Aufgabe 1. Hesse Normal Forms.
. : . o\ . -2 e .
(a) It is readily apparent that v = NE orthogonal to 5 | Scalar multiplication gives us

<<2>,<;>>::25+-4::2a

1

and so the normalized normal vector is —— <5> The point <3> lies on the line, and we find
V29 \2 4

that

(<i>,<3)>:]5—+8::23

Hence the Hesse Normal Form is given by
T 2 T 1 5> 23 }
eR ,—— =—7.
{<y> <(y> V29 <2 > V29

Note to markers: Give the students 1 point for finding the normal vector, 1 point for normal-

1zing it correctly, 1 point for getting the scalar product with right, and 1 point for writing

3
4
down the correct Hesse Normal Form, i.e. 1+ 1+ 141 =4 points all in all.

(b) First, the students need to find a vector orthogonal to both (2 —1 1)T and (2 3 2)T.
If one does it by means of the cross product, one finds

i g Z
2 -1 1=((-1)-2-1-3)F—(2-2-1-2)7+(2-3—(—1-2))Z= —5T — 2 + 87,
2 3 2

One may also solve the system of simultaneous equations

2c —y+2=0,
20+ 3y +22=0.

Subtracting the first row from the second, we have

20 —y+2=0,
4y + 2z =0.

From the second row, letting y = ¢, we find z = —4¢t. In the first row, we then find 2z = 5¢, or
T = —%t. From this we may read out that a normal vector exists in the form (5 2 —8).

Next, we normalize this,

5 5
(2], 2]) =25+4+64=093,
—-8) \-8
L (0 1

and so the normalized normal vector is 2 |. The point | 0 | lies on the line, and we

Vo3 \ g 2
find that

1 5
(lo],{2])=5+16=21
—2) \-=8
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Hence the Hesse Normal Form is given by
(0 2
Vo3 \ 5" V93

T X
yleR | (ly],
yA VA

Note to markers: Give the students 3 points for finding the normal vector, 1 point for nor-
1

malizing it correctly, 1 point for getting the scalar product with | 0 | right, and 1 point for
-2

writing down the correct Hesse Normal Form, i.e. 3+ 1+ 1+ 1 =6 points all in all.



Aufgabe 2. The Euclidean Algorithm.

(a) Two elements a,b in an integral domain are said to be coprime if the unit element is a
greatest common divisor of the two.

Note to markers: Give the students 1 point for getting this definition right.

(b) Personally, I would do this directly by prime factorization. 94 = 2-47, and 47 is easily seen
to be a prime number by the sieve of Eratosthenes. 314 = 2 - 157.

213456 |7]8]9]10 213141567189 (10
11112113114|15|16|17|18|19(20 11112113114115|16|17|18|19(20
21(22(23(24(25(26(27|28(29|30] —— [21(22(23(24(25(26(27 (2829 |30
31(32]33(34(35]36|37(38]|39]40 31(32]33(34|35(36|37[38]39]40
41142143|44|45|46|47]48]49]50 41142143|44|45|46|47]48]49150

2(314|5(6]|7]8([9]10 21314|5]6(7]18]9(10
11112)13114115|16|17|18]|19(20 11112113114115|16|17|18|19(20
21(22(23(24(25(26(27|28(29|30| <«—— [21(22(23(24(25(26(27(28(29|30
31132(33(34|35(36|37|38(39(40 31132(33(34|35(36|37|38(39]40
41142143|44145|46|47]48]49]50 4114214344 |45|46 (4748|4950

213[4(5]6]7]81]9 |10
11112113114115|16| 1718|1920
21(22(23(24(25(26(27|28(29|30| ——
31(32133(34|35]36|37(38]|39]40
41142143|44145|46 (4748149150

The sieve of Eratosthenes gives 157 to be a prime number as well, but it isn’t strictly speaking
necessary to perform that algorithm again, since one only needs to check that neither 2 nor 47
is a divisor of 157. Hence it’s clear that the greatest common divisor of 94 and 314 is 2.

More conventional however is the use of Euclid’s algorithm'. We obtain

314 =3 x 94 + 32,
94 = 2 x 32 + 30,
32=1x30+2,
30 = 15 x 2.

1Some people are so basic in their choice of ancient Greek mathematicians.
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Since 1 is not a greatest common divisor of 94 and 314, they are not coprime.
Note to markers: Give the students 2 points for determining that the greatest common divisor

is 2, 1 point for noting that this means that 314 and 94 are not coprime. All in all, 2+ 1 =3
points.

(c¢) This one will of course be a lot easier if you proceeded in the preceding subquestion with
Euclid’s algorithm. We find

2 = 32 — 30
=32 — (94— 2 x 32)
=3 x 32— 94

=3x(314—-3x94) —94
=3 x314—10 x 94,
giving us p = 3 and ¢ = —10.

Note to markers: Give the students 2 points for completing this subquestion without any
calculation error.

(d) Cometh the dreaded polynomial long division subquestion. This time it’s surprisingly easy,
though! We find

X 4 7X3 46X+ X 4+6=X(X>+7X2+6X)+ (X +6)

and
X2 +X
X+6) X°+7X*+6X
— X3 - 6X2
X2 +6X
—X?2_-6X
0

in other words,
X34+ 7X2 46X = (X2 + X)(X +6),
meaning that they have a greatest common divisor in (X + 6), and thus are not coprime.

Note to markers: Give the students 2 points for completing the polynomial long division
without error, and an additional point for remembering to jot down that this means that the two
polynomials are not coprime. All in all, 2+ 1 = 3 points.

(e) We can easily rearrange

X' 4 7X3 46X+ X +6=X(X>+7X2+6X)+ (X +6)
into

X4 7X346X2 4+ X +6 - X(XP+7X24+6X) = (X +6),
givingus P=1and Q = —X.

Note to markers: Give the students 1 point for getting that right.



Aufgabe 3. Jordan Normal Forms, Part I.

(a) A matrix is diagonalizable if and only if its minimal polynomial splits and the roots thereof
are all of multiplicity one.

Note to markers: Give the students 1.5 points for giving the correct definition.

(b) For the first matrix, we have

. 3
xa(A) = ’

4 1_A‘ =AM+ -1 +12=X1-1+12= )+ 11,

and since this polynomial doesn’t split over R, we may conclude that pa(\) = A+ 11.

Note to markers: Give the students 0.5 points for finding the correct characteristic polyno-
mial. Give the students 0.5 points for finding the correct minimal polynomial. Give the students
0.5 points for providing the right reasoning. All in all, 0.5+ 0.5 4+ 0.5 = 1.5 points.

For the second matrix, we have

L=A 9 \=<1—A><3—A>,

and we may then easily read out that pug(A) = xg(\).
Note to markers: Give the students 0.5 points for finding the correct characteristic polyno-
mial. Give the students 0.5 points for finding the correct minimal polynomial. Give the students

0.5 points for providing the right reasoning. All in all, 0.5+ 0.5 4+ 0.5 = 1.5 points.

For the third matrix, we have
xeN =] 0 3-X 2 |=(B-)>3

The question then is, what is the minimal polynomial, uc(\)? We have three options. (A — 3),
(A —3)2, and (A — 3)3. It is immediately apparent that C' — 31 # 0, ruling out the first option.
However,

30 1 30 0\\> /00 1\? /0 0 0
(C-31)2=((0 3 2]-{0 3 0 =(0o 0 2| =(0o o0 0],
00 3 00 3 00 0 00 0

and hence puc(A) = (A — 3)2.

Note to markers: Give the students 0.5 points for finding the correct characteristic polyno-
mial. Give the students 1 points for finding the correct minimal polynomial. Give the students
1 points for providing the right reasoning. All in all, 0.5+ 1+ 1 = 2.5 points.

(c) It is possible to put a matrix in Jordan normal form if and only if its characteristic polynomial
decomposes into linear factors (in the polynomial ring of the field over which we are working).
Hence, A cannot be put in Jordan normal form, but B and C can.

The multiplicity of a given root in the minimal polynomial of a matrix gives the size of the
largest Jordan block of that root in the Jordan normal form of said matrix. Hence the Jordan
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normal forms of B and C' respectively are
300
((1) g) and 0 3 1
0 0 3

Note to markers: In the case of matriz A, give the students 0.5 points for stating that the
Jordan normal form doesn’t exist, and 0.5 points for providing the correct reasoning for why it
doesn’t exist. In the case of matriz B, give the students 0.5 points for stating that the Jordan
normal form exists, and 0.5 points for giving it. In the case of matriz C, give the students 0.5
points for stating that the Jordan normal form exists, and 0.5 points for giving it. All in all,
(0.540.5) + (0.54 0.5) + (0.5 + 0.5) = 3 points.



Aufgabe 4. Jordan Normal Forms, Part II.

(a) We find

—1-X 2 3
xaN)=| -4 5-x 4
—2 14—

=(1=-X)((B-MNME-X)—4) =2(-4(4 - A1) = (=2)-4) +3(-4 - (-2)(b - X))
= (=M 48X —7A —16) + (16 — 8)\) + (18 — 6))
= A4+ 8)\% — 21\ +18.

We find x4(2) = -8+ 32 — 42 + 18 = 0, and hence (A — 8) is a factor of x4. Polynomial long
division gives

—X? +6X -9
X —2) - X348X*—-21X +18
X3 —2X2

6X2—-21X
—6X2+12X

—9X +18

9X — 18

0

ie. xa(A) = —=(A=2)(A2=6A+9). The second factor can easily be factorized once again, giving

us xa(A) = —(A—2)(A—3)%. Hence the minimal polynomial may be either pa(\) = (A—2)(A—3)
or ia(A) = (A —2)(\ —3)2. We find that
-1 2 3 100 -1 2 3 1 00 -3 2 3 -4 2 3
-4 5 41 -210 1 0 -4 5 41 -310 1 0 =|1-4 3 4 -4 2 4
-2 1 4 0 01 -2 1 4 0 01 -2 1 2 -2 11

Already for the first element in this 3 x 3 matrix, we obtain 12 — 8 — 6 = —2 # 0, and hence
1a(N) = (A - 2)(A - )2,

Note to markers: Give the students 1 point for finding the characteristic polynomial x A(\).
Give them 1 point for giving the correct factorization xa(\) = —(A — 2)(\ — 3)2. Give them
1 point for correctly deducing (with full reasoning!) that pa(A) = (A —2)(A — 3)2. All in all,
14+ 1+ 1=3 points.

(b) This was all done as part of subquestion (a). The eigenvalues are A =2 and A = 3.
Note to markers: Give the students 0.5 points for writing that down.

(c) Remember the definition,
Hau(A4,a):={ve€eV | (A—al)" =0 for some n € N},

and that the dimensionality of Hau(A, a) equals the multiplicity of a as a root of the character-
istic polynomial of A.

We have

1 2 3 T —x+2y+ 3z x
-4 5 4 y|l=\|—-4x+5y+4z|1 =x|y |,
-2 1 4 z —2x+y+4z z
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giving us a system of simultaneous equations

—(1+ XNz +2y+32=0,
—dz+ (5 — Ny + 4z =0,
—2r+y+(4—-N)z=0.

In the case of A = 2, this reads

=3z +2y+32=0,
—4dx+3y+4z =0,
—2x+y+22=0.

Subtracting the third row twice from the second row gives us —y = 0, which sorts out the value
of that parameter. The second row then reads —2x + 2z = 0, from which we may conclude that
if £ = ¢, then z =t as well. Hence we have obtained the eigenvector associated with A = 2 in

the form of ¥ = (1 0 1)T. Since the root A = 2 only appears with multiplicity one in the

characteristic polynomial, it follows that Hau(A;2) = (7).

In the case of A = 3, since the factor (A — 3) appears with multiplicity 2 in the minimal
polynomial, in the Jordan normal form, there is a 2 x 2 block associated with that eigenvalue,
and hence we conclude that there may only exist one eigenvector associated to it. Thus rather
than to go looking for the eigenvector, it is quickest and simplest to directly look for a basis for
ker((A — 31)32).

Since
~1 2 3 10 0\\? —4 2 3\°2 9 —1 -1
4 5 4] =30 1 0 — (-4 2 4] =0 0o o],
2 1 4 00 1 21 1 9 -1 —1

we must simply find a basis for the solution space to 2x —y — z = 0. It is easy to read
out (for instance) that a basis is given by @ = (1 2 O)T and @ = (0 1 —1)T. Hence,
Hau(A;3) = (W, @) (or equivalent).

Note to markers: Give the students 1.5 point for finding Hau(A;2). Give them 1.5 points for
finding Hau(A;3). All in all, 1.5+ 1.5 = 3 points.

(d) We have our first basis vector in the eigenvector associated with A = 2, noted above.

For the next two, we need to find ker(A — 31) (i.e. the eigenvector associated to A = 3) and a
vector b € ker((A — 31)?) such that

—.

ker((A — 31)%) = (b) @ ker(A — 31). (4d.1)

Of course, if ¢ € ker((A — 31)?), then it follows that (4 — 31)¢ € ker(A — 31), so we just need
to find & € ker((A — 31)2) such that (A —31)& # 0. If we try with é= @ = (1 2 0)7, we find

-4 2 3 1 0
-4 2 4 21 =10],
-2 11 0 0

so that doesn’t work. However, if we instead try ¢ =4 = (O 1 —1)T, we find

-4 2 3 0 -1
-4 2 4 1
-2 11 -1 0

Il
[
N



Hence, the Jordan normal basis is given by

1 1 ~1 0
o], Aa+naay=<{(o],|-2].]1 (4d.2)
1 1 0 —1

Note to markers: Give the students 1 point for writing down formula (4d.1) and providing the
right reasoning accompanying it. Give the students 0.5 points for picking a suitable vector b and
a further 1 point for finding what the eigenvecctor associated with the eigenvalue 3 is. Finally,
give them 1 point for writing down formula (4d.2) correctly. All in all, 1+ 0.5+ 1+ 1= 3.5
points.
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- ‘Aufgabe b
Kreuzen Sie in den folgenden sieben Aufgabenteilen alle Aussagen an, die richtig sind.
Es ist pro Aufgabenteil mindestens eine Aussage mchtzg Manchmal sind mehrere Aussagen richtig.

Als Gesamtpunktzahl erhalten Sie die Differenz aus der Anzahl aller richtig gesetzten Kreuze und
aller falsch gesetzten Kreuze, mindestens aber 0 Punkte und hichstens 10 Punkte.

(1)

(4)

(6)

Ein Endomorphismus f eines endlich-dimensionalen Vektorraums V ist genau dann diagonali-
sierbar, wenn gilt: '

W Das Minimalpolynom von f zerfillt in paarweise verschiedene Linearfaktoren.

O Das charakteristische Polynom von f zerfillt in Linearfaktoren.

O Das Minimalpolynom von f stlmmt bis auf ein Vorzeichen mit dem charakteristischen
Polynom von f iiberein.

Sei f ein Endomorphismus eines endlich-dimensionalen Vektorraums V. Ist a ein Eigenwert von

f mit algebraischer Vielfachheit m, so gilt:

M Das charakteristische Polynom xy hat die Form xf(X) = (X —a)™ - P(X), wobei P ein zu
X — a teilerfremdes Polynom ist. .

O Das Minimalpolynom py hat die Form ,uf(X) (X —a)™ - P(X), wobei P einzu X —a
teilerfremdes Polynom ist.

O Der Eigenraum Eig(f;a) hat Dimension > in.

Fir Jeden endlich-dimensionalen euklidischen Vektonaum V gilt:

O Jede Basis von V ist eine Orthonormalbasis.

O Es gibt, bis auf Reihenfolge der Vektoren, genau eine Orthonormalbasis von V.

M Mindestens eine Basis von V ist eine O1thon01 malbasis,

Fiir eine Isometrie f: V — V eines eukhdlschen Vekt01raums V gilt:
O Alle Eigenvektoren haben Linge 1.
W f ist injektiv.

0 Der einzige Eigenwert von f ist 1.

Fiir jede.reelle symmetrische Matrix A € Matg(n x n) gilt:
O Fir jeden Eigenwerte a von A ist auch —a ein Eigenwert von A.
O Die durch A definierte Bilinearform auf R™ ist ein Skalarprodukt.

B Eigenvektoren zu verschiedenen Eigenwerten von A stehen senkrecht zueinander (beziiglich
des Standardskalarprodukt auf R™),

Die folgenden Ringe sind Integritétsringe:
m Z/11Z
0 R x R (mit komponentenweiser Addition und Multiplikation)

M Z[/=5] :={a+b\/:3|a,b€Z}CC

Aufgabe 5
(Seite 18)
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Aufgabe 6. Prof. Zibrowius’s Signature “Clever Question.”

2

Note to markers: Seeing this is the signature “clever question,” it is far from unlikely that
correct answers given by the students will differ from the ones given here.

(a) The elements of the basis B*, are defined as

b :V = K, bt — R Z,:j_’
J 0, i 7.

Note to markers: Award the students 1 points for knowing this.
(b) A basis of V* ® W* may be given by the vectors (b} ® ¢}, b} ®c3,...,b} ®c}).

A basis of V@ W may be given by the vectors (b; ® ¢1,b; ® ca,...,b, ® ¢,,). A basis of
(V@ W)* may then by given by ((b1 ®c1)*, (b1 ®c2)*,..., (b, ®cp)*), where (b; ® c;)* is the
map V ® W — K which sends by ® ¢y to 1 if £k =7 and ¢ = j, and to zero otherwise.

Note to markers: Award the students 1 points for getting the basis of V* @ W* right, and 1
point for getting the basis of (V. @ W)* right. All in all, 1 +1 = 2 points.

(c) It is readily apparent that the mapping f: V x W — K defined by v x w — ¢(v) - ¢(w) is
bilinear. Specifically, in as far as V' is concerned, we have

flkv,w) = p(kv)(w) = kp(V)(w) = kf (v, w),
and
f(vi+v2,w) = p(v1+ v2)h(w) = o(v1)Y(W) + (Vo) (W) = f(vi, W) + f(va, W),

and by symmetry we have the same affair with WW. We also of course have the canonical mapping
g: VW =V ®W defined by v x w — v ®w. Hence, by Satz 17.6, there exists a unique
linear map Ly : V @ W — K such that v @ w — ¢(v) - (w).

g
VXW——m— VW

v

K

Note to markers: Award the students 3.5 points for getting this correct.
(d) We define a linear map h: V* @ W* = (V@ W)* by ¢ ® 9 = L.

To see that it is isomorphic, consider how it maps basis vectors of V* ® W* to basis vectors
of (V ® W)*, these being, as established in (b), the sets (b] ® ¢}, b] ® c},...,b} ® c},) and
(b1 ®cy1)*, (b1 ®c2)*, ..., (b, ®cp)*) respectively.

The basis vector bi ® ¢} of V* @ W* maps to Lp; ¢+ in (V @ W)*, this being, as established in

(c), the unique map V@ W — K such that v ® w — bj(v)cj(w). Seeing that this is the map



12

which sends by ® ¢, to 1 if k =i and ¢ = j, then as noted in (b), Lb;,c; = (b; ® ¢;)*, a basis
vector of (V @ W)*.

This establishes that h maps the basis vectors of V* @ W* to the basis vectors of (V @ W)* in
a one-to-one fashion. Seeing further that V* @ W* has nm basis vectors, as does (V @ W)*, it
follows that the mapping is also onto, establishing i as an isomorphism.

Note to markers: Award the students 3.5 points for getting this correct..

That completes the examination.



