Sie, daß zu jeder injektiven abelschen Garbe \mathcal{I} auf X die Einschränkung $\mathcal{I}|_V$ eine injektiven abelschen Garbe \mathcal{I} auf V ist.

Abgabe: Bis Montag, den 21.5. um 9:10 Uhr in den Zettelkästen.