Singularities, Monodromy and Zeta Functions Blatt 11

Exercises for discussion in the class on 24.1.2019

Given $f \in \mathbb{Z}[x_1, ..., x_n]$ let $b_f \in \mathbb{Q}[s]$ be the Bernstein polynomial for f.

Aufgabe 1:

- (a) Suppose that f is non-constant. Prove that $b_f(s)$ is divisible by (s + 1). Hint: consider s = -1.
- (b) What is b_f when f is constant?

Aufgabe 2:

Show that for any non-zero $a \in \mathbb{Z}$,

 $b_f = b_{af}$.

Aufgabe 3:

Suppose $g = (f \circ A)$ for some $A \in GL_n(\mathbb{Q})$. Show that b_f is also the Bernstein polynomial for g.

Aufgabe 4:

(*) Suppose that f is non-constant and that there is no $a \in \mathbb{C}$ such that

$$f(a) = \frac{\partial f}{\partial x_1}(a) = \dots = \frac{\partial f}{\partial x_n}(a) = 0$$

Prove that $b_f = (s+1)$.

Hint: Use Hilbert's Nullstellensatz to find polynomials a_i such that

$$a_0(x)f(x) + \sum a_i(x)\frac{\partial f}{\partial x_i} = 1.$$

Then use those a_i to specify a differential operator P (satisfying $Pf^{s+1} = b_f f^s$) explicitly.

Aufgabe 5:

(*) (Warm-up for next lecture)

Consider f as a function from \mathbb{C}^n to \mathbb{C} .

Suppose x is a point of the variety defined by f such that f(x) = 0 and grad $f(x) \neq 0$. Show there exist neighbourhoods $U \subseteq \mathbb{C}^n$ containing x and $D \subseteq \mathbb{C}$ containing 0 so that the restriction of f to $U \cap f^{-1}(D)$ is a topologically trivial fibration.