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Abstract. We study the so-called sign involutions on twisted forms of abelian
varieties, and show that such a sign involution exists if and only if the class in the
Weil–Châtelet group is annihilated by two. If these equivalent conditions hold,
we prove that the Picard scheme of the quotient is étale and contains no points
of finite order. In dimension one, such quotients are Brauer–Severi curves, and
we analyze the ensuing embeddings of the genus-one curve into twisted forms of
Hirzebruch surfaces and weighted projective spaces.
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Introduction

Recall that an abelian variety A over a ground field k is a group scheme that
is proper, smooth, and connected. As a non-trivial consequence, the group law is
commutative, such that A comes with a canonical automorphism x 7→ −x, the sign
involution. Note that over the field k = C of complex numbers, the abelian varieties
correspond to complex tori Cg/Λ, where Λ is a full lattice admitting a polarization.
An excellent exposition of the theory was given by Mumford [25].

Abelian varieties play a fundamental role in algebraic geometry, since they are
basic building blocks for algebraic groups. In particular, for every proper scheme X
the Picard group, viewed as a group scheme, contains a maximal abelian subvariety
A = PicαX/k ⊂ PicX/k, which encodes crucial geometric information ([20], Section 7
and [36], Section 3). For smooth curves X, these are the jacobian varieties. Abelian
varieties are also important objects in arithmetic geometry, where the ground field
could be a number field or a function field. Geometric and arithmetic aspects are
strongly interrelated: In fibrations f : Y → B of proper schemes, one has to under-
stand the generic fiber X = f−1(η) as a scheme over the function field k(B) of the
base.

The sign involution σ(x) = −x on abelian varieties A plays an important role,
because it gives rise to the notion of symmetric sheaves. Furthermore, one can form
the quotient A/G for the corresponding group G = {±1} of order two. In dimension
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g = 1 this gives the projective line, whereas for g = 2 we get Kummer surfaces, a
fascinating topic going back to the 19th century. In characteristic p 6= 2 Kummer
surfaces are K3 surfaces with rational double points. The case p = 2 requires
extra attention, because than A/G may also be a rational surface with an elliptic
singularity ([38] and [16]). This is a prime example of a wild quotient singularity
(see for example [21] and [22] for more on this topic). To our best knowledge, no
resolution of singularities is known in dimension g ≥ 3.

In this paper we study various aspects of sign involutions, both of arithmetic and
geometric nature. Our first goal is to investigate the existence of sign involutions σ
on twisted forms X of abelian varieties A, over general ground fields k of arbitrary
characteristic p ≥ 0. These σ are involutions on X that become a sign involutions
with respect to a suitable group law that arises on some base-change. These varieties
are usually introduced as torsors over some abelian variety. The following alternative
point of view, developed in [20] and [36], is most suitable: A para-abelian variety is a
proper scheme X such that X⊗k′ admits the structure of an abelian variety, for some
field extension k ⊂ k′. It then turns out that the the subgroup scheme A ⊂ AutX/k
that acts trivially on the numerically trivial part PicτX/k is an abelian variety, and
that the canonical A-action on X is free and transitive. In turn, one may view the
scheme X as a torsor with respect to the abelian variety A (the traditional point of
view), and obtains a class [X] in the Weil–Châtelet group H1(k,A). Our first main
result relates these cohomology classes with the kernel A[2] for the multiplication-
by-two map and the existence of sign involutions on X:

Theorem. (See Thm. 1.2) Let X be a para-abelian variety. Then the following are
equivalent:

(i) There is a sign involution σ : X → X.
(ii) We have 2 · [X] = 0 in the Weil–Châtelet group H1(k,A).

(iii) There is an torsor P with respect to H = A[2] such that X ' P ∧H A.

Here P ∧H A denotes the quotient of P × A by the diagonal H-action, usually
called contracted product or associated fiber bundle. The main idea idea for the above
result is to introduce the scheme of sign involutions Invsgn

X/k ⊂ AutX/k, analyze the

effect of the conjugacy action on this subscheme, and derive consequences using the
general machinery of twisted forms and non-abelian cohomology.

We now turn to more geometric aspects: Given an abelian variety A with its
standard sign involution σ(x) = −x, one can form the quotient B = A/G with
respect to the cyclic group G = {e, σ} of order two. This brings us into the realm of
geometric invariant theory : Locally, the quotient arises from the ring of invariants
in suitable coordinate rings for the abelian variety. In characteristic two, not much
seems to be known on the resulting proper normal scheme, and it would be highly
interesting to construct and understand a resolution of singularities. Our second
main result, which is concerned with the numerically trivial part PicτB/k of the Picard
scheme, which could shed some light on the problem:

Theorem. (See Thm. 2.1) In the above situation, the group scheme PicτB/k is trivial.

This relies on Grothendieck’s two spectral sequences abutting to equivariant co-
homology groups [11]. The result is not difficult in the tame case p 6= 2, but requires
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a careful analysis in the wild case p = 2. Also note that the statement immediately
carries over to para-abelian varieties. In dimension g = 1 the para-abelian varieties
X are usually called genus-one curves ; we like to call them para-elliptic curves.
These play an important role in the geometry and arithmetic of elliptic surfaces, in
particular for bielliptic surfaces, which also go by the name of hyperelliptic surfaces.
The above result shows that the quotient by any sign involution is a Brauer–Severi
curve, that is, a twisted form of P1.

Our third main result deals with the converse situation: Suppose there is a degree-
two morphism f : X → B from a para-elliptic curve X to some Brauer–Severi
curve B. Then the projectivization S = P(E ) of the rank-two sheaf E = f∗(OX)
is a twisted form of a Hirzebruch surface with invariant e = 2, and comes with
a contraction to a normal surface S ′, having a unique singularity, which is often
factorial. The geometry of the situation is as follows:

Theorem. (See Section 3) Assumptions as above. Then f : X → B is the quotient
by some sign involution σ on the para-elliptic curve X, and the latter embeds into
both surfaces S and S ′ as an anti-canonical curve. Moreover, S ′ is the anti-canonical
model of S, and also a twisted form of the weighted projective space P(1, 1, 2).

We also show that if there are two different sign involutions σ1 6= σ2, the ensuing
diagonal map gives an embedding X ⊂ B1 × B2 into a product of Brauer–Severi
curves. Such products where studied by Kollár [17] and Hogadi [15]. Again X
becomes an anti-canonical curve, and it turns out that B1 × B2 embeds into P3 if
and only if the factors are isomorphic.

The paper is structured as follows: In Section 1 we recall the theory of para-abelian
varieties X, introduces the scheme of sign involutions Invsgn

X/k ⊂ AutX/k, analyze

the conjugacy action, and establish the link between sign involutions, cohomology
classes, and structure reductions. Section 2 is devoted to the Picard scheme of
the quotient B = A/G of an abelian variety A of arbitrary dimension g ≥ 0 by a
sign involution. In Section 3 we consider the case g = 1, and unravel the geometry
attached to degree-two maps X → B from a para-elliptic curve X to a Brauer–Severi
curve B.

Acknowledgement. We like to thank the referees and Cećılia Salgado for their
remarks, which helped to improve the paper. The research was conducted in the
framework of the research training group GRK 2240: Algebro-Geometric Methods in
Algebra, Arithmetic and Topology. The first two authors where financially supported
by the Deutsche Forschungsgemeinschaft with a PhD grant in GRK 2240/1, the first
author also with a PhD grant in GRK 2240/2.

1. The scheme of sign involutions

Let k be a ground field of characteristic p ≥ 0, and X be a proper scheme. Then
the group scheme AutX/k is locally of finite type, and the connected component

Aut0
X/k of the neutral element e = idX is of finite type ([23], Theorem 3.7). By

the Yoneda Lemma, the map σ 7→ σ2 defines a morphism of the scheme AutX/k to
itself, which usually disrespects the group law. The scheme of involutions InvX/k is
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defined via a cartesian diagram

InvX/k −−−→ AutX/ky yσ 7→σ2

Spec(k) −−−→
e

AutX/k .

It contains the neutral element and is stable under the inverse map σ 7→ σ−1, but
otherwise carries no further structure in general.

Now suppose that X can be endowed with the structure of an abelian variety.
Recall that for each rational point x0 ∈ X, there is a unique group law that turns X
into an abelian variety, with origin 0 = x0. Fix such a datum, and write A for the
abelian variety obtained by endowing X with the ensuing group law. Note that A
can also be regarded as the pair (X, x0). The automorphism group scheme becomes
a semidirect product

AutX/k = Ao AutA/k,

where the normal subgroup on the left acts on X by translations x 7→ a + x. The
cokernel AutA/k on the right is an étale group scheme with countably many points,
acting on A in the canonical way. Its rational points are the automorphisms σ :
X → X fixing the origin x0. It contains a canonical element, namely the standard
sign involution x 7→ −x. This defines a morphism (−1) : Spec(k) → AutA/k. Its
fiber with respect to the canonical projection A o AutA/k → AutA/k is denoted by
A⊗ κ(−1).

Lemma 1.1. The closed subscheme A ⊗ κ(−1) ⊂ AutX/k is invariant under the
conjugacy action of AutX/k, lies inside InvX/k, and does not depend on the choice
of the origin x0 ∈ X.

Proof. Let x, a, b ∈ A(R) and ϕ ∈ AutA/k(R) be R-valued points, for some k-algebra
R. Then x 7→ a− x is some R-valued point of A⊗ κ(−1). Conjugation by (b, id) is

(1) x 7−→ −b+ x 7−→ a− (−b+ x) 7−→ (a+ 2b)− x,

whereas conjugation by (0, ϕ) takes the form

x 7−→ ϕ−1(x) 7−→ a− ϕ−1(x) 7−→ ϕ(a)− x.

Both are R-valued points of A⊗κ(−1). Furthermore, the composition x 7→ a−x 7→
a − (a − x) is the identity. With the Yoneda Lemma, we see that A ⊗ κ(−1) is
invariant under conjugacy, and must be contained in InvX/k.

Now let a0 ∈ X be another origin. The ensuing new group law and negation are
given by

x⊕ y = x+ y − x′0 and 	 x = −x+ 2a0,

and thus a	 x = (a+ a0)− x. This shows that the closed subscheme A⊗ κ(−1) ⊂
AutX/k does not depend on the choice of origin. �

Recall that a proper scheme X is called a para-abelian variety if there is a field
extension k ⊂ k′ such that the base-change X ′ = X ⊗ k′ admits the structure
of an abelian variety. This notation was introduced and studied by Laurent and
the third author [20]. According to loc. cit., Proposition 5.2, the closed subscheme
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A ⊂ AutX/k that acts trivial on PicτX/k is an abelian variety, and the canonical
A-action on X is free and transitive. The resulting class

[X] ∈ H1(k,A)

in the Weil–Châtelet group is called the cohomology class of the para-abelian variety.
Note that since A is smooth, the étale and fppf topology yield the same cohomology
groups ([13], Theorem 11.7). Consequently, the class [X] has some finite order; this
number is usually called period per(X) ≥ 1.

Conversely, if H is any commutative group scheme, with a torsor P and a homo-
morphism H → A, we get a para-abelian variety X = P ∧H X0. The latter denotes
the quotient of P ×X0 by the diagonal action h · (p, x) = (h · p, h + x), and X0 is
the underlying scheme of the abelian variety A. By construction, this X is a twisted
form of X0.

Recall that the index ind(X) ≥ 1 is the greatest common divisor of the degrees
[κ(a) : k] for the closed points a ∈ X. This is indeed the index for the image of the
degree map CH0(X)→ Z on the Chow group of zero-cycles. Note that in dimension
one this can also be seen as the degree map on the Picard group. According to [19],
Proposition 5 the divisibility property per(X) | ind(X) holds, and both numbers
have the same prime factors.

As explained in [37], Section 3, the group scheme AutX/k is a twisted form of
AutX0/k with respect to the conjugacy action. In turn, the conjugacy-invariant
closed subscheme A⊗ κ(−1) ⊂ AutX0/k becomes a closed subscheme

Invsgn
X/k ⊂ AutX/k,

which we call the scheme of sign involutions. Any automorphism σ : X → X
belonging to Invsgn

X/k is called a sign involution.

Theorem 1.2. For each para-abelian variety X of dimension g ≥ 0, the following
three conditions are equivalent:

(i) There is a sign involution σ : X → X.
(ii) We have 2 · [X] = 0 in the Weil–Châtelet group H1(k,A).

(iii) There is an torsor P with respect to H = A[2] such that X ' P ∧H A.

It these conditions hold we have the divisibility property ind(X) | 4g.

Proof. We start with some general observations: The first projection

AutX0/k = Ao AutA/k −→ A

identifies the scheme of sign involutions Z0 = Invsgn
X0/k

= A ⊗ κ(−1) with a copy of

X0 = A. According to (1), the kernel for the conjugacy homomorphism A→ AutZ0/k

is A[2], so this factors over multiplication-by-two map A
2→ A. It is now convenient

to write X = T ∧A X0 for some A-torsor T . Note that since the X0 is the trivial
A-torsor, one actually has T = X. What is important now is that the scheme of sign
involutions Z = Invsgn

X/k coincides with Z = T ∧A Z0, and the latter is the quotient

of T × Z0 by the A-action a · (t, z0) = (a+ t, 2a+ z0).
This quotient can be computed as successive quotients, first for the action of

H = A[2] and then for the induced action of A/A[2]. The group H acts trivially on
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the second factor, hence H\(T × X0) = (H\T ) × X0. In light of the short exact
sequence

(2) 0 −→ H −→ A
2−→ A −→ 0,

we may regard T̄ = H\T as the A-torsor induced from T with respect to A
2→ A.

In other words Z = T̄ ∧Ā Z0, where we write Ā = A/H = A to indicate the nature
of the action. By construction, the Ā-action on Z0 is free and transitive, so the
projection T̄ ⊗ κ(−1)→ Z is an isomorphism. We conclude that there is a rational
point σ ∈ Z if and only if the torsor T̄ is trivial.

From the short exact sequence (2) we get a long exact sequence

H0(k,A)
2−→ H0(k,A) −→ H1(k,H) −→ H1(k,A)

2−→ H1(k,A).

It follows that the element [X] = [T ] in H1(k,A) is annihilated by two if and only
if there is an H-torsor P such that such that X ' P ∧H X0, giving the equivalence
of (ii) and (iii). Similarly, we see that [X] = [T ] is annihilated by two if and only if
T̄ is trivial. Together with the previous paragraph this gives the equivalence of (i)
and (ii).

It remains to verify the divisibility property of the index. This is just a special
case of general fact: Suppose X has period n ≥ 1. From the long exact sequence
for the multiplication-by-n map we see that the quotient of X by A[n] contains a
rational point, so its fiber Z ⊂ X is a torsor with respect to A[n]. According to
[25], page 147 the kernel A[n] is finite of length l = n2g. Clearly, the torsor Z has
the same length, hence X contains a zero-cycle of degree n2g. Now if (ii) holds, we
have n | 2, and thus ind(X) | 4g. �

Recall that for each m ≥ 1 there is an identification H1(k, µm) = k×/k×m. Sup-
pose now that k contains a primitive m-th root of unity, such that µn ' (Z/mZ)k.
Let us recall the following result of Lang and Tate ([19], Theorem 8): Assume that
the ground field k, the abelian variety A, and the integer m ≥ 0 satisfies the fol-
lowing conditions: The Z/mZ-module k×/k×m contains a free module of infinite
rank, the quotient A(k)/mA(k) is finite, and A(k) contains an element of order m.
Then the Weil–Châtelet group H1(k,A) contains infinitely many elements X whose
period and index equals m. Note that for global fields k, the first two conditions
are automatic, and the third can be obtained after a finite extension, provided the
abelian variety has dimension g ≥ 1 and the characteristic exponent p ≥ 1 of k is
prime to m.

2. The Picard scheme of the quotient

Let A be an abelian variety, with its standard sign involution σ(x) = −x. Write
G ⊂ Aut(A) the corresponding subgroup of order two. The quotient B = A/G is
a projective scheme that is geometrically integral and geometrically normal, with
h0(OB) = 1. Following [9], Section 2, we write Sing(B/k) for the locus of non-
smoothness. In contrast to the locus of non-regularity Sing(B), it comes with a
scheme structure, defined via Fitting ideals for Kähler differentials.

Let PicτB/k be the open-and-closed subgroup scheme inside the Picard scheme

comprising numerically trivial invertible sheaves. Its Lie algebra is H1(B,OB), and
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the group scheme of connected components is the torsion part of the Néron–Severi
group scheme. It therefore encodes important information on B. In dimension two,
B = A/G yields the classical Kummer surfaces, which give rise to K3 surfaces, and
in characteristic p = 2 also to rational surfaces ([38] and [16]). In both cases the
tau-part of the Picard scheme vanishes. This generalizes to higher dimensions:

Theorem 2.1. The group scheme PicτB/k is trivial. Moreover, Sing(B/k) is finite,
and is contained in the image of the fixed scheme Aσ = A[2].

Proof. It suffices to treat the case that k is algebraically closed. Write q : A → B
for the quotient map, let U ⊂ A be the complement of the fixed scheme Aσ = A[2],
and V = q(U) be its image. The induced map q : U → V is a G-torsor, in
particular smooth. According to [12], Theorem 17.11.1 the smoothness of U ensures
the smoothness of V . Thus Sing(B/k) is contained in the image of A[2], and is
therefore finite.

The structure sheaf OA has a G-linearization, and thus comes with equivariant
cohomology groups H i(A,G,OA), and likewise we have H i(A,G,O×A ). According to
[11], Section 5.2, for every abelian sheaf F on A endowed with a G-linearization
there are two spectral sequences

(3) Ers
2 = Hr(G,Hs(A,F )) and Ers

2 = Hr(B,Hs(G,F )),

both with equivariant cohomology Hr+s(A,G, F ) as abutment. For F = O×A this
gives two exact sequences

(4)
0 Pic(B) H1(A,G,O×A ) H0(B,P ) H2(B,O×B )

0 H1(G, k×) H1(A,G,O×A ) Pic(A)G H2(G, k×),

where the abelian sheaf P = H1(G,O×A ) is supported by the singular locus of B,
and the composition Pic(B) → H1(A,G,O×A ) → Pic(A)G is given by pullback of
invertible sheaves. Recall that the cohomology groups for the cyclic groupG = {e, σ}
are given by

H2j+1(G,M) =
Ker(σ + id)

Im(σ − id)
and H2j+2(G,M) =

Ker(σ − id)

Im(σ + id)
,

for any G-module M . It follows that H2(G, k×) vanishes, because G acts trivially on
k×, and k× = k×2, whereas H1(G, k×) = µ2(k) = {±1}. According to (4), the kernel
for Pic(B)→ Pic(A) is the intersection of Pic(B)∩H1(G, k×) inside the equivariant
cohomology group. Furthermore, the image of Picτ (B)→ Pic(A) is contained in

Picτ (A) ∩ Pic(A)G = A(k) ∩ Pic(A)G = A(k)[2] = Pic(A)[2].

This already shows that the group scheme PicτB/k must be finite. It also settles the
case of dimension g = 1: Then B is a normal curve with finite Picard scheme. The
latter is smooth, according to [24], Section 27 because H2(B,OB) = 0. Consequently
B = P1, and thus PicτB/k = 0.

From now on, we assume that we are in dimension g ≥ 2. At each a ∈ A[2], the
induced G-action on the local ring OA,a is ramified only at the origin. It follows that
the local ring at the image b ∈ B is singular, and that the finite degree-two extension
OB,b ⊂ OA,a is not flat: the arguments in [21], last paragraph in the proof for
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Proposition 3.2, hold true for the action of our group G of order two in characteristic
p ≥ 0. Consequently, the quotient map q : A→ B induces a bijection between A[2]
and Sing(B). Furthermore, the short exact sequence 0→ OB → q∗(OA)→ F → 0
defines a coherent sheaf F that is invertible on the open set V = Reg(B), but not
at the points b ∈ Sing(B).

We claim that the canonical map Pic(B) → Pic(A)G is injective. Equivalently,
the intersection Pic(B) ∩ H1(G, k×) inside H1(A,G,O×A ) is trivial. The group
H1(G, k×) = µ2(k) vanishes in characteristic two, so only the case p 6= 2 requires
attention. Then the trace map q∗(OA)→ OB, which sends a local section viewed as
an OB-linear homothety to its trace, gives a splitting q∗(OA) = OB ⊕F , thus F
satisfies Serre’s Condition (S2). The canonical identification FV ⊗F∨

V = OV yields
an element in Γ(V, q∗(OA)⊗F∨) = Γ(U, q∗(F∨)) without zeros, and it follows that
the invertible sheaf F |V becomes trivial on U . Using the diagram (4) for the quo-
tient V = U/G instead of B = A/G, we conclude that F |V generates the kernel
of Pic(V ) → Pic(U). Seeking a contradiction, we now assume that there is a non-
trivial invertible sheaf L on B that becomes trivial on A, we therefore must have
L |V = F |V . Using that both L and F satisfies Serre’s Condition (S2) together
with [14], Theorem 1.12 we infer that L = F , contradicting that F is not invert-
ible. This establishes our claim. In turn, the canoncial map Picτ (B) → Pic(A)[2]
becomes an inclusion Picτ (B) ⊂ Pic(A)[2].

We next check that for p 6= 2 the finite group scheme PicτB/k is reduced. Equiv-

alently, its Lie algebra H1(B,OB) vanishes. To see this, consider the spectral se-
quences (3) with the additive sheaf OA instead the multiplicative sheaf O×A . For
i ≥ 1, the vector spaces H i(G, k) are annihilated by the group order |G| = 2. For
p 6= 2 they consequently vanish, and we obtain inclusions

H1(B,OB) ⊂ H1(A,G,OA) ⊂ H1(A,OA)G.

Moreover, the term on the right also vanishes because G acts via the sign involution
on the cohomology group, according ([28], proof of Proposition 2.3). This establishes
the claim.

To proceed we use the fact that for any finite commutative group scheme N the
isomorphism classes of N -torsors B′ → B corresponds to homomorphisms of group
schemes N∗ → PicB/k, where N∗ = Hom(N,Gm) denotes the Cartier dual (see [27],
Proposition 6.2.1, and also the discussion in [34], Section 4).

The constant group scheme N = (Z/2Z)k has Cartier dual N∗ = µ2. Suppose we
have an inclusion µ2 ⊂ PicτB/k such that the composite map µ2 → PicτA/k remains
a monomorphism. The corresponding N -torsor B′ → B thus induces a non-trivial
N -torsor A′ → A. According to the Serre–Lang Theorem ([25], page 167), there is
a unique structure of an abelian variety for A′ so that A′ → A is a homomorphisms.
This gives an embedding N ⊂ A′ defined by a 2-division point a′ ∈ A′. The
composite A′ → B is the quotient for the action of N o {±1}. Since this semidirect
product is actually a direct product, the projection A′ → B′ must be the quotient
by G = {±1}. Now choose a closed point x′ ∈ A′ with 2x′ = a′. It follows that
the orbit G · x′ = {±x′}, viewed as a rational point on B′, is fixed by the the N -
action, contradiction. This settles the case p 6= 2: Then µ2 = (Z/2Z)k, and we see
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that Picτ (B) ⊂ Pic(A)[2] is trivial. We already saw in the previous paragraph that
PicτB/k is reduced, and infer that it must be trivial.

It remains to treat the case p = 2, where the arguments in some sense run parallel
to the preceding paragraph. At each a ∈ A[2], the local ring at the image b ∈ B is
singular, with depth(OB,b) = 2, according to [21], Proposition 3.2. Note that this is
in stark contrast to the situation p 6= 2, when such rings of invariants are Cohen–
Macaulay. Again we consider the short exact sequence 0→ OB → q∗(OA)→ F → 0
of coherent sheaves on B. For the images b ∈ B of the a ∈ A[2], the short exact
sequence of local cohomology

H0
b (B, q∗(OA)) −→ H0

b (B,F ) −→ H1
b (B,OB),

reveals that H0
b (B,F ) = 0, in other words, F is torsion-free. The trace map

q∗(OA) → OB vanishes on the subsheaf OB ⊂ q∗(OA) since we are in characteristic
two. The induced map F → OB is bijective on the locus where F is invertible,
which one easily sees by a local computation. This gives an inclusion F ⊂ OB.
Using that F is not invertible we infer H0(B,F ) = 0. The exact sequence

H0(B,F ) −→ H1(B,OB) −→ H1(A,OA)

ensures that the map on the right is injective. On the other hand, its kernel is the
Lie algebra for the kernel of PicτB/k → PicA/k[2]. It follows that this map is actually
a closed embedding PicτB/k ⊂ PicA/k[2].

Now we use that the Lie algebra of any group scheme in characteristic p > 0
carries as additional structure the p-map x 7→ x[p] and becomes a restricted Lie
algebra (see [37], Section 1 for more details). Suppose H1(B,OB) 6= 0. Then there
is a p-closed vector x 6= 0, in other words x[p] is a multiple of x. The case x[p] 6= 0
yields an inclusion of µp ⊂ B where the composite map µp → A is injective. We saw
above that this is impossible. In turn we must have x[p] = 0. This gives an inclusion
of N∗ = αp into B where the composite map αp → A remains injective. The Cartier
dual is N = αp. Thus we get a non-trivial αp-torsor B′ → B for αp whose base-
change A′ → A remains non-trivial. A similar situation with N∗ = (Z/2Z)k and
N = µp arise if there is a point of order two on PicB/k. In both cases the discussion
in [28], beginning of Section 2 shows that A′ has the structure of an abelian variety
so that the projection A′ → A is a homomorphism, and we get an inclusion N ⊂ A′.
The composition A′ → B is the quotient by the group scheme N o {±1}. Again
this is actually a direct product. In the cartesian diagram

A′ −−−→ B′y y
A −−−→ B

the vertical maps are quotients by the action of the infinitesimal group scheme N ,
and the horizontal maps are quotients by G = {±1}. Fix some a′ ∈ A′[2], with image
b′ ∈ Sing(B′), and consider the ring of invariants OB′,b′ ⊂ OA′,a′ . According to [21],
Lemma 3.3 no element f ∈ ma′ rm2

a′ is G-invariant. It follows that the infinitesimal
neighborhood Spec(Oa′/m

2
a′) maps to Z ′ = Spec(Ob′/mb′), and therefore the same

holds for the orbit N ·{a′}. In light of the above commutative diagram, the N -action
on B′ is not free, contradiction. �
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The result immediately carries over to para-abelian varieties, because the forma-
tion of both the quotient B = A/G and the Picard scheme PicB/k commutes with
ground field extensions. The para-abelian varieties X of dimension g = 1 are usually
called genus-one curves. Throughout, we shall prefer the term para-elliptic curves.
These are twisted forms of elliptic curves. The moduli stack of such curves was
studied by the second author [6]. Recall that the Brauer–Severi varieties Y are
twisted forms of projective space Pn, for some n ≥ 0. For more details we refer to
[3]. In case n = 1 we also say that Y is a Brauer–Severi curve.

Corollary 2.2. Assumption as in the proposition, and suppose additionally g = 1.
Then the corresponding quotient B = X/G is a Brauer–Severi curve.

Proof. The scheme B is geometrically normal and of dimension one, hence smooth.
According to the theorem, the Picard scheme is discrete. It follows that the tangent
space H1(B,OB) vanishes. If there is a rational point a ∈ X, the resulting invertible
sheaf L = OB(a) is very ample, with h0(L ) = 2, and we obtain an isomorphism
B → P1. �

In dimension g = 2 and characteristic p 6= 2, the quotient B = A/{±1} is called
a Kummer surface, and is a K3 surface with rational double points. For p = 2,
the quotient B is either a K3 surface with rational double points, or a rational
surface with an elliptic singularity. This was discovered by Shioda [38], see also [16],
[32], [33] and [18]. The formation of such quotients is studied by the first author
[5]. Little seems to be know on the quotient in higher dimensions, in particular in
characteristic two, compare Schilson’s investigation [30], [31].

3. Morphisms to Brauer–Severi curves

Let X be a para-elliptic curve over a ground field k. If there is a sign involution
σ : X → X, the quotient B by the corresponding group of order two is a Brauer–
Severi curve, according to Corollary 2.2. In this section we conversely assume that
our para-elliptic curve X admits a morphism f : X → B of degree two to some
Brauer–Severi curve B, and derive several geometric consequences.

First note that the corresponding function field extension k(B) ⊂ k(X) has degree
two. It must be separable, because X and B are smooth of different genus. So this
is a Galois extension, and the Galois group G is cyclic of order two. Let σ ∈ G be
the generator.

Proposition 3.1. The automorphism σ : X → X is a sign involution.

Proof. It suffices to treat the case that k is algebraically closed. The action is not
free, because χ(OX) = 0 6= 2 = |G|·χ(OB). Choose a fixed point x0 ∈ X, and regard
E = (X, x0) as an elliptic curve. If Aut(E) is cyclic, there is a unique element of
order two, and we infer that σ equals the sign involution. Suppose now that Aut(E)
is non-cyclic. According to [7], Proposition 5.9 this group is either the semi-direct
product Z/3Z o µ4(k) in characteristic p = 3, or Qo µ3(k) in characteristic p = 2,
where Q = {±1,±i,±j,±k} denotes the quaternion group. In these groups, the
respective elements (0,−1) and (−1, 1) are the only ones of order two, and we again
conclude that σ coincides with the sign involution. �
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Proposition 3.2. The cokernel for the inclusion OB ⊂ f∗(OX) is isomorphic to
ωB, and the resulting extension 0 → OB → f∗(OX) → ωB → 0 of coherent sheaves
splits.

Proof. The sheaf f∗(OX) has rank two and is torsion-free, hence is locally free. The
inclusion of OB is locally a direct summand, so the cokernel L is invertible. We
have 0 = χ(OX) = χ(OB) +χ(L ) = 2 + deg(L ) and conclude deg(L ) = −2. Since
deg : Pic(B) → Z is injective, this gives L ' ωB. The extension yields a class in
Ext1(ωB,OB) = H1(X,ω⊗−1

B ), which vanishes by Serre Duality. So the extension
splits. �

Choose a splitting and set E = f∗(OX) = OB ⊕ ωB. The smooth surface

S = P(E ) = Proj(Sym• E )

is a twisted form of the Hirzebruch surface S0 = P(E0), where E0 = OP1 ⊕ OP1(−2).
Let us call S the twisted Hirzebruch surface attached to the Brauer–Severi curve B.
Since f : X → B is affine, the invertible sheaf OX is relatively very ample, and we
get a closed embedding X ⊂ S. By abuse of notation we also write f : S → B for
the extension of our original morphism on X.

Recall that each invertible quotient E → N defines a section s : B → S, whose
image D has self-intersection D2 = deg(N ) − deg(N ′), where N ′ ⊂ E is the
kernel. For more details we refer to [10], Section 6. In particular, pr1 : E → OB

yields a curve D ⊂ S with D2 = 2, whereas pr2 : E → ωB gives some E ⊂ S
with E2 = −2, and the two sections are disjoint. The Adjunction Formula gives
(ωS ·D) = −4 and (ωS ·E) = 0. Hence ωS = f ∗(ω⊗2

B )⊗OS(−2E), because both sides
have the same intersection numbers with D and E. In particular c2

1 = (ωS · ωS) =
−8 · deg(ωB) + 4 · E2 = 8. Setting

ω
⊗1/2
S = f ∗(ωB)⊗ OS(−E),

we get an invertible sheaf whose square is isomorphic to the dualizing sheaf. In other
words, the surface S comes with a canonical theta characteristic, or spin structure,
compare [4] and [26].

Proposition 3.3. The dual sheaf L = ω
⊗−1/2
S is globally generated with h0(L ) = 4.

The image of the resulting r : S → P3 is an integral normal surface S ′ ⊂ P3 of degree
two, and the induced morphism r : S → S ′ is the contraction of E. Moreover, the
image a = r(E) is a rational point, the local ring OS′,a is singular, and the restriction
r|X is a closed embedding.

Proof. Our sheaf has intersection numbers (L · L ) = 2 and (L · E) = 0. Serre

Duality gives h2(L ) = h0(ω
⊗3/2
S ) = 0, and Riemann–Roch yields

h0(L ) ≥ χ(L ) =
c2

1/4 + c2
1/2

2
+ χ(OS) = (2 + 4)/2 + 1 = 4.

The base locus Bs(L ) is contained in E, because ω⊗−1
B is globally generated. The

short exact sequence 0→ f ∗(ω⊗−1
B )→ L → L |E → 0 yields an exact sequence

0 −→ H0(S, f ∗(ω⊗−1
B )) −→ H0(S,L ) −→ H0(E,OE),
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consequently h0(L ) ≤ h0(ω⊗−1
B ) + h0(OE) = 4. This ensures h0(L ) = 4, and that

L is globally generated.
In turn, our spin structure yields a morphism r : S → P3 with r∗(OP3(1)) =

ω
⊗−1/2
S . It therefore contracts E. Moreover, the image S ′ ⊂ P3 is integral and two-

dimensional, of some degree n ≥ 1. This image is not a plane, because the morphism
is defined by the complete linear systemH0(S,L ). From 2 = (L ·L ) = deg(S/S ′)·n
we infer that S → S ′ is birational and n = 2. The Adjunction Formula gives
ωS′ = OS′(−2), consequently r∗(ωS′) = ωS. It follows that the birational morphism
r : S → S ′ is in Stein factorization. Since Pic(S) has rank two, the exceptional
divisor is irreducible, whence must coincide with E.

The image a = r(E) is a rational point, because h0(OE) = 1. The local ring OS′,a

must be singular, because otherwise S = Bla(S
′), such that E = r−1(a) must be a

projective line with E2 = −1, contradiction.
It remains to verify that the curves X,E ⊂ S are disjoint. Since deg(X/B) = 2

we have ωS = OS(−X)⊗f ∗(N ) for some invertible sheaf N on B. The Adjunction
Formula gives

0 = (ωS ·X) +X2 = −X2 + 2 deg(N ) +X2.

Consequently N is trivial, and ωS = OS(−X). This gives X2 = c2
1 = 8, and

furthermore (X · E) = −(ωS · E) = 0. Thus the integral curves X and E must be
disjoint, hence r|X is a closed embedding. �

Note that the local ring OS′,a is factorial provided that B 6' P1. The above also
shows that the image S ′ = r(S) can also be viewed as the anti-canonical model
P (S,−KS) of the scheme S, which is defined as the homogeneous spectrum of the
anti-canonical ring R(S,−KS) =

⊕
t≥0H

0(S, ω⊗tS ).
Recall that the weighted projective space P(d0, . . . , dn) is the homogeneous spec-

trum of k[U0, . . . , Un], where the generators have degrees di = deg(Ui). The case
d0 = . . . = dn = 1 gives back the standard projective space Pn. Let us say that a
closed subscheme of a Gorenstein surface is an anti-canonical curve if its sheaf of
ideals is isomorphic to the dualizing sheaf.

Proposition 3.4. The anti-canonical model S ′ = P (S,−KS) is a twisted form of
the weighted projective space P(1, 1, 2). Moreover, X ⊂ S and the resulting inclusion
X ⊂ S ′ are anti-canonical curves.

Proof. It suffices to treat the case that k is algebraically closed. We claim that S ′ is
defined inside P3 = Proj k[T0, . . . , T3] by the equation T 2

0 − T1T2 = 0, for a suitable
choice of homogeneous coordinates. The main challenge is the case p = 2: According
to [1], Satz 2 our quadric X ⊂ P3 must be defined by an equation of the form

r∑
i=1

(αiX
2
i +XiYi + γiY

2
i ) +

s∑
j=1

δjZ
2
j = 0,

with 1 ≤ 2r+ s ≤ 4, and non-zero coefficients δj. Since k is algebraically closed, we
can make a change of variables and achieve δj = 1, and furthermore αi = γi = 0.
For s ≥ 1 the coordinate change Z1 = Z ′1 + . . . + Z ′s reduces us to the case s = 1.
One now immediately sees that only for r = s = 1 the quadric S ′ ⊂ P3 is normal
and singular, and setting T0 = Z1 and T1 = X1 and T2 = Y1 gives the claim. For
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p 6= 2 our quadric can be defined by an equation of the form
∑3

j=0 δjZ
2
j = 0, and

one argues similarly.
Consider the graded ring A = k[U0, U1, U2] with weights (1, 1, 2). The Veronese

subring A(2) is generated by the homogeneous elements U0U1, U
2
0 , U

2
1 , U2, which sat-

isfy the relation (U0U1)2 = U2
0 · U2

1 . This gives a surjection

k[T0, T1, T2, T3]/(T 2
0 − T1T2) −→ A(2),

defined by the assignments T0 7→ U0U1 and T1 7→ U2
0 and T2 7→ U2

1 and T3 7→ U2.
Both rings are integral of dimension three. Using Krull’s Principal Ideal Theorem,
we infer that the above surjection is bijective. The homogeneous spectrum of A(2)

coincides with P(1, 1, 2) = Proj(A), and by the above also with S ′.
We already saw in the previous proof that ωS = OS(−X), hence X ⊂ S is an

anti-canonical curve. From the Theorem of Formal functions one infers f∗(ωS) is
invertible, and this ensures that the direct image coincides with ωS′ . Using X ∩E =
∅ we infer ωS′ = OS′(−X). �

Now suppose that we have two morphism B1
f1← X

f2→ B2 to Brauer–Severi curves,
with deg(X/Bi) = 2. According to Proposition 3.1, they come from sign involutions
σ1 and σ2, respectively.

Proposition 3.5. If σ1 6= σ2, the diagonal morphism i : X → B1 × B2 is a closed
embedding, and its image is an anti-canonical curve.

Proof. Let A ⊂ AutX/k be the subgroup scheme that fixes PicτX/k. As discussed in
Section 1, this is an elliptic curve, and the action on the para-elliptic curve X is free
and transitive. Moreover, the dual abelian variety is identified with Pic0

X/k. But

note that the principal polarization stemming from the origin also gives A = Pic0
X/k.

We saw in the proof of Proposition 1.1 that the two rational points σ1, σ2 ∈ Invsgn
X/k

differ by the action of some non-zero a ∈ A(k). In other words, σ2(x) = a + σ1(x).
It follows that there is no rational point x ∈ X with σ1(x) = σ2(x). In particular,
the fixed schemes Xσ1 and Xσ2 are disjoint.

To proceed, we assume that k is algebraically closed. Let x ∈ X be a closed
point and write y = i(x) = (b1, b2). The inverse image i−1(y) is the intersection
of the fibers f−1

1 (b1) ∩ f−1
2 (b2). This is just the spectrum of κ(x), by the previous

paragraph. According to [12], Corollary 18.12.6 the finite morphism i : X → B1×B2

is a closed embedding.
By construction, we have deg(X/B1) = deg(X/B2) = 2. Set V = B1 × B2. Its

Picard scheme PicV/k can seen as the Galois module Pic(V ⊗ksep) = Z×Z, compare
the discussion in [35], Section 1. Obviously, the elements (2, 0) and (0, 2) are fixed
by Gal(ksep/k), hence the whole Galois action is trivial, and thus PicV/k = (Z×Z)k
is a constant group scheme. The dualizing sheaf ωV = pr∗1(ωB1)⊗pr∗2(ωB2) has class
(2, 2), and we infer ωV = OS(−X). �

Note that ωV is anti-ample, so the smooth surface V = B1×B2 coincides with its
anti-canonical model P (V,−KV ). Products of Brauer–Severi curves were studied by
Kollár [17] and Hogadi [15]. Let us close this paper with the following observation:

Proposition 3.6. The surface V = B1 × B2 admits an embedding into P3 if and
only if B1 ' B2.
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Proof. The Picard scheme is given by PicV/k = (Z × Z)k. The classes (−2, 0) and
(0,−2) come from the preimages of the invertible sheaves on B1 and B2, and thus
belong to the subgroup Pic(V ) ⊂ PicV/k(k).

Suppose we have V ⊂ P3, and write d ≥ 1 for its degree. From ωV = OV (d − 4)
we get 8 = (ωV · ωV ) = d(d− 4)2, and thus d = 2. In particular, V admits the spin

structure ω
⊗1/2
V = OV (−1). The dual sheaf L = OV (1) has h0(L ) = 4, which easily

follows from the short exact sequence 0 → OP3(−1) → OP3(1) → L → 0. Choose
some non-zero global section s 6= 0 from L , and let D ⊂ V the resulting effective
Cartier divisor. Suppose D is reducible. Since deg(D) = 2 we see that there are
two components. Since L has class (1, 1) in PicV/k(k), it follows that D = D1 +D2,
where the summands are preimages of rational points on B1 and B2, respectively.
Thus both Brauer–Severi curves are copies of P1. Suppose now that D is irreducible.
Then deg(D/Bi) = 1, so the morphism D → Bi are birational. By Zariski’s Main
Theorem, it must be an isomorphism, and therefore B1 ' B2.

Conversely, suppose there is an isomorphism h : B1 → B2. Its graph defines
an effective Cartier divisor D ⊂ B1 × B2 with class (1, 1) ∈ PicV/k(k). Set L =
OV (D). Passing to the algebraic closure of k, we get L = pr∗1(OP1(1))⊗pr∗2(OP1(1)),
and compute h0(L ) = 4. Moreover, L is very ample, and thus defines a closed
embedding X ⊂ P3. �

Given a sign involution σ : X → X and a non-zero rational point a ∈ A(k), we

get another sign involution x 7→ a+ σ(x). We see that the situation B1
f1← X

f2→ B2

with σ1 6= σ2 appears if and only if the set Invsgn
X/k(k) is non-empty and the group

A(k) is non-trivial.
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