

Wintersemester 2023/2024

Übungsblatt 7

Aufgabe 7.1 (5 Punkte)

Seien $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $f: \Omega \longrightarrow \mathbb{R}$ eine μ -integrierbare numerische Funktion mit f > 0 μ -f. ü. in Ω . Zeigen Sie: Für alle $A \in \mathcal{A}$ mit $\mu(A) > 0$ ist $\int_A f d\mu > 0$.

Aufgabe 7.2 (7 Punkte)

Seien $(\Omega, \mathcal{A}, \mu)$ ein Maßraum, $\emptyset \neq A \in \mathcal{A}$, sowie $\mathcal{A}' := \mathcal{A}|_A$ die Spur- σ -Algebra und $\mu_A := \mu|_{\mathcal{A}'}$ das Spur-Maß. Die Abbildung $f : A \longrightarrow \mathbb{R}$ sei \mathcal{A}' - \mathcal{B}_1 -messbar. Zeigen Sie: Die triviale Fortsetzung

$$F: \Omega \longrightarrow \bar{\mathbb{R}}, \qquad F(x) = \left\{ \begin{array}{ll} f(x), & x \in A, \\ 0, & x \in \Omega \setminus A, \end{array} \right. \quad x \in \Omega,$$

ist A- $\bar{\mathcal{B}}_1$ -messbar. F ist genau dann μ -integrierbar, wenn f μ_A -integrierbar ist, und in diesem Fall gilt:

$$\int_{\Omega} F \, \mathrm{d}\mu \ = \ \int_{A} f \, \mathrm{d}\mu_{A}.$$

Hinweis: Verwenden Sie das Prinzip der algebraischen Induktion.

Aufgabe 7.3 (2+2+2 Punkte)

Geben Sie jeweils ein Beispiel einer Folge von λ_1 -integrierbaren Funktionen $f_k : \mathbb{R} \longrightarrow \mathbb{R}$ an, sodass $f_k \to 0$ für $k \to \infty$ f. ü. auf \mathbb{R} und

- a) $\int_{\mathbb{R}} f_k \, d\lambda_1 \to 73 \text{ für } k \to \infty;$
- b) $\int_{\mathbb{R}} f_k d\lambda_1 \to \infty$ für $k \to \infty$;
- c) $\limsup_{k\to\infty} \int_{\mathbb{R}} f_k \, d\lambda_1 = -1 \text{ und } \limsup_{k\to\infty} \int_{\mathbb{R}} f_k \, d\lambda_1 = 1.$

Abgabe bis zum Dienstag, den 5. Dezember 2023, 14.00 Uhr über das Ilias-System. Die Besprechung der Aufgaben findet am Donnerstag, den 7. Dezember 2023, um 16.30 Uhr im Tutorium in Hörsaal 5M statt.