

ÜBUNGEN ZUR ANALYSIS I BLATT 6

Name: Name: Rückgabe in Gruppe: MatrNr: MatrNr:

Aufgabe 21 (4 Punkte) Berechnen Sie die folgenden Grenzwerte und begründen Sie Ihre Ergebnisse:

(a) $\lim_{n \to \infty} \frac{1}{\sqrt[p]{n}}$, $p \in \mathbb{N}$

(c) $\lim_{n \to \infty} \sqrt[n]{n^p}$, $p \in \mathbb{N}$

(b) $\lim_{n \to \infty} \sqrt[n]{a}$, $a \in \mathbb{R}^+$

(d) $\lim_{n \to \infty} \sqrt[n]{a^n + b^n}$, $a, b \in \mathbb{R}^+$

Hinweis: Verwenden Sie für (d) den Sandwich-Satz.

Aufgabe 22 (4 Punkte) Es seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ beschränkte Folgen reeller Zahlen. Zeigen Sie:

- (a) $\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$, (b) $\limsup_{n \to \infty} (a_n + b_n) \ge \limsup_{n \to \infty} a_n + \liminf_{n \to \infty} b_n$.

Geben Sie ein Folgenpaar an, für das in (a) < und in (b) > gilt. Leiten Sie ferner entsprechende Ungleichungen für $\liminf_{n\to\infty} (a_n + b_n)$ her.

Aufgabe 23 (4 Punkte) Wir definieren die Folgen $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$ durch

$$a_n = \sqrt{n + 1000} - \sqrt{n},$$
 $b_n = \sqrt{n + \sqrt{n}} - \sqrt{n},$ $c_n = \sqrt{n + \frac{n}{1000}} - \sqrt{n}.$

Zeigen Sie, dass für $1 \leq n < 1000000$ gilt $a_n > b_n > c_n,$ aber

$$\lim_{n \to \infty} a_n = 0, \qquad \lim_{n \to \infty} b_n = \frac{1}{2}, \qquad \lim_{n \to \infty} c_n = \infty.$$

Hinweis: Verwenden Sie die dritte binomische Formel und bei der Folge $(b_n)_{n\in\mathbb{N}}$ den Sandwich-Satz.

Aufgabe 24 (4 Punkte) Es seien $a_0, a_1 \in \mathbb{C}$ fest gewählt. Wir definieren die Folge $(a_n)_{n \in \mathbb{N}_0}$ durch

$$a_{n+1} = \frac{1}{2}(a_n + a_{n-1})$$
 für $n \ge 1$.

Zeigen Sie, dass die Folge $(a_n)_{n\in\mathbb{N}}$ für jede Wahl der Startwerte a_0 und a_1 konvergiert und berechnen Sie ihren Grenzwert $a = \lim_{n \to \infty} a_n$.

Hinweis: Betrachten Sie die Differenzen $\Delta_n = a_{n+1} - a_n$. Für die Berechnung des Grenzwerts ist die geometrische Reihe hilfreich.