Zahlentheorie II (Analytische Zahlentheorie), Blatt 7

hhu Düsseldorf SoSe 2023

Abgabe: bis Mittwoch 31.5.2023, vor der Vorlesung

Vorlesungswebseite: http://reh.math.uni-duesseldorf.de/~khalupczok/zt2/

Aufgabe 1 (5 Punkte): Obere Abschätzungen von $L(1,\chi)$ und $L'(1,\chi)$

Sei $\chi \neq \chi_0$ ein Charakter mod q. Zeigen Sie:

- (a) Für $\sigma > 0$ gilt $L(s,\chi) = s \int_1^\infty u^{-s-1} X(u) du$ mit $X(u) = \sum_{n \le u} \chi(n)$.
- (b) Die beiden Abschätzungen $|X(u)| \le u$ und $|X(u)| \le q$ ergeben $L(s,\chi) = O(|s|\log(q))$ für $\sigma > 1 1/\log(q)$.
- (c) Die Cauchy-Integralformel für $L'(s,\chi)$ mit |w-s|=r, angewandt mit Kreisradius $r=(2\log(q))^{-1}$, liefert für $\sigma>1-(2\log(q))^{-1}$ die Abschätzung $L'(s,\chi)=\mathrm{O}(|s|\log^2(q))$.

Aufgabe 2 (4 Punkte): Satz von Mertens in Progressionen

Zeigen Sie für $q \in \mathbb{N}$ und (a,q) = 1 die Formel

$$\sum_{\substack{p \le x \\ p \equiv a \ (q)}} \frac{1}{p} = \frac{1}{\varphi(q)} \log \log(x) + \mathcal{O}_q(1).$$

Hinweis: Orthogonalitätsrelationen und Aufgabe 2 von Blatt 6.

Aufgabe 3 (6 Punkte): Anzahl primitiver Charaktere

Sei $\varphi^*(q)$ die Anzahl der primitiven Charaktere mod q.

- (a) Zeigen Sie, dass $\sum_{d|q} \varphi^*(d) = \varphi(q)$.
- (b) Berechnen Sie mit (a) den Wert von φ^* auf Primpotenzen und schließen Sie

$$\varphi^*(q) = q \prod_{p||q} \left(1 - \frac{2}{p}\right) \prod_{p^2|q} \left(1 - \frac{1}{p}\right)^2.$$

(c) Folgern Sie, dass $\varphi^*(q) = 0$ ist für $q \equiv 2$ (4).