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Abstract. We generalize the notion of quasielliptic curves, which have infini-
tesimal symmetries and exist only in characteristic two and three, to a hierarchy
of regular curves having infinitesimal symmetries, defined in all characteristics
and having higher genera. This relies on the study of certain infinitesimal group
schemes acting on the affine line and certain compactifications. The group schemes
are defined in terms of invertible additive polynomials over rings with nilpotent
elements, and the compactification is constructed with the theory of numerical
semigroups. The existence of regular twisted forms relies on Brion’s recent theory
of equivariant normalization. Furthermore, extending results of Serre from the
realm of group cohomology, we describe non-abelian cohomology for semidirect
products, to compute in special cases the collection of all twisted forms.
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Introduction

Let K be a ground field of characteristic p > 0. The goal of this paper is to
generalize, in an equivariant way, the rational cuspidal curve

(1) X = SpecK[T 2, T 3] ∪ SpecK[T−1]

from the cases p = 2 and p = 3, when the automorphism group scheme is non-
reduced, to a hierarchy of integral curves Xp,n whose automorphism group schemes
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are likewise non-reduced. Here the index p > 0 indicates the characteristic, and
pn(n+1)/2 gives the “size” of non-reducedness.

Our motivations originates from the Enriques classification of algebraic surfaces
over ground fields k = kalg: This vast body of theorems on the structure of surfaces
S was extended by Bombieri and Mumford to positive characteristics ([6] and [5]).
Their main insight was the introduction and analysis of quasielliptic fibrations, which
are morphisms f : S → B whose generic fiber Y = f−1(η) is a so-called quasielliptic
curve, in other words, a twisted form of (1) over the function field K = k(B), with
all local rings OY,y regular. One knows that such twisted forms exist only over
imperfect fields of characteristic p ≤ 3, and Queen gave explicit equations for them
([31] and [32]), although of rather extrinsic nature.

We discovered the hierarchy X = Xp,n somewhat accidentally, while seeking a
deeper and more intrinsic understanding of quasielliptic curves. The curves do
not reveal themselves in any direct way; one has to understand them through
their automorphism group scheme AutX/K . Its crucial part are certain infinitesi-

mal group schemes Un of order pn(n+1)/2 acting in a canonical way on the affine line
A1 = SpecK[T−1]. The underlying scheme is αpn × αpn−1 × . . . × αp, a singleton
formed with iterated Frobenius kernels of the additive group, but endowed with a
non-commutative group law. Its definition relies on the so-called additive polynomi-
als

∑n
i=0 λiT

−pi , or equivalently the elements of the skew polynomial ring R[F ;σ],
formed over rings with nilpotent elements.

According to Brion’s recent theory of equivariantly normal curves [9], there is a
unique compactification A1 ⊂ Xp,n to which the action of Un extends in an optimal
way. In general, it is very difficult to unravel the structure of such compactifications,
but here we were able to “guess” an explicit description in terms of the numerical
semigroups

Γp,n = 〈pn, pn − pn−1, . . . , pn − p0〉 ⊂ N,
a monoid that comprises all but finitely many natural numbers. The guesswork was
assisted by computer algebra computations with Magma and GAP, performed in a
handful of special cases. Our first main result is that the ensuing toric compactifi-
cation has an intrinsic meaning:

Theorem. (See Thm. 4.4 and Thm. 8.4) The Un-action on the affine line extends
to the compactification

Xp,n = SpecK[T Γp,n ] ∪ SpecK[T−1],

and this projective curve is equivariantly normal with respect to the Un-action.

For 3 ≤ pn ≤ 4 this is precisely the rational cuspidal curve. The second main result
unravels the numerical invariants and infinitesimal symmetries of this hierarchy of
projective curves:

Theorem. (See Section 5 and Thm. 7.1) The curves X = Xp,n have

h1(OX) =
1

2
(npn+1 − (n+ 2)pn + 2) and AutX/K = Ga o Un oGm.

In this iterated semidirect product, the additive group Ga is normalized by the
infinitesimal group scheme Un, and both are normalized by the multiplicative group
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Gm. Note that for 3 ≤ pn ≤ 4 this precisely gives back the computation of Bombieri
and Mumford ([5], Proposition 6), and the above should be seen as a natural gen-
eralization.

The computation of the genus relies on general results of Delorme [11] on numerical
semigroups, applied to our Γp,n. The determination of the automorphism group is
based on further surprising properties of the projective curves X = Xp,n: The
tangent sheaf ΘX/K = Hom(Ω1

X/K ,OX) turns out to be invertible, actually very

ample, giving a canonical inclusion X ⊂ P(g) = Pn+1, where g = H0(X,ΘX/K) is
the Lie algebra of the automorphism group scheme G = AutX/K . From the canonical
linearization OX(1) = ΘX/K we get a matrix representation for G, which is crucial
to gain control on its structure. Furthermore, X is globally a complete intersection,
defined inside Pn+1 by the following n homogeneous equations of degree p:

Up
n−1 − V p−1Z = 0 and Up

j − V p−1Uj+1 = 0 (0 ≤ j ≤ n− 2).

Also note that the curves are related by a hierarchy of blowing-ups Xp,n−1 =
BlZ(Xp,n), where the center is the singular point (Lemma 7.3).

Again building on Brion’s theory of equivariantly normal curves [9], we show
that our X = Xp,n have, over ground fields K with “enough” imperfection, twisted
forms Y where all local rings OY,y are regular (Theorem 8.4). These have the same
structural properties of X, except that the singularities get “twisted away”. In turn,
the passage from the rational cuspidal curve to quasielliptic curves is generalized to
our hierarchy X = Xp,n.

The above relies on rather general observations, which indeed form the third main
result of this paper:

Theorem. (See Section 8) Let X be a geometrically integral curve with the action
of a finite group scheme G. Suppose Sing(X/K)red is étale. Then X is equivariantly
normal if and only if for some field extension K ⊂ L, the base-change X⊗L admits
a twisted form that is regular.

Quasielliptic fibrations play a crucial role in the arithmetic of algebraic surfaces
of special type, in particular for K3 surfaces and Enriques surfaces (for an example
see [38]). We expect that twists over function fields of our X = Xp,n play a similar
role for surfaces of general type.

By the general theory of non-abelian cohomology and twisted forms, one may view
the collection Twist(X) of isomorphism classes of twisted forms over S = Spec(K)
as non-abelian cohomology H1(S,AutX/S). For our curves X = Xp,n we determined
the automorphism group scheme. This raises the question of how to compute non-
abelian cohomology for semidirect products in general. We indeed establish effective
techniques to do so, and are able apply them at least in the cases n ≤ 2. Our fourth
main result is:

Theorem. (See Thm. 10.7) For G = GaoU2 oGm, the non-abelian cohomology is

H1(S,G) =
⋃

K/{up2 − v − αvp − βpvp2 | u, v ∈ K},

where the union runs over (α, β) ∈
⋃
K/Kp2 K/Kp, with α ∈ K/Kp2

and β ∈ K/Kp.
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Perhaps this is the first explicit determination of Twist(X) via a purely non-
abelian cohomological computation of H1(S,AutX/S), for some relevant hierarchy of
schemes X. A crucial step in this is the determination of particular twisted forms
PGa in the form given by Russell [35], a technique likely to be of independent interest.

Let us quote Bombieri and Mumford ([5], page 198): “The study of special low
characteristics can be one of two types: amusing or tedious. It all depends on
whether the peculiarities encountered are felt to be meaningful variations of the
general picture [...] or are felt instead to be accidental and random, due for instance
to numerological interactions [...]”. We think that our results amply show that what
Bombieri and Mumford have uncovered for p ≤ 3 is indeed far from accidental,
and belong to a structural hierarchy that indeed can be understood from general
principles.

The paper is organized as follows: In Section 1 we develop the theory of additive
polynomials, over rings that contain nilpotents, study the resulting groups of units,
and introduce Un(R). The ensuing actions on polynomial rings are discussed in
Section 2. Building on these preparations, we give in Section 3 a scheme-theoretic
re-interpretation, and determine the Lie algebra and the upper and lower central se-
ries for the infinitesimal group scheme Un. In Section 4 we examine the equivariant
compactifications of the affine line A1, and introduce our numerical semigroup Γp,n
and the ensuing curve Xp,n, which turns out to be equivariantly normal. We de-
termine the numerical invariants and deduce several crucial geometric consequences
in Section 5. In Section 6 we show that our curve can also be seen as a global
complete intersection Xp,n ⊂ Pn+1. In Section 7 its automorphism group scheme is
determined. Section 8 contains general results on the relation between equivariant
normality and the existence of twisted forms that are regular, which is then applied
to our curves Xp,n. Section 9 is devoted to twisting and the computation of non-
abelian cohomology for semidirect products. We apply this in Section 10 to describe
the collection of all twisted forms of Xp,n in the cases n = 1 and n = 2.

Acknowledgement. We heartily thank the two referees for thorough reading and
many valuable suggestions, which helped to improve the paper. The research was
conducted in the framework of the research training group GRK 2240: Algebro-
Geometric Methods in Algebra, Arithmetic and Topology.

1. Invertible additive polynomials

In this section we gather purely algebraic facts that go into the definition of our
infinitesimal group scheme U = Un in Section 3. Fix some ring R of characteristic
p > 0, and let x be an indeterminate. Recall that polynomials of the form

P (x) =
n∑
i=0

λix
pi = λ0x+ λ1x

p + . . .+ λnx
pn ∈ R[x]

are called additive polynomials. Another widespread designation is p-polynomials.
Clearly, the set of all such polynomials is stable under addition P (x) + Q(x) and
substitution P (Q(x)). These two composition laws enjoy the distributive property.
In fact, the additive polynomials form an associative ring with respect to these laws,
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with zero element P (x) = 0 and unit element P (x) = x. Let us call it the ring of
additive polynomials.

It can also be seen as the skew polynomial ring R[F ;σ], where σ : R → R
designates the Frobenius map λ 7→ λp. Elements are polynomials in the formal
symbol F , and multiplication is subject to the relations Fλ = λpF . In other words,
we have

(2)
∑
i

λiF
i ·
∑
j

µjF
j =

∑
k

(
∑
i+j=k

λiµ
pi

j )F k,

a modification of the usual Cauchy multiplication. The identification of the skew
polynomial ring with the ring of additive polynomials is given by λ 7→ λx and
F 7→ xp, such that

∑
λiF

i corresponds to
∑
λix

pi . For psychological reasons, we
strongly prefer to make computations in the skew polynomial ring. In the next
section, when it comes to actions on the affine line, we shall turn back to the ring
of additive polynomials.

Over ground fields, the ring of additive polynomials was introduced and studied
by Ore [30]. A discussion from the perspective of skew polynomial rings was given
by Jacobson ([22], Chapter 3). More recent presentations appear in [18], Chapter
1 and [17], Chapter 2. For our purposes, however, it will be crucial to allow nilpo-
tent elements. The following two propositions reveal that nilpotent and invertible
elements in R[F ;σ] are characterized as in usual polynomial rings:

Proposition 1.1. An element
∑n

i=0 λiF
i of the skew polynomial ring R[F ;σ] is

nilpotent if and only if λ0, . . . , λn ∈ Nil(R).

Proof. Suppose all coefficients are nilpotent, say λdi = 0. For each r ≥ 0 we have

(
∑
i

λiF
i)r =

∑
k

(
∑

i1+...+ir=k

λv1
i1
. . . λvrir )F k

for certain exponents v1, . . . , vr ≥ 1 whose precise values are irrelevant in the fol-
lowing reasoning: If r > (n + 1)(d − 1), each tuple 0 ≤ i1, . . . , ir ≤ n must contain
the d-fold repetition of at least one value 0 ≤ i ≤ n. Then the product λv1

i1
. . . λvrir

vanishes, and so does the above r-fold power.
Conversely, suppose some λs ∈ R is not nilpotent. Choose a prime p ⊂ R not

containing λs, and set K = κ(p). Then the image of
∑n

i=0 λiF
i in the skew poly-

nomial ring K[F ;σ] is a non-zero nilpotent element. On the other hand, K[F ;σ] is
a domain (this follows from [22], Chapter 3, Section 1, bottom paragraph on page
29), contradiction. �

This has an important consequence:

Proposition 1.2. An element P =
∑n

i=0 λiF
i of the skew polynomial ring R[F ;σ]

is invertible if and only if λ0 ∈ R× and λ1, . . . , λn ∈ Nil(R).

Proof. The condition is sufficient: Set µi = −λi/λ0. By Proposition 1.1, the element
Q =

∑n
i=1 µiF

i is nilpotent, say Qr = 0. Then 1−Q is a unit, with inverse
∑r−1

j=0 Q
j.

Thus P = λ0(1−Q) is also a unit.
Conversely, suppose that PQ = QP = 1. From the group law (2) one immediately

infers that λ0 ∈ R×. Seeking a contradiction, we assume that some λs ∈ R, s ≥ 1
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is not nilpotent. Choose such 1 ≤ s ≤ n maximal. As above, we find some residue
field K = κ(p) in which λs is non-zero. Let d ≥ 0 be the degree of the image of
Q. From (2) one sees that the image of 1 = PQ has non-zero term in degree s+ d,
contradiction. �

Given a unit of the form P =
∑
λiF

i, the inverse P−1 =
∑
µjF

j can be computed

as follows: The condition P · P−1 = 1 means λ0µ
p0

0 = 1, and
∑

i+j=k λiµ
pi

j = 0 for
k ≥ 1, which give the recursion formula

(3) µ0 = λ−1
0 and µk = − 1

λ0

k∑
i=1

λiµ
pi

k−i (k ≥ 1).

The skew polynomial ring comes with an infinite-dimensional matrix representation
R[F ;σ]→ Mat∞(R), already determined by the assignments

λ 7−→


λ

λp

λp
2

. . .

 and F 7−→


0 1

0 1
0 1

. . . . . .

 .

More explicitly, this homomorphism is given by

(4)
n∑
i=0

λiF
i 7−→ (λp

r

s−r)0≤r≤s<∞ =


λ0 λ1 λ2 · · ·

λp0 λp1 λp2 · · ·
λp

2

0 λp
2

1 λp
2

2 · · ·
. . . . . . . . .

 .

Obviously, the map is injective and takes values in the row-finite upper triangular
matrices. Note that for each d ≥ 0, the top left submatrix indexed by 0 ≤ r, s ≤ d−1
yields a subrepresentation R[F ;σ]→ Matd(R).

We now examine the unit group R[F ;σ]× in more detail, for the time being
as an abstract group. It comes with matrix representations R[F ;σ]× → GLd(R),
d ≥ 0. Note that this factors over the group of invertible upper triangular matrices
Td(R) ⊂ GLd(R). Write Fild for the kernels. Clearly Fil0 = R[F ;σ]×, whereas

Fild = {1 +
n∑
i=d

λiF
i | n ≥ d and λi ∈ Nil(R)} (d ≥ 1).

These form a descending chain of normal subgroups, in other words, a normal series.
Clearly, their intersection contains only the unit element.

Proposition 1.3. The normal series Fild on R[F ;σ]× has quotients

Fil0 /Fil1 = R× and Fild /Fild+1 = Nil(R) (d ≥ 1).

Moreover, we have the commutator formula [Fil1,Fild] ⊂ Fild+1 for all d ≥ 1.

Proof. The first assertion is an immediate consequence of the group law (2). The
commutator formula follows from a corresponding commutator formula for the uni-
triangular group UTd(R) ⊂ GLd(R) comprising upper triangular matrices with the
unit element on the diagonal (confer [23], Chapter 6, Example 16.1.2). �
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The multiplicative character R[F ;σ]× → GL1(R) = R× given by
∑
λiF

i 7→ λ0

comes with a canonical splitting µ 7→ µF 0, so we get a semidirect productR[F ;σ]× =
Fil1 oR×. The ensuing conjugacy action of R× is given by

µ(
∑

λiF
i)µ−1 =

∑
µ1−piλiF

i.

For our applications it will be important to consider certain smaller subgroups inside
the unit group, and the following is crucial throughout:

Proposition 1.4. For each integer n ≥ 0, the set

Un(R) = {1 +
n∑
i=1

λiF
i | λp

n−i+1

i = 0 for all 1 ≤ i ≤ n}

is a subgroup inside the unit group R[F ;σ]×, which is normalized by R× ⊂ R[F ;σ]×.

Proof. Clearly the set contains the unit element. Suppose P = 1 +
∑n

i=1 λiF
i and

Q = 1+
∑n

j=1 µjF
j belong to Un(R), and write the product as PQ = 1+

∑m
k=1 αkF

k,

with coefficients αk =
∑

i+j=k λiµ
pi

j . For k ≥ n + 1, each summand λiµ
pi

j vanishes:
If j ≥ n+ 1 we already have µj = 0, and if j ≤ n we get i = k − j ≥ n+ 1− j and

thus µp
i

j = 0. For k ≤ n, we have αp
n−k+1

k =
∑

i+j=k λ
pn−k+1

i µp
n−j+1

j , which vanishes

because µp
n−j+1

j = 0. Thus PQ ∈ Un(R).

Next consider the inverse element P−1 =
∑

j≥0 βjF
j. The recursion formula (3)

gives β0 = 1 and βk = −
∑k

i=1 λiβ
pi

k−i for k ≥ 1. For k ≥ n + 1 each summand

λiβ
pi

k−i vanishes, because i ≥ n − (k − i) + 1. For k ≤ n we have (λiβ
pi

k−i)
pn−k+1

=

λp
n−k+1

i βp
n−(k−i)+1

k−i , where the second factor vanishes. Thus P−1 ∈ Un(R).

Finally, for each µ ∈ R×, we have µ · P · µ−1 = 1 +
∑n

i=1 µ
1−piλiF

i, which clearly
belongs to Un(R). So the latter is normalized by R×. �

2. Actions on polynomial rings

We keep the set-up as in the previous section. Obviously, the multiplicative
monoid of additive polynomials

∑
λix

pi acts on the polynomial ring R[x] via sub-

stitution of the indeterminate, in other words by P (x) 7→ P (
∑
λix

pi), and one
easily checks that this is an action from the right. In turn, we have a group action
R[x]×R[F ;σ]× → R[x] from the right, given by

(5) Q(x) ∗
∑

λiF
i = Q(

∑
λix

pi).

Note that the action of the multiplicative group Gm(R) = R× via Q(x)∗λ0 = Q(λ0x)
is a special case of this. Furthermore, we have the translation action of the additive
group Ga(R) = R, defined by

(6) Q(x) ∗ α = Q(x+ α).

Obviously, these actions are faithful, and we arrive at inclusions of Ga(R) and
R[F ;σ]× into the opposite automorphism group of R[x].

Proposition 2.1. Inside the opposite automorphism group of R[x], the group Ga(R)
is normalized by R[F ;σ]×, and the intersection Ga(R) ∩R[F ;σ]× is trivial.
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Proof. Suppose we have elements

α ∈ Ga(R) and
∑

λiF
i ∈ R[F ;σ]×.

For the first assertion, it suffices to check that P ·Ga(R) = Ga(R) · P . This indeed

holds, because one computes
∑
λi(x+ α)p

i
= (
∑
λix

pi) + α′ with α′ =
∑n

i=0 λiα
pi .

It remains to verify the assertion on the intersection. Suppose that α = P as
automorphisms of R[x], in other words x+ α =

∑
λix

pi . Comparing coefficients at
the constant terms gives α = 0, hence the intersection Ga(R)∩R[F ;σ]× is trivial. �

In turn, we get an inclusion of Ga(R)oR[F ;σ]× into the opposite automorphism
group of R[x]. Later, we seek to extend part of this action to certain subrings of
R[x−1] in a compatible way. The following observation will be useful: Let S ⊂ R[x]
be the multiplicative system of all monic polynomials. The resulting localization is
denoted by R(x) = S−1R[x]. Since monic polynomials are regular elements from the
polynomial ring, the localization map is injective, and we get an inclusion R[x] ⊂
R(x).

Proposition 2.2. The action from the right of the group Ga(R) oR[F ;σ]× on the
polynomial ring R[x] uniquely extends to R(x).

Proof. Uniqueness immediately follows from the universal property of localizations.
To see existence, consider the larger multiplicative system S̃ ⊂ R[x] comprising the
polynomials of the form λP +Q with P monic, Q nilpotent, and λ ∈ R×. Obviously,
this system is stable with respect to the actions (5) and (6), and we thus get an
induced action on S̃−1R[x]. On the other hand, the inclusion S ⊂ S̃ gives a canonical
map S−1R[x]→ S̃−1R[x]. It remains to verify that every λP +Q as above becomes
invertible in S−1R[x]. Indeed, in the factorization λP + Q = P/1 · (λ + Q/P ) also
the second factor is a unit, because λ is invertible and Q/P is nilpotent. �

3. Scheme-theoretic reinterpretation

Fix a ground field K of characteristic p > 0. In this section we take a more
geometric point of view and reinterpret and extend the results of the preceding
sections in terms of schemes and group schemes. We now regard

Un(R) = Un,K(R) = {1 +
n∑
i=1

λiF
i ∈ R[T ;σ]× | λp

n−i+1

i = 0 for 1 ≤ i ≤ n}

as a group-valued functor Un on the category of K-algebras R. Clearly, the natural
transformation

(7) αpn × αpn−1 × . . .× αp −→ Un, (λ1, . . . , λn) 7−→ 1 +
n∑
i=1

λiF
i

is an isomorphism of set-valued functors, with group laws ignored. In turn, Un is

a finite group scheme with coordinate ring
⊗n

i=1K[xi]/(x
pn−i+1

i ) and order |Un| =
h0(OUn) = pn(n+1)/2. It contains but one point, and is thus an infinitesimal group
scheme.
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One immediately sees that the restriction of (7) to α⊕np = αp × . . .× αp respects
the group laws, and gives an inclusion of group schemes α⊕np ⊂ Un. Furthermore,
for every m ≤ n we have canonical inclusions Um ⊂ Un of group schemes.

Recall that each scheme X over our ground field K comes with a relative Frobenius

map F : X → X(p), given in functorial terms by X(R)
F→ X(FR) = X(p)(R). Here

FR denotes the abelian group R, viewed as an R-algebra via the absolute Frobenius
map f 7→ fp, and X(p) = X ⊗K (FK). Note that R = FR as an Fp-algebra. Hence
X(R) = X(FR) and thus X = X(p), provided that X arises as base-change from
the prime field Fp. For our group scheme Un, the relative Frobenius map takes the
form

Un(R) −→ Un(FR) = Un(R), 1 +
∑

λiF
i 7−→ 1 +

∑
λpiF

i.

Proposition 3.1. The image of F : Un → Un is the subgroup scheme Un−1, and
its kernel is given by α⊕np . In particular, we have an identification of restricted Lie
algebras Lie(Un) = Kn.

Proof. Obviously, the Frobenius map factors over the subgroup scheme Un−1 ⊂ Un.
The resulting F : Un → Un−1 is indeed an epimorphism, because any R-valued point
1 +

∑
µiF

i of Un−1 arises of the R′-valued point 1 +
∑
λi from Un, for the fppf

extension R′ =
⊗

R[λi]/(λ
p
i − µi).

An R-valued point 1 +
∑
λiF

i belongs to the kernel of the Frobenius map if
and only if λpi = 0, and hence Un[F ] = α⊕np . The last assertion follows, because
Lie(α⊕np ) = Kn, and for any group scheme the inclusion of the Frobenius kernel
induces a bijection on Lie algebras. �

In turn, the relative Frobenius map F : Un → Un yields an extension

(8) 0 −→ α⊕np −→ Un −→ Un−1 −→ 1.

By induction on n ≥ 0 we infer that the finite group scheme Un admits a composition
series with quotients isomorphic to αp. In particular, Un is unipotent. Since all Lie
brackets are trivial, the adjoint representation ad : un → gl(un) of the Lie algebra
un = Lie(Un) is trivial, and the adjoint representation Ad : Un → GLun/k of the
group scheme factors over the quotient Un−1. It is not difficult to determine the
latter representation: Since the group Un(K) is trivial, we have

Lie(Un) = Un(K[ε]) = {1 + ε
n∑
r=1

αrF
r | αr ∈ K},

where ε denotes an indeterminate subject to ε2 = 0. The elements 1+εF r, 1 ≤ r ≤ n
form a basis of this K-vector space. With P =

∑
λiF

i where λ0 = 1, and using the
relations ε2 = 0 and Fε = 0, we get

P−1 · (1 + εF s) · P = 1 + εF sP = 1 + ε
n−s∑
i=0

λp
s

i F
s+i =

n−s∏
i=0

(1 + ελp
s

i F
s+i).

Consequently Ad(P−1) sends the basis vector es = 1+εF s to the linear combination∑n
r=s λ

ps

r−ser. Summing up, in the restricted Lie algebra Lie(Un) = Kn all brackets
and p-powers are zero, and the adjoint representation of the group scheme is given
by (

∑
λiF

i)−1 7→ (λp
s

r−s)n≥r≥s≥1.
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As described in Section 2, the groups Un(R) act from the right on the polynomial
ring R[x] via R-linear maps. This is obviously functorial in R, and thus constitutes
an action of the group scheme Un on the affine line A1 = SpecK[x]. Note that this
is indeed an action from the left. On R-valued points, it is given by

(λ1, . . . , λn) ∗ µ =
n∑
i=0

λiF
i ∗ µ =

n∑
i=0

λiµ
pi ,

where we set λ0 = 1 for convenience. Of course, we also have the canonical actions
of the multiplicative group Gm and the additive group Ga, given via λ0 ∗ µ = λ0µ
and α ∗ µ = µ + α, respectively. The following generalizes a key observation of
Bombieri and Mumford ([5], Proposition 6):

Proposition 3.2. The above actions of the three group schemes on the affine line
are faithful. Inside the sheaf AutA1/K, the group scheme Ga is normalized by Un,
and both Ga and Un are normalized by Gm. Moreover, the intersections

Ga ∩ Un and (Ga o Un) ∩Gm

inside the sheaf AutA1/K are trivial.

Proof. The assertions follow from Proposition 2.1 and Proposition 1.4. �

We thus have an iterated semidirect product, for simplicity written as

(9) Ga o Un oGm = (Ga o Un) oGm = Ga o (Un oGm),

acting faithfully on the affine line A1 = SpecK[x]. In turn, we get an inclusion of
restricted Lie algebras

K o Lie(Un) o gl1(K) ⊂ Lie(AutA1/K) = DerK(K[x]).

The elements in the left-hand side can be seen as tuples (α, λ1, . . . , λn, λ0), and

correspond to the K-derivation α ∂
∂x

+
∑n

i=1 λix
pi ∂
∂x

+ λ0x
∂
∂x

of the polynomial ring
K[x]. For example, the derivation λ1x

p∂/∂x ∈ Lie(Un) acts via x 7→ x + ελ1x
p,

which coincides with the action of the group element 1 + ελ1F ∈ Un(k[ε]).
The spectrum of the function field K(x) comes with a monomorphism

(10) SpecK(x) −→ SpecK[x] = A1.

According to Proposition 2.2, there is a unique action on SpecK(x) that makes the
above morphism equivariant.

Let us close this section with some observations on central series. Recall that for
a group G, the lower central series Γr = ΓrG and the upper central series Zs = ZsG
are inductively defined by

Γ0 = G, Γr+1 = [G,Γr] and Z0 = {e}, Zs+1/Zs = Z(G/Zs).

The group is nilpotent if Γr = {e} for some r ≥ 0, or equivalently Zs = G for some
s ≥ 0. Then the smallest such integers coincide, and this number n is called the
nilpotency class of the group. Note that Γn−r ⊂ Zr, but usually this inclusion is
not an equality. We refer to [19], Chapter 10 or [23], Chapter 6 for basic facts on
nilpotent groups.

For group schemes G of finite type one has basically the same construction, with
sheafification involved. This is straightforward for the higher centers: An x ∈ G(R)



GENERALIZATIONS OF QUASIELLIPTIC CURVES 11

belongs to Zs+1(R) if and only if it commutes with all members of G(R′) up to
elements of Zs(R

′), for all flat extensions R ⊂ R′. The situation is more complicated
for the Γr, because their formation involves schematic images and group scheme
closure with respect to the commutator maps G×Γr → Γr+1, see [13], Exposé VIB,
Section 8.

Let us unravel this for our G = Un: Consider the closed subschemes

(11) {1} = G0 ⊂ G1 ⊂ . . . ⊂ Gn = Un

defined by Gr(R) = {1 +
∑n

i=n−r+1 λiF
i}.

Proposition 3.3. The Gr ⊂ Un are subgroup schemes, and the series (11) coincides
with both the upper and the lower central series for the group scheme Un. The
quotients are Gr+1/Gr = αpr+1.

Proof. With descending induction one easily checks that Gr ⊂ Gr+1 are subgroup
schemes: The surjection Gr+1 → αpr+1 given by 1 +

∑n
i=n−r λiF

i 7→ λn−r respects
the group law, and has kernel Gr. The Isomorphism Theorem gives the statement
on the quotients.

The arguments for the higher centers rely on the following observation: The
recursion formula (3) for inverses

∑
γiF

i = (
∑
βiF

i)−1 shows that each coefficient
γi = γi(β0, . . . , βn) actually depends only on β0, . . . , βi. From this one easily infers

(12) (
∑

αiF
i) · (

∑
βiF

i)−1 ∈ Gr(R) ⇐⇒ αi = βi for 0 ≤ i ≤ n− r.

Write Zr for the higher centers of Un. We show Zr ⊂ Gr by induction on 0 ≤ r ≤ n.
The case r = 0 is trivial. Suppose now r ≥ 1, and that the inclusion holds for r− 1.
For each x =

∑
λiF

i from Un(R) we compute

(1− µF ) · x = x−
n−1∑
i=0

µλpiF
i+1 and x · (1− µF ) = x−

n−1∑
i=0

λiµ
piF i+1.

Suppose that x belongs to Zr(R). Then for all µ ∈ αpn(R′) in some ring extension
R ⊂ R′, the above two expressions coincide modulo Zr−1 ⊂ Gr−1. From the equiva-
lence (12) we obtain µλpi = λiµ

pi for 0 ≤ i ≤ n − r. For R′ = R[µ]/(µp
n
) we are in

position to compare coefficients and infer λ1 = . . . = λn−r = 0, and thus x ∈ Gr(R).
This completes our induction, and establishes Zr ⊂ Gr for all 0 ≤ r ≤ n. For the

reverse inclusion we use our embedding Un ⊂ UTn+1 into the group of unitriangular
matrices. According to Lemma 3.4 below, the r-th higher center of UTn+1(R) is
given by the matrices that are zero on the n−r secondary diagonals above the main
diagonal. The intersection with Un(R) equals Gr(R). Consequently Gr ⊂ Zr, thus
the Gr = Zr form the upper central series.

The arguments for the higher commutator groups rely on some preliminary ob-
servations. For elements of the form b = 1− βF s − γF s+1 + . . . with any s ≥ 1, the
geometric series (1− x)−1 = 1 + x+ x2 + . . . gives

b−1 = (1− βF s − γF s+1 + . . .)−1 ≡ 1 + βF s + γF s+1 + β1+psF 2s,

where the congruence means up to terms of order s+2. Note that the last summand
is only relevant in the special case s = 1. With a = 1−αF , the above formula shows



GENERALIZATIONS OF QUASIELLIPTIC CURVES 12

that the commutator aba−1b−1 is congruent to

(1− βF s − γF s+1)−1 + (1− αF )(−βF s − γF s+1)(1 + αF )(1 + βF s) ≡
1 + βF s + γF s+1 + β1+psF 2s − βF s + αβpF s+1 − βαpsF s+1 − β1+psF 2s − γF s+1.

Most summands cancel, and the upshot is the commutator formula

(13) aba−1b−1 = 1 + (αβp − βαps)F s+1 + . . . .

Write Γr for the higher commutator subgroup schemes. According to general prop-
erties of nilpotent groups ([23], page 107) we have Γr ⊂ Zn−r = Gn−r. We claim
that the canonical projection

(14) Γr = [Un,Γ
r−1] −→ Gn−r/Gn−r−1 = αpn−r

is an epimorphism. We check this by induction on r ≥ 0. The case r = 0 is
trivial. Suppose r ≥ 1, and that the assertion is true for r − 1. According to
[12], Chapter IV, §2, Proposition 1.1 the iterated Frobenius kernels are the only
subgroup schemes of αpn−r ⊂ Ga. Seeking a contradiction, we assume that the

above map factors over αpn−r−1 . Consider the ring R = K[α, β]/(αp
n
, βp

n−r+1
). By

our induction hypothesis, there is some faithfully flat extension R ⊂ R′ and some
R′-valued point of the form b = 1− βF r−1− γF r + . . . from Γr−1. With a = 1−αF
the commutator formula (13) shows that aba−1b−1 projects to λ = αβp−βαpr under

(14). So λp
n−r−1

= αp
n−r−1

βp
n−r − βp

n−r−1
αp

n−1
vanishes in the ring R′. On the

other hand, both of the appearing monomials belong to the monomial basis for R,
contradiction. Thus (14) is an epimorphism.

We are now ready to prove that the inclusion Γs ⊂ Gn−s is an equality. Fix some
x ∈ Gn−s(R), and write it as x = 1 +

∑n
i=s+1 λiF

i. We check that x ∈ Γs(R) by
descending induction on s ≤ n. The case s = n is trivial. Assume now s < n,
and that the assertion holds for s + 1. By the preceding paragraph, there is some
faithfully flat extension R ⊂ R′ and some R′-valued point y = 1 +

∑n
i=s+1 µiF

i from
Γs with µs+1 = −λs+1. Then xy = 1 +

∑
i=s+2 λ

′
iF

i belongs to Gn−s−1(R′). Using
our induction hypothesis, together with the inclusion Γs+1 ⊂ Γs, we see that xy and
hence x belongs to Γs(R′), and by descent x ∈ Γs(R). �

Let us point out that the ring K[α, β]/(αp
n
, βp

n−r+1
) is not free as a module over

K[λ], which one sees by analyzing the size of the Jordan blocks for multiplication by
λ = αβp− βαpr . Thus it is not always possible to factor a given element of Γr+1(R)
into commutators, even over flat extensions R ⊂ R′.

In the preceding proof, we have used the following fact:

Lemma 3.4. The unitriangular matrix group UTn+1(R), over any ring R, has upper
central series given by

(15) Zs = {E + (ζij) | ζij = 0 whenever j − i ≤ n− s}.

Proof. Over fields, this appears in [23], Example 16.1.2. The general case is formu-
lated in [33] as Exercise 5.1.13. For the sake of completeness, we sketch an argument,
by induction on s ≥ 0. The case s = 0 is trivial. Suppose now that s ≥ 1, and that
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the assertion is true for s− 1. By definition, a unitriangular E+ (αij) belongs to Zs
if and only if

(16) (E + (αij)) · (E + (βij)) ≡ (E + (βij)) · (E + (αij)) modulo Zs−1,

for every unitriangular matrix E + (βij). By induction hypothesis, each E + (ζij) ∈
Zs−1 has ζij = 0 for j− i ≤ n+ 1− s, and one easily checks that right multiplication
with elements of Zs−1 to a unitriangular matrix leaves the (i, k)-entries unchanged
for k − i ≤ n + 1− s. From this the inclusion ⊃ of (15) easily follows. Conversely,
suppose we have some E + (αij) ∈ Zs, so (16) holds. This means∑

j

αijβjk =
∑
j

βijαjk whenever k − i ≤ n+ 1− s,

where E + (βij) is any unitriangular matrix, and the sums actually run over i <
j < k. From this one easily infers by induction on r = j − i that αij vanishes for
1 ≤ r ≤ n− s. �

4. Compactifications and numerical semigroups

We keep the setting of the previous section, but now work with a new indeter-
minate T = x−1. The iterated semidirect product Ga o Un oGm has as coordinate
ring

Γ(OGaoUnoGm) = K[α, λ1, . . . , λn, λ
±
0 ]/(λp

n

1 , λ
pn−1

2 , . . . , λp
2

n−1, λ
p
n),

endowed with a Hopf algebra structure, and acts on the affine line A1 = SpecK[T−1].
We now seek to extend this action to certain compactifications, all of which are
denormalizations of the projective line P1 = SpecK[T ] ∪ SpecK[T−1]. For this we
have to make extensive computations in the first chart, which are much easier to
carry out with T rather than x−1. Note that by Proposition 2.2 we have an induced
action on the spectrum of the function field K(T ) = K(x), and this action takes the
form

(17) K(T ) −→ Γ(OGaoUnoGm)⊗K(T ), T 7−→

(
α +

n∑
i=0

λiT
−pi
)−1

.

Recall that an additive submonoid Γ ⊂ N whose complement is finite is called a
numerical semigroup. Equivalently, the induced inclusions of groups Γgrp ⊂ Ngrp =
Z is an equality, or gcd(a1, . . . , ar) = 1 for some members a1, . . . , ar ∈ Γ. Each
numerical semigroup comes with the following invariants: The multiplicity e ≥ 1 is
the smallest non-zero element in Γ. The conductor is the smallest integer c ≥ 0 with
{c, c + 1, . . .} ⊂ Γ. The genus g ≥ 0 is the cardinality of the complement Γ r N,
whose members are called gaps. As monoid, Γ is finitely generated, and among all
systems of generators there is a smallest one; its cardinality is called the embedding
dimension d ≥ 1. For general overviews, we refer to the textbooks [34] and [2].

For each numerical semigroup Γ, the ring K[T Γ] = K[T a | a ∈ Γ] defines a
compactification

X = SpecK[T Γ] ∪ SpecK[T−1],

of the affine line A1 = SpecK[T−1], obtained by adding a single rational point
x0 ∈ X. The gluing of the two affine open sets is given by the common localization
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K[T±1] of the coordinate rings. The normalization is P1 = SpecK[T ]∪SpecK[T−1],
and the ensuing map f : P1 → X is described by the conductor square

(18)

A −−−→ P1y yf
B −−−→ X,

which is both cartesian and cocartesian (for details see [14], Appendix A). The
conductor loci A ⊂ P1 and B ⊂ X are the closed subschemes whose respective
coordinate rings are K[T ]/(T c) and K[T Γ]/(T c, T c+1, . . .). Consider the short exact
sequence 0 → OX → f∗(OP1) × OB → f∗(OA) → 0 of sheaves on X, where the
inclusion is the diagonal map, and the surjection is the difference map. It yields

(19) h0(OX) = 1, h1(OX) = g and e(OX,x0) = e and edim(OX,x0) = d,

with the invariants c, g, e, d of the numerical semigroup discussed above. Here
e(OX,x0) and edim(OX,x0) denote the multiplicity and the embedding dimension of
the local ring, respectively.

Given a subgroup scheme G ⊂ Ga o Un o Gm, it is natural to ask whether the
resulting G-action on the affine line A1 extends to the compactification X. If it
exists, such an extension is unique, because the open set A1 ⊗ R is schematically
dense in X ⊗R, for any ring R.

In the following assertion on the constituents of the iterated semidirect product,
we regard the expression P = (1 +

∑n
i=1 λiT

1−pi)−d as a Laurent polynomial in

the indeterminate T with coefficients from Fp[λ1, . . . , λn]/(λp
n

1 , λ
pn−1

2 , . . . , λpn), and
Q = (1 + αT )−d as a formal power series in T with coefficients from Fp[α]. In both
cases we use the ensuing notion of supports Supp(P ) and Supp(Q) inside the group
of exponents Z.

Proposition 4.1. Notation as above. Then the following holds:

(i) The multiplicative group G = Gm always admits an extension.
(ii) For the infinitesimal group scheme G = Un the extension exists if and only

if for each d ∈ Γ and s ∈ Supp(P ), we also have d+ s ∈ Γ, for the Laurent

polynomial P = (1 +
∑n

i=1 λiT
1−pi)−d.

(iii) For the additive group G = Ga the extension exists if and only if for each
d ∈ Γ and s ∈ Supp(Q) we have d + s ∈ Γ, for the formal power series
Q = (1 + αT )−d.

Moreover, it suffices to verify these conditions for a set of generators d ∈ Γ.

Proof. (i) Recall that Gm-actions on affine schemes correspond to Z-gradings, ac-
cording to [13], Exposé I, Corollary 4.7.3.1. The action on SpecK[T−1] is given by
deg(T−i) = −i. This also defines compatible gradings on K[T Γ], which yields the
desired extension of the action of G = Gm.

(ii) The group scheme G = Un is infinitesimal, hence every open set on a G-
scheme is G-stable. It follows that the G-action extends if and only if the map
K[T Γ]→ Γ(OG)⊗K(T ) induced from (17) factors over the subring Γ(OG)⊗K[T Γ].

This map sends T−1 to T−1 +
∑
λiT

−pi = T−1(1+
∑
λiT

1−pi). Note that the second
factor is invertible, because its second summand is nilpotent. The monomial T d with
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d ∈ Γ is mapped to T dP (T ). This belongs to the subring R[T Γ] if and only if for
each s ∈ Supp(P ) the resulting integer d+ s belongs to the numerical semigroup Γ.

(iii) The action of G = Ga on A1 = SpecK[T−1] extends to the projective line
P1 = ProjK[U0, U1] via the assignments U1 7→ U1 and U0 7→ U0 + αU1, with T =
U1/U0. Note that the origin 0 ∈ P1 is fixed but does not admit a stable affine
open neighborhood. However, the infinitesimal neighborhoods and in particular the
conductor locus A ⊂ P1 are stable.

Since G is smooth, any G-action on A1 uniquely extends to P1, according to [8],
Theorem 2. By [25], Lemma 3.5 the G-action on the projective line descends to an
action on X if and only if the action on the conductor locus A descends to an action
on B. The latter simply means the map

(20) Γ(B,OB) −→ Γ(A,OA) −→ K[α]⊗ Γ(A,OA)

factors over K[α]⊗Γ(B,OB). Here the map on the right describes the G-action on A,
and the coordinate ring on the left is Γ(B,OB) = K[T Γ]/(T c, T c+1, . . .), where c ≥ 0
is the conductor of the numerical semigroup. As K-vector space, this is generated by
the residue classes of T d, d ∈ Γ. The map (17) sends T−1 to T−1 +α = T−1(1+αT ),
so the monomial T d is mapped to T dQ(T ). The class of the latter belongs to
K[T Γ]/(T c, T c+1, . . .) if and only if for all s ∈ Supp(Q), we have d+ s ∈ Γ. �

Note that in the expansions of P (T ) and Q(T ) some multinomial coefficients
appear, and the above conditions involve their congruence properties modulo the
prime number p. Also note that one may view X as a non-normal torus embedding,
with respect to the one-dimensional torus Gm = SpecK[T±1].

The passage from the constituents to the semidirect product is immediate, thanks
to the following observation:

Lemma 4.2. Suppose for each constituent of the iterated semidirect product G =
GaoUnoGm, the action on A1 extends to X. Then the the whole G-action extends
to X.

Proof. This is a general fact: All relations between the R-valued points of the con-
stituents stemming from the semidirect product structures hold on A1 and thus also
on X, because the former is schematically dense in the latter. �

We now introduce a particular Γ that is generated by n+ 1 numbers:

Definition 4.3. We write Γp,n ⊂ N for the numerical semigroup generated by

(21) pn and pn − pj (0 ≤ j ≤ n− 1).

This is indeed a numerical semigroup, because gcd(pn, pn−p0) = 1. Its multiplicity
is given by

ep,n =

{
pn−1(p− 1) if pn ≥ 3;

1 else,

because in the first case the number pn−1(p − 1) is smallest among the generators.
Note that ep,n = 1 is equivalent to pn ≤ 2, whereas ep,n = 2 means 3 ≤ pn ≤ 4.

We came up with the above generators by determining for a handful of special
cases the largest numerical semigroup for which the group scheme action extends,
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and then guessed the general pattern. The computations were made with the com-
puter algebra systems Magma [26] and Gap [15]. One of the main insights of this
paper is that the resulting compactifications

Xp,n = SpecK[T Γp,n ] ∪ SpecK[T−1]

lead to the desired generalizations of the quasielliptic curves. Indeed, in the special
cases 3 ≤ pn ≤ 4 we get Γp,n = 〈2, 3〉, and the ensuing coordinate rings become
K[T 2, T 3]. We now verify that the action of the iterated semidirect product extends
to this compactification:

Theorem 4.4. The action of the group scheme Ga o Up,n o Gm on the affine line
A1 = SpecK[T−1] extends to the compactification X = Xp,n.

Proof. It suffices to extend the action for the three constituents of the iterated
semidirect product, by Lemma 4.2, and for this we use Proposition 4.1: The case
G = Gm is immediate. Suppose now G = Un, and fix one of the generators d ∈ Γp,n
listed in (21). We have to understand the expression

P = (1 +
n∑
i=1

λiT
1−pi)−d.

In the case d = pn, the above simplifies to P = 1−1 = 1, by the Multinomial
Theorem and λp

n

i = 0. Thus Supp(P ) = {0}, and obviously d + 0 ∈ Γp,n. In the
case d = pn − pj with 0 ≤ j ≤ n− 1, we get

P = (1 +
n∑
i=1

λiT
1−pi)−p

n

(1 +
n∑
i=1

λiT
1−pi)p

j

= 1 +
n∑
i=1

λp
j

i T
pj−pi+j .

Its support equals the set {0} ∪ {pj − pi+j | 1 ≤ i ≤ n− j}, in light of the defining

relations λp
n−i+1

i = 0. Obviously, d + 0 = pn − pj and d + (pj − pi+j) = pn − pi+j
belong to Γp,n. Thus the action of G = Un extends.

It remains to treat the case G = Ga. Again we fix one of the generators d ∈ Γp,n,
and now have to examine the formal power series Q = (1 + αT )−d with coefficients
from the polynomial ring Fp[α]. For d = pn − pj, this becomes

Q = (1 + αT )p
j

/(1 + αT )p
n

= (1 + αp
j

T p
j

)
∞∑
i=0

(−αT )ip
n

.

The support is contained in {ipn | i ≥ 0} ∪ {pj + ipn | i ≥ 0}. Clearly, d + ipn =
(pn − pj) + ipn and d + (pj + ipn) = (i + 1)pn belongs to Γp,n. The argument for
d = pn is likewise, and even simpler. Thus the action of G = Ga extends. �

Set Γ = Γp,n and X = Xp,n. With respect to the infinitesimal group scheme Un,
all open sets in X are stable, and the action on the affine open set SpecK[T Γ] is
given by the ring homomorphism

K[T Γ] −→ Γ(OUn)⊗K[T Γ], T d 7−→ T d(1 +
n∑
i=1

λiT
−pi)−d
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with exponents d ∈ Γ. The orbit map x0 : Un → X corresponding to the rational
point x0 ∈ X is given by the homomorphism ϕ : K[T Γ]→ Γ(OUn) that is implicitly
described by

ϕ(T d) = T d(1 +
n∑
i=1

λiT
1−pi)−d |T=0 .

Note that one has to determine the product before substituting T = 0, because
the second factor usually contains terms of negative degree. The computation for
the generators (21) of our numerical semigroup is immediate: ϕ(T p

n
) = 0, and

ϕ(T p
n−pj) = λp

j

n−j for 0 ≤ j ≤ n − 1. Now recall that the inertia group scheme in
Un is defined by the largest quotient of Γ(OUn) in which ϕ becomes the zero map.
Setting i = n− j we get:

Proposition 4.5. Inside Un = SpecK[λ1, . . . , λn]/(λp
n

1 , λ
pn−1

2 , . . . , λpn), the inertia
group scheme with respect to the rational point x0 ∈ X is defined by the equations

λp
n−i

i = 0 for 1 ≤ i ≤ n.

This inertia group scheme coincides with the canonical inclusion of Un−1 ⊂ Un,
which is also the image of the relative Frobenius map, and we thus obtain an Un-
stable closed subscheme Un/Un−1 ⊂ X. A priori, this is an effective Weil divisor
supported by x0, of degree [Un : Un−1] = h0(OUn)/h0(OUn−1) = pn. The following
observation will be crucial in what follows:

Proposition 4.6. The Weil divisor Un/Un−1 ⊂ X is an effective Cartier divisor.

Proof. The closed subscheme lies in the affine open set SpecK[T Γ] and corresponds
to the ideal a = Ker(ϕ). This ideal contains the monomial T p

n
, and we claim that

the inclusion (T p
n
) ⊂ a is an equality. In other words, we have to verify that the

resulting map

ϕ : K[T Γ]/(T p
n

) −→ Γ(OG) = K[λ1, . . . , λn]/(λp
n

1 , λ
pn−1

2 , . . . , λpn)

is injective. We computed above that its image is the subring generated by the

powers λp
n−i

i for 1 ≤ i ≤ n, which is a K-algebra of degree pn. So it suffices to verify
that the K-algebra K[T Γ]/(T p

n
) has degree at most pn. This algebra is generated

by the classes xj of T p
n−pj , with 0 ≤ j ≤ n− 1. From the relation

p(pn − pj) = (p− 1)pn + (pn − pj+1)

in the numerical semigroup Γ we infer a factorization (T p
n−pj)p = (T p

n
)p−1 ·T pn−pj+1

in the ring K[T Γ], and hence xpj = 0. Thus K[T Γ]/(T p
n
) has degree at most pn. �

5. The complete intersection property

We keep the notation as in the preceding section, and continue to study the algebra
of the numerical semigroup Γ = Γp,n, and also the geometry of the compactification
X = Xp,n of the affine line A1 = SpecK[T−1] defined by the coordinate ring K[T Γ].

Recall that any numerical semigroup Γ given by a set of d ≥ 1 generators a1, . . . , ad
and ensuing surjection Nd → Γ is called a complete intersection if the congruence
R = Nd ×Γ Nd is generated by d − 1 elements. According to [20], Corollary 1.13
this is equivalent to the condition that the complete local ring A = K[[T Γ]] is a
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complete intersection in the sense of commutative algebra, in other words, A '
K[[u1, . . . , ur]]/(f1, . . . , fs), for some r ≥ 0 and some regular sequence f1, . . . , fs,
here necessarily with s = r − 1.

Proposition 5.1. Our numerical semigroup Γp,n is a complete intersection, and its
conductor cp,n and genus gp,n are given by the formulas

cp,n = npn+1 − (n+ 2)pn + 2 and gp,n =
1

2
cp,n.

Moreover, G = {pn − pn−1, pn − pn−2, . . . , pn − 1, pn} is the smallest generating set
provided p ≥ 3; for the prime p = 2 and n ≥ 1 one has to omit pn.

Proof. First note that for p = 2 and n ≥ 1 the relation pn = 2(pn−pn−1) shows that
the generator pn does not belong to the smallest generating set.

We now proceed, for general p > 0, by induction on n ≥ 0. For n = 0 we have
Γ = N, and all assertions are obvious. Suppose now n ≥ 1, and that the assertion
holds for n− 1. Consider the sets of numbers

G1 = {pn−1 − pn−2, pn−1 − pn−3, . . . , pn−1 − 1, pn−1} and G2 = {1}.

Both generate respective numerical semigroups Γ1 and Γ2, and the induction hy-
pothesis applies to the former. The numbers a1 = p and a2 = pn − 1 are relatively
prime, with a1 ∈ Γ2 and a2 = p(pn−1 − pn−2) + (pn−1 − 1) ∈ Γ1. Furthermore
Γ = a1Γ1 + a2Γ2. According to [11], Proposition 10 the monoid Γ is a complete
intersection, and the conductor is given by the formula

(22) c = a1c1 + a2c2 + (a1 − 1)(a2 − 1) = pc1 + (p− 1)(pn − 2).

Here c2 = 0 is the conductor of Γ2, and c1 = (n − 1)pn − (n + 1)pn−1 + 2 is the
conductor of Γ1, which we know by our induction hypothesis. Inserting the latter
into (22) we get the desired formula for cp,n. Every complete intersection semigroup
is symmetric ([34], Corollary 9.12), which simply means that the conductor is twice
the genus, and the formula for gp,n follows.

Suppose now p ≥ 3. By induction, the Gi ⊂ Γi are the smallest generating sets.
The number a1a2 = pn+1 − p does not belong to a1G1 ∪ a2G2 = G. As explained
in [11], proof for (ii) of Proposition 10, the subset G ⊂ Γ is the smallest generating
set. For p = 2 one argues likewise, with pn omitted. �

We see that the embedding dimension for the numerical semigroup Γp,n and the
local ring OX,x0 is given by the formula

dp,n =

{
n+ 1 if p ≥ 3 or n = 0;

n if p = 2 and n ≥ 1.

Let us also record the following geometric consequences:

Corollary 5.2. The curve X = Xn,p has invariants

h0(OX) = 1 and h1(OX) =
1

2
(npn+1 − (n+ 2)pn + 2).

Moreover, the dualizing sheaf ωX is invertible, of degree pn(np− n− 2).
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Proof. The values for hi(OX) follow with (19) from the proposition. Being locally of
complete intersection, X must be Gorenstein, and the dualizing sheaf is invertible.
Serre Duality gives deg(ωX) = −2χ(OX) = pn(np− n− 2). �

We actually can derive an explicit description for the ring K[T Γ] in terms of
generators and relations. Write aj = pn − pj and b = pn for the generators of
Γ = Γp,n. They give rise to a surjection Nn+1 → Γ of monoids, and an ensuing
congruence R = Nn+1×Γ Nn+1. The n+ 1 generators satisfy the n obvious relations

(23) p · an−1 = (p− 1) · b and p · aj = p · an−1 + aj+1 (0 ≤ j ≤ n− 2),

which may be interpreted as members of the congruence R. To translate this into
commutative algebra, let xj, y be indeterminates corresponding to the generators
aj, b ∈ Γ, and consider the surjection

ϕ : K[x1, . . . , xn−1, y] −→ K[T Γ]

given by ϕ(xj) = T aj and ϕ(y) = T b. The map respects the gradings specified by
deg(xj) = aj, deg(y) = b and deg(T ) = 1.

Proposition 5.3. The ideal a = Ker(ϕ) is generated by the polynomials xpn−1−yp−1

and xpj − x
p
n−1xj+1 for 0 ≤ j ≤ n− 2, corresponding to the obvious relations (23).

Proof. This is an application of an observation of Delorme ([11], Lemma 8). Recall
that our numerical semigroup is generated by the n+ 1 elements a0, . . . , an−1, b ∈ Γ.
Delorme’s observation hinges on two descending sequences

Pn+1, Pn, . . . , P1 and Zn+1, Zn, . . . , Z2.

The first sequence comprises partitions Pi of the generating setG = {a0, . . . , an−1, b},
subject to the following condition: Pn+1 is the partition into singletons, and each
Pi−1 is obtained from its precursor Pi by replacing certain members Li, L

′
i ∈ Pi

by their union. The second sequence consists of homogeneous polynomials Zi in
the indeterminates x0, . . . , xn−1, y, taking the form Z = Hi − H ′i for some monic
monomials Hi and H ′i, each involving only indeterminates indexed by Li and L′i,
respectively. In loc. cit. the sequences are denoted by P and Z , and the pair
(P,Z ) is called a suite distinguée.

Note that the partitions Pi are fully determined by the sets Li, L
′
i ⊂ G with

2 ≤ i ≤ n+ 1. We now define such a partition sequence by setting

Li = {ai−1, . . . , an−1, b} and L′i = {ai−2}.
Note that this starts with the singletons Ln+1 = {b} and L′n+1 = {an−1}. The
homogeneous polynomials are declared as

Zn+1 = yp−1 − xpn−1 and Zi = xpi−2 − x
p
n−1xi−1, (2 ≤ i ≤ n).

These have deg(Zi) = pn+1 − pi−1 for all 2 ≤ i ≤ n+ 1. One sees

gcd(Li) = gcd(pi−1, . . . , pn−1, pn) = pi−1 and gcd(L′i) = pn − pi−2.

The least common multiple of the above two gcds is given by p(pn − pi−2), which
coincides with deg(Zi). Our assertion now follows from [11], Lemma 8. �

This has important consequences for Kähler differentials:
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Corollary 5.4. The sheaf Ω1
X/K/Torsion is invertible of degree −pn, and the tangent

sheaf ΘX/K = Hom(Ω1
X/K ,OX) is invertible of degree pn.

Proof. The main task is to compute the module of Kähler differentials for the integral
domain K[T Γ]. In light of the proposition, Ω1

K[TΓ]/K is generated by the n + 1

differentials dxj and dy, modulo the n relations

(24) yp−2dy and xpn−1dxj+1 (0 ≤ j ≤ n− 2).

The ring elements y and xn−1 are non-zero, because they correspond to monomials
in K[T Γ], so dy and dxj+1 for 0 ≤ j ≤ n − 2 are torsion. We infer that the
map K[T Γ] → Ω1

K[TΓ]/K given by the remaining differential dx0 is bijective modulo

torsion. The latter differential is given by dT p
n−1.

Let N be the quotient of Ω1
X/K by its torsion subsheaf, and consider the affine

open covering X = U0 ∪ U1 with U0 = SpecK[T Γ] and U1 = SpecK[T−1]. We
have trivializations N |U0 and N |U1, given by dT p

n−1 and dT−1. On the overlap
these become −T pn−2dT and −T−2dT , which are related by the cocycle T p

n ∈
Γ(U0 ∩ U1,O

×
X). This gives deg(N ) = −pn. The assertion for the dual sheaf

ΘX/K = N ∨ is immediate. �

6. The projective model

We keep the set-up of the previous section, and now describe a projective model
for our curve X = Xp,n. First note that the n obvious relations (23) for our monoid
Γ = Γp,n can be replaced by

(25) p · an−1 = (p− 1) · b and p · aj = (p− 1) · b+ aj+1 (0 ≤ j ≤ n− 2),

by using the first of these relations. Now write Pn+1 = ProjK[U0, . . . , Un−1, V, Z]
and consider the closed subscheme C = Cp,n defined by the n homogeneous equations

(26) Up
n−1 − V p−1Z = 0 and Up

j − V p−1Uj+1 = 0 (0 ≤ j ≤ n− 2).

First observe that C is covered by D+(Z) ∪ D+(V ), because it contains only the
point (0 : . . . : 0 : 1 : 0) on the hyperplane given by Z = 0. On these two charts, we
see that

T p
n−pj 7−→ Uj/Z and T p

n 7−→ V/Z and T−1 7−→ U0/V

constitute an isomorphism C → X, which we regard as an identification.

Proposition 6.1. The homogeneous polynomials (26) form a regular sequence in
the polynomial ring, the curve X ⊂ Pn+1 has degree pn, and

ωX = OX(np− n− 2) and ΘX/k = OX(1).

In particular, ΘX/k is very ample, and ωX = Θ⊗rX/k with the exponent r = np−n−2.

Proof. Let a be the ideal generated by the n homogeneous polynomials (26) inside
the n + 2-dimensional Cohen–Macaulay ring A = K[U0, . . . , Un−1, V, Z]. Since the
scheme C is one-dimensional, we must have dim(A/a) = 2. It follows from [43],
Tag 02JN that the polynomials in question form a regular sequence. The assertion
on the dualizing sheaf immediately follows from ωPn+1 = OPn+1(−n − 2) and the
Adjunction Formula.
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The intersection of C ⊂ Pn+1 with the hyperplane given by V = 0 is a single-
ton, with generators Uj/Z and relations (Uj/Z)p = 0 for 0 ≤ j ≤ n− 1 in the
homogeneous coordinate ring. Thus deg(C) = pn.

It remains to verify the statement on the tangent sheaf. As described in the
last paragraph of the proof for Corollary 5.4, the invertible sheaf ΘX/K is given by
the cocycle T−p

n
with respect to the open covering W0 = SpecK[T Γ] and W1 =

SpecK[T−1]. The latter correspond to the open sets D+(Z) and D+(V ). On the
union of these open sets, the invertible sheaf OPn(1) is defined by the cocycle Z/V .
This becomes T−p

n
after restricting to C, and thus ΘX/k = OX(1). �

Recall that a square root for the dualizing sheaf is called a theta characteristic,
or spin structure ([3] and [29]). In our situation, the curve X comes with what one
might call an r-fold theta characteristic or spin structure.

Another highly relevant consequence: The very ample sheaf OX(1) = ΘX/K has
an intrinsic meaning, and g = H0(X,OX(1)) becomes the Lie algebra for the au-
tomorphism group scheme G = AutX/K . To exploit this we check that the closed
embedding X ⊂ Pn+1 is defined by the complete linear system:

Proposition 6.2. The restriction map H0(Pn+1,OPn+1(1)) → H0(X,OX(1)) is bi-
jective. In particular h0(ΘX/K) = n+ 2.

Proof. Since the defining polynomials (26) have degree p ≥ 2, the homogeneous
ideal for X ⊂ Pn+1 contains no linear terms. It follows that the map in question is
injective. It remains to compute h0(L ) for L = ΘX/K .

Let us proceed with some general considerations on invertible sheaves L on X of
arbitrary degree m ≥ 0. Recall that the conductor loci for the normalization map
f : P1 → X are given by

Γ(OA) = K[T ]/(T c) and Γ(OB) = K[T Γ]/(T c, T c+1, . . .),

where c ≥ 0 is the conductor for the numerical semigroup Γ. From the cocartesian
diagram (18), we now obtain an exact sequence

0 −→ H0(L ) −→ Γ(LP1)⊕ Γ(LB) −→ Γ(LA) −→ H1(L ) −→ 0.

It is not difficult to determine the map in the middle: Making the identification
LP1 = OP1(m) and LB = OB and LA = OA, we get

Γ(LP1) =
⊕

a=0,...,m

KT a, Γ(LB) =
⊕

a∈Γ,a≤c−1

KT a and Γ(LA) =
⊕

a=0,...,c−1

KT a.

If m ≤ c − 1, the former groups are contained in the latter, and H0(L ) becomes
their intersection, and hence h0(L ) = Card(S) for the set

S = {a ∈ Γ | a ≤ m and a ≤ c− 1} = {a ∈ Γ | a ≤ m}.

We have to determine this set for m = pn, under the assumptions n(p − 1) ≥ 3.
According to Proposition 5.1, the conductor is c = npn+1 − (n+ 2)pn + 2, and thus
c/pn = np − (n + 2) + 2/pn > n(p − 1) − 2 ≥ 1. So our set S comprises all a ∈ Γ
with a ≤ pn. It clearly contains the generators pn, pn−1, . . . , pn−pn−1, and also the
zero element a = 0. It remains to check that for each pair of generators a ≤ b we
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have a + b ≥ pn. This is obvious for b = pn, so assume a = pn − pi and b = pn − pj
with 0 ≤ i ≤ j < n. Then a+ b− pn = pn− pi− pj ≥ pn− 2pj ≥ pn− pj+1 ≥ 0. �

This leads to a matrix interpretation of the full automorphism group scheme
G = AutX/K : First note that the diagonal action of G on X × X, and its effects
on graphs, induces the conjugacy action of G on itself. Its restriction to the first
infinitesimal neighborhood of the diagonal ∆X yields the G-linearization of the tan-
gent sheaf ΘX/k, and we infer that the resulting representation on the Lie algebra
g = H0(X,ΘX/K) coincides with the adjoint representation G → GL(g). Its pro-
jectivization G → PGL(g) is injective, because ΘX/k is very ample, and it follows
that G→ GL(g) is injective as well. We thus have a canonical inclusion G ⊂ GL(g)
that intersects the center Gm ⊂ GL(g) trivially. Write G · Gm = G × Gm for the
resulting subgroup scheme, and ap ⊂ Symp(g) for the vector subspace generated by
the homogeneous polynomials (26).

Proposition 6.3. Notation as above. Then G · Gm ⊂ GL(g) equals the stabilizer
group scheme for the vector subspace ap ⊂ Symp(g).

Proof. We start with some observations on the homogeneous coordinate rings

Γ•(OPn+1) = Sym•(g) and Γ•(OX) =
⊕
n≥0

Γ(X,OX(n)).

Both rings are integral, so the kernel p of the canonical map Γ•(OPn+1)→ Γ•(OX) is
a prime ideal, which equals the radical for the ideal a generated by the polynomials
(26). The ideal a becomes prime when localized with respect to any homogeneous
f ∈ Sym+(g), because X is integral. Since our generators form a regular sequence,
this actually holds everywhere, and thus a = p.

Write I ⊂ GL(g) for the stabilizer group scheme in question. It contains Gm,
because the polynomials are homogeneous, and its action on Pn+1 stabilizes the
curve X. Modulo Gm, the induced action on X is faithful, according to Proposition
6.2. Thus I ⊂ G · Gm. Conversely, let f ∈ G(R) be some R-valued automorphism
of X. It induces an action on the homogeneous coordinate rings Γ•(OPn+1 ⊗ R) =
Γ•(OPn+1) ⊗ R, and likewise for Γ•(OX). These actions are compatible, thus f
stabilizes pp ⊗R = ap ⊗R. �

For n = 1, this means that G · Gm ⊂ GL3 is the stabilizer group scheme for the
line generated by Up−V p−1Z in the p-th symmetric power of g = KU ⊕KV ⊕KZ.
In turn, G ⊂ PGL3 is the inertia group scheme for the rational point corresponding
to this line.

7. The automorphism group scheme

Recall that our curves X = Xp,n come with an inclusion

(27) Ga o Un oGm ⊂ AutX/K

of group schemes. The following is one of the main results of this paper:

Theorem 7.1. The above inclusion of group schemes is an equality, provided pn ≥ 3.
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The cases pn ≤ 2 indeed have to be excluded, because then X = P1. Also note
that for 3 ≤ pn ≤ 4 our curve X becomes the rational cuspidal curve, and the
assertion was established by Bombieri and Mumford ([5], Proposition 6). The proof
for the above theorem requires some preparation, and will be given step-wise. We
start with a simple observation:

Lemma 7.2. For pn ≥ 3 the ideal for the closed embedding (27) is nilpotent.

Proof. For this we may assume that K is algebraically closed. Seeking a contradic-
tion, we suppose that there is an automorphism ϕ : X → X that does not yield
a rational point in Ga o Gm. The assumption ensures Sing(X) = {x0}, and ϕ
fixes this singular point. Hence the induced automorphism on the normalization
P1 = SpecK[T ] ∪ SpecK[T−1] fixes the point defined by T = 0. It thus belongs to
the inertia group scheme GaoGm inside PGL2. According to [7], Proposition 2.5.1
the action of any smooth group scheme on X lifts to an action on the normalization.
Thus ϕ belongs to Ga oGm inside AutX/k, contradiction. �

Proof of Theorem 7.1 in the special case n = 1. In this situation we have X =
SpecK[T p, T p−1] ∪ SpecK[T−1]. According to Proposition 6.2, the tangent sheaf
has h0(ΘX/k) = 3. One easily computes that the rational vector fields

(28) T 2−p ∂

∂T
and T 2 ∂

∂T
and T

∂

∂T

are everywhere defined, hence form a basis of g = H0(X,ΘX/k). Moreover, the first
two basis vectors generate a restricted subalgebra K2, with trivial bracket and p-
map, and the last basis vector yields a copy of gl1(K), giving a semidirect product
K2 o gl1(K). Such algebras play a prominent role in [36], [24], [41]. Bracket and
p-map are given by [(x, λ), (x′, λ′)] = λx′ − λ′x and (x, λ)[p] = (λpx, λp−1), compare
[24], Proposition 1.1. One sees that K2 is the image of the bracket, thus the derived
subalgebra. This also holds for R-valued points, hence K2 is a subrepresentation for
G.

As explained in Section 6, our curve X may also be regarded as the curve in
P2 = ProjK[U0, V, Z] defined by the homogeneous polynomial P = Up

0 − V p−1Z,
with an identification via T p−1 = U0/Z and T p = V/Z and T−1 = U0/V . According
to Proposition 6.2, the monomials Z, V, U0 yield a basis for H0(X,OX(1)). By
Proposition 6.1, the invertible sheaves OX(1) and ΘX are isomorphic. Computing
the order of zeros for the homogeneous polynomials Z, V, U0 and the vector fields
(28) on P1, one sees that each identification OX(1) = ΘX sends the former basis to
the latter basis, at least up to a diagonal base-change matrix.

Combining this with Proposition 6.3, we have a functorial interpretation of the
R-valued points of H = G ·Gm as the group of matrices

A =

a b c
d e f
0 0 g

 ∈ GL3(R)

subject to the sole condition

(29) P (aU0 + dV, bU0 + eV, cU0 + fV + gZ) = λ · P (U0, V, Z),
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with some multipliers λ ∈ R×. The zero entries in the matrix A stem from the fact
that the derived subalgebra [g, g] ⊂ g is a subrepresentation.

Suppose A ∈ H(R) has b = 0. Comparing coefficients in (29) we get aep−1 = gp,
and cp = 0 and de = fp, so the matrix takes the form

A =

gpe1−p 0 c
fpe−1 e f

0 0 g

 with cp = 0.

The group H0 ⊂ H of such matrices contains the diagonal copy of Gm, and H0/Gm

becomes our iterated semidirect product GaoαpoGm inside AutX/k ⊂ PGL3. Note
that the projection H0 → H0/Gm admits a splitting, by setting g = 1.

Seeking a contradiction, we assume that there is some A ∈ H(R) with b 6= 0.
By Lemma 7.2 we must have b ∈ Nil(R), and thus a, e ∈ R×. Making a flat
extension of R, we can assume that there is some f ′ ∈ R with f ′p = −d/a. Setting
a′ = e′ = g′ = 1 and b′ = c′ = 0 and left-multiplying with the resulting matrix
A′ ∈ H(R), we may assume that both b 6= 0 and d = 0 hold. On the other hand,
comparing coefficients in (29) immediately yields b = 0, contradiction.

This establishes H0 = H. We already observed that H/Gm = AutX/K inside
PGL3, and that H0/Gm equals our iterated semidirect product. �

To continue inductively we seek to relate the curves Xp,n with different indices n.
First recall a general fact on numerical semigroups Γ = 〈b, a2, . . . , ar〉 with non-zero
generators b < a2 < . . . < ar: The blowing-up Blm(A) of the ring A = K[T Γ] with
respect to the maximal ideal m = (T b, T a2 , . . . , T ar) has coordinate ring A′ = K[T Γ′ ]
for the numerical semigroup Γ′ = 〈b, a2 − b, . . . , ar − b〉, compare [4], Proposition
I.2.1, and also equation I.2.4.

For our Γ = Γp,n with n ≥ 1 we have b = pn − pn−1, with remaining generators
pn and pn − pj for 0 ≤ j ≤ n − 2. The resulting differences are pn − b = pn−1 and
(pn − pj)− b = pn−1 − pj. For n ≥ 2 we write b = p · (pn−1 − pn−2), and in any case
see Γ′ = Γp,n−1. This reveals:

Lemma 7.3. For pn ≥ 3 we have Xp,n−1 = BlZ(Xp,n) where the center Z is the
singular point x0 ∈ Xp,n endowed with the reduced scheme structure.

Note that for every m ≤ n we get an inclusion Γp,n ⊂ Γp,m of numerical semigroups
inside N. The resulting inclusions of coordinate rings K[T Γp,n ] ⊂ K[T Γp,m ] define
canonical morphisms Xp,m → Xp,n of compactifications of the affine line A1 =
SpecK[T−1].

Proof of Theorem 7.1 in the general case. We proceed by induction on n ≥ 1. The
case n = 1 was handled above. Suppose now n ≥ 2, and that the assertion is true
for n− 1. To simplify notation, set

X = Xp,n and G = AutX/K and H = Ga o Un oGm,

and let I ⊂ G be the inertia group scheme for the singularity x0 ∈ X. Likewise, we
set X ′ = Xp,n−1. By induction, H ′ = GaoUn−1 oGm coincides with G′ = AutX′/K .
Also note that by the very definition of the group schemes, we have a canonical
inclusion H ′ ⊂ H. Moreover, with Proposition 4.5 we get an inclusion H ′ ⊂ I,
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and actually H ′ = I ∩ H. By Lemma 7.3 combined with [27], Proposition 2.7 the
blowing-up morphism f : X ′ → X is equivariant with respect to the action of I. We
thus get inclusions H ′ ⊂ I ⊂ G′ = H ′, and infer H ′ = I.

The orbit map for the rational point x0 ∈ X gives an inclusion H/H ′ ⊂ G/I of
closed subschemes inside X. This is actually contained in the scheme of singularities
Z = Sing(X/K), according to [10], Proposition 3.1. Our task is to show that the
inclusion is an equality, and for this it suffices to verify that the coordinate rings
have the same degree. We already saw that h0(OH/H′) = pn, and it remains to verify
h0(OG/I) ≤ pn. For this we may assume that K is algebraically closed.

According to (24) and Proposition 5.3, the scheme of singularities Z = Sing(X/K)
has coordinate ring of the form A = K[x0, . . . , xn−1, y]/(xp0, . . . , x

p
n−1, y

p−2). In light
of [12], Chapter III, §3, Theorem 6.1 the homogeneous space G/I has coordinate ring

of the form B = K[u1, . . . , ur]/(u
pν1
1 , . . . , up

νr

r ) for some r ≥ 0 and certain exponents
νi ≥ 1. From the canonical surjection

ϕ : A = Γ(OZ) −→ Γ(OG/I) = B

we infer νi = 1 and r ≤ n + 1. Using the relation yp−2 = 0 we see that ϕ(y) ∈ mB

must be contained in m2
B, and thus actually r ≤ n. It follows that h0(OG/I) ≤ pn,

as desired. �

8. Equivariant normality and twisting

We now seek to construct twisted forms of our curves Xp,n that are regular. Our
methods to achieve this apply in many other contexts, and we first give a general
discussion about twisted forms, their regularity properties, and Brion’s recent notion
of equivariant normality.

Fix a ground field K and let X be a scheme. Recall that another scheme Y is
called a twisted form of X if we have Y ⊗L ' X⊗L for some field extension K ⊂ L.
Such twisted forms may arise as follows: Suppose a group scheme G acts on X, and
let P be a G-torsor. Then G acts diagonally on P ×X, and the quotient

PX = G\(P ×X)

is a twisted form of X. Note that the diagonal action is free, hence the quotient exists
as an algebraic space. Such quotients are not necessarily schematic (for concrete
examples see [37]). However, if G is finite and X is covered by affine open sets that
are G-stable, the twisted form is indeed a scheme ([12], Chapter III, §2, Theorem
3.2).

Suppose now we are in positive characteristic p > 0. It then may happen that
a noetherian scheme with singularities has twisted forms where all singularities are
gone. We now describe a fairly general procedure to achieve this, relying on a
combination of works of Brion and the second author ([9], [10], [36], [40]). For
simplicity, we assume throughout that X is a separated scheme of finite type that
is geometrically integral. It is normal if all local rings OX,a are integrally closed in
the common function field F = Frac(OX,a). Equivalently, each finite modification
f : X ′ → X is an isomorphism. Here the term modification refers to an integral
scheme X ′, together with a proper surjective morphism f : X ′ → X inducing a
bijection on function fields.
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In what follows, we suppose that X is endowed with the action of a finite group
scheme G. We now consider only modifications f : X ′ → X where X ′ is a G-scheme
and f is equivariant. For brevity, we call such a datum an equivariant modification,
or G-modification. Examples are given by blowing-ups X ′ = BlZ(X) with respect
to G-stable centers Z ⊂ X. Note that for a given modification X ′, there is at most
one G-action on X ′ making f : X ′ → X equivariant.

One says that X is equivariantly normal, or G-normal, if every finite equivariant
modification f : X ′ → X is an isomorphism. This extremely useful notion was
introduced and studied by Brion [9]. He showed that X admits a finite equivariant
modification X̃ that is equivariantly normal (loc. cit., Proposition 4.2). It is actually
unique up to unique equivariant isomorphism, provided that X is one-dimensional
(loc. cit., Corollary 4.4).

From now on, we furthermore assume that our G-scheme X is one-dimensional.
One could also say thatX is aG-curve. Following [14], Section 2 we write Sing(X/K)
for the closed subscheme defined by the first Fitting ideal for Ω1

X/K . This is the set
of points a ∈ X where the local ring OX,a fails to be geometrically regular, endowed
with a canonical scheme structure. Note that with respect to this scheme structure
it must be G-stable ([10], Proposition 3.1). The existence of twisted forms that are
regular is intimately related to equivariant normality:

Theorem 8.1. Let P be a G-torsor. Then the twisted form Y = PX is regular
provided the following three conditions hold:

(i) The curve X is G-normal.
(ii) The total space of the G-torsor P is reduced.

(iii) The reduction of the finite scheme Sing(X/K) is étale.

Proof. The residue fields κ(a) for the points a ∈ Sing(X/K) are separable, by as-
sumption (iii), and so is their join L. This ensures that the base-change PL remains
reduced. Furthermore, the arguments for [9], Proposition 4.10 show that XL re-
mains equivariantly normal. Replacing the ground field by L, we may assume that
Sing(X/K) = {a1, . . . , ar} comprises only rational points. Let Hi ⊂ G be the inertia
subgroup scheme, and Zi = G · ai = G/Hi be the orbit for ai ∈ X. Clearly, the
subscheme Z1 ∪ . . .∪Zr and its complementary open set U are G-stable. The latter
is geometrically regular, and so is the twisted form PU .

It remains to verify that the integral curve Y = PX is regular at the points b ∈ PZi.
According to [9], Theorem 4.13 the orbit Zi ⊂ X is an effective Cartier divisor. In
turn, its twist PZi ⊂ PX is an effective Cartier divisor on PX, so it suffices to verify
that it is reduced. The latter becomes the quotient of P × G/Hi by the diagonal
G-action, which can be identified with Hi\P . Its coordinate ring is a subring inside
Γ(P,OP ), which can be seen as a ring of invariants, and Γ(P,OP ) is reduced by
assumption. �

Note that condition (iii) holds in particular if all a ∈ Sing(X/K) are rational
points. The first two conditions can be achieved after ground field extensions:

Proposition 8.2. Suppose that the curve X is G-normal. Then there is a field
extension K ⊂ L such that the following holds:

(i) The base-change XL is GL-normal.
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(ii) There is a GL-torsor P whose total space is reduced.

Proof. (ii) Choose a geometrically integral quasi-projective G-scheme U with gener-
ically free action. This could arise from an embedding G ⊂ H into a smooth group
scheme of finite type, or could arise from a projective scheme X with G = Aut0

X/K ,
according to [10], Proposition 1.7 or Theorem 2.1. The quotient V = U/G is an
integral quasi-projective scheme, and the quotient map f : U → V induces a finite
extension of the function field L = k(V ) by E = k(U). By construction, the re-
duced scheme P = Spec(E), viewed as an L-scheme, is torsor with respect to the
base-change GL = G⊗K L.

(i) The above extension K ⊂ E is separable, because U is geometrically reduced.
In turn, the subextension L is also separable. The arguments for [9], Proposition
4.10 show that XL remains equivariantly normal. �

In the reverse direction, we have the following result:

Theorem 8.3. Suppose there is field extension K ⊂ L, a subgroup scheme H ⊂ GL,
and a H-torsor P so that the twisted form P(XL) is regular. Then the curve X is
G-normal.

Proof. According to [9], Proposition 4.10 and Remark 4.3 it suffices to treat the case
L = K and H = G. Let X ′ = PX be the regular twisted form. According to [41],
Lemma 3.1 we have a canonical identification AutX′/K = PAutX/K of the sheaves of
automorphisms, where the term on the right is formed with respect to the conjugacy
action of G on AutX/K . Setting G′ = PG we get a homomorphism G′ → AutX′/K ,
hence a G′-action on X ′.

Let Z ⊂ X be a finite closed subscheme that is G-stable. According to [9],
Theorem 4.13 we have to check that Z is Cartier. Its twist Z ′ = PZ defines a finite
closed subscheme inside X ′. The latter is regular, so Z ′ is Cartier. Choose a point
p ∈ P , and let E = κ(p) be the resulting field extension. The resulting trivialization
of P ⊗E defines an isomorphism g : X ⊗E → X ′ ⊗E with g(Z ⊗E) = Z ′ ⊗E. It
follows that Z ⊗ E and hence Z is Cartier. �

Recall that a quasielliptic curve is a regular curve Y that is a twisted form of the
rational cuspidal curve

X = SpecK[T 2, T 3] ∪ SpecK[T−1].

Clearly, Sing(X/K) is a singleton, containing only the rational point x0 given by
T 2 = T 3 = 0. It turns out that quasielliptic curves exist only in characteristic two
and three (compare the discussion after Proposition 10.1). For p = 2, the rational
vector field D = T−2∂/∂T satisfies D[p] = 0 and actually defines a global section
D ∈ H0(X,ΘX/K), hence corresponds to an action of G = αp, which is the Frobenius
kernel of the additive group Ga. The orbit G · x0 is the Cartier divisor defined by
T 2 = 0. For p = 3, the same holds for D = ∂/∂T and the Cartier divisor T 3 = 0.

In both cases, we conclude that the rational cuspidal curve is equivariantly normal
with respect to G = αp (again by [9], Theorem 4.13). For this group scheme,
torsors with regular total space exist if and only if K is imperfect (for example [41],
Lemma 7.1), and then quasielliptic curves exist by Theorem 8.1. Also note that X
is equivariantly normal with respect to any larger finite subgroup scheme inside the
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full automorphism group scheme (obvious, see [9], Remark 4.3). According to [6],
Proposition 6 we have an iterated semidirect product AutX/K = GaoUoGm for an
infinitesimal group scheme U . For p = 3 it coincides with the copy of αp described
above, whereas for p = 2 it has order |U | = 8.

All this generalizes to our hierarchy of curves Xp,n:

Theorem 8.4. The curve X = Xp,n is equivariantly normal with respect to the
finite group scheme Un, and locally of complete intersection. Moreover, if there is
a Un-torsor P so that the quotient P̄ = Un−1\P is reduced, then the twisted form
Y = PX is regular.

Proof. The first assertion follows from [9], Theorem 4.13 and Corollary 4.18. If P
itself is reduced, the assertion on the twisted form Y = PX directly follows from
Theorem 8.1. Its proof actually shows our slightly stronger claim, because the
singularity x0 ∈ X is rational, with orbit Un/Un−1. �

Note that after some ground field extension K ⊂ L, there is a Un-torsor P that
is reduced, according to Proposition 8.2, and our curve X = Xp,n acquires twisted
forms that are regular. However, the construction of L relies, via [10], Proposition
1.7 and Theorem 2.1, among other things on embeddings of Un into smooth group
schemes H, and here we have little control on dim(H) and trdeg(L).

Also note that the above argument for locally complete intersection relying on
equivariant normality is independent from the arguments relying on numerical semi-
groups in the proof of Proposition 5.1.

9. Non-abelian cohomology and semidirect products

In this section we review the general notions of torsors and twisting, which will
be used in the next section to understand the twisted forms of our curves Xp,n. The
material is well-known, but it is not easy to find suitable references that are general
enough for our purposes, yet not burdened by over-abstraction. Throughout, we are
guided by [42], Chapter I, §5 and [16], Chapter III, §2.

Let P = Sh(C) be the topos of sheaves on some site C, having a final object S. For
any group-valued object G ∈P, we write H0(S,G) for the group of global sections,
and H1(S,G) for the set of isomorphism classes of G-torsors P . The latter is an
object endowed with a G-action that is locally isomorphic to P0 = G with the trans-
lation action. Another widespread terminology is principal homogeneous spaces. For
G commutative our H1(S,G) coincides with the sheaf cohomology groups. In gen-
eral, however, H1(S,G) is merely a set, containing the class of the trivial torsor
P0 = G as a distinguished element.

An object X̃ is called a twisted form of an object X if the two are locally iso-
morphic. If X has a G-action, and P is a G-torsor, we get such a twisted form by
forming the quotient X̃ = PX = P ∧GX = G\(P ×X) with respect to the diagonal
action σ · (p, x) = (σp, σx). Note that this could also be written as (pσ−1, σx). For
G = AutX/S, the above construction gives an identification between the non-abelian
cohomology H1(S,G) and the set Twist(X) of isomorphism classes of twisted forms
X̃ of the object X. In any case, the G-action on X induces a conjugacy action
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on AutX/S, and we have Aut(P∧GX)/S = P ∧G AutX/S, compare for example [41],
Lemma 3.1.

Suppose now X = G as sheaves of sets without group laws, and consider the
homomorphism G×Gop → AutX/S given by (σ1, σ2) ·x = σ1xσ

−1
2 . One easily checks

that the map is equivariant with respect to factorwise conjugation η · (σ1, σ2) =
(ησ1η

−1, ησ2η
−1) and conjugation with inner automorphisms on AutX/S. In turn,

we get an induced homomorphism

PG× PGop −→ Aut(P∧GX)/S = AutP/S .

Note that the equation stems from the identification P ∧G X = P . The above
endows each G-torsor P with the additional structure of a PG-torsor and a PGop-
torsor. Furthermore, PGop is the automorphism group object of P as a G-torsor,
and G is the automorphism group object of P as a PGop-torsor. In turn, we get
what we like to call the torsor translation map

(30) H1(S, PG) −→ H1(S,G), T 7−→ P ∧PG T,

where the quotient on the right is formed with respect to the action σ̃ · (p, t) =
(pσ̃−1, σ̃t), and the G-action on P ∧G T stems from the action on the first factor P .
The map (30) is bijective, but does not respect the distinguished points: Rather, it

sends T0 = PG to P = P ∧PG T0.
Suppose now we have a short exact sequence

(31) 1 −→ A −→ B
pr−→ C −→ 1

of group objects. Then the group H0(S,C) acts from the right on the set H1(S,A)
in the following way: For each global section c ∈ H0(S,C), the fiber Bc = pr−1(c)
with respect to the surjection B → C carries compatible A-torsor structures from
both sides, coming from the group law in B. We now define c · [P ] = [Bc∧AP ]. The
stabilizer group at each torsor class is the subgroup of global sections c ∈ H0(S,C)
where the set of global sections H0(S,Bc) is non-empty.

Let us write H1(S,A)/H0(S,C)op = H0(S,C)\H1(S,A) for the quotient of the
action. Using the distinguished point in H1(S,A), the orbit map c 7→ Bc yields
H0(S,C)→ H1(S,A). The latter serves as a connecting map, and yields a six-term
sequence of sets

1→ H0(S,A)→ H0(S,B)→ H0(S,C)
∂→ H1(S,A)→ H1(S,B)→ H1(S,C).

The maps on the right come from extension of structure groups. Here all arrows
preserve the distinguished points, and in degree zero the above is an exact sequence
of groups.

The group object B acts on itself and its quotient C = B/A via conjugacy. On
the normal subgroup A, we have an induced action. Twisting with respect to the
B-actions gives another exact sequence

(32) 1 −→ PA −→ PB −→ PC −→ 1,

which also yields a six-term sequence. Note that in general there is no map relating
H1(S,A) and H1(S, PA), because the B-action on A usually fails to be inner.
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We now choose for each C-torsor P̄ whose class belongs to the image of the
mapping H1(S,B) → H1(S,C) some B-torsor P with C ∧B T ' P̄ . As in [42],
Section 5.5, Corollary 2 one has:

Theorem 9.1. The first cohomology of B can be written as a disjoint union

H1(S,B) =
⋃

H1(S, PA)/H0(S, P̄C)op

running over all [P̄ ] from the image of H1(S,B) → H1(S,C). The inclusions are
obtained by composing the induced maps H1(S, PA) → H1(S, PB) with the torsor
translation maps H1(S, PB)→ H1(S,B) given by (30).

We are interested in cases where the above simplifies. Recall that pr : B → C
is the canonical epimorphism. Let us call a morphism s : C → B a set-theoretical
section if pr ◦s = idC . The point here is that s does not have to preserve the group
laws. The resulting A × C → B given by (a, c) 7→ a · s(c) is an isomorphism of
objects that does not necessarily respect the group laws. The latter is determined
by the two-cocycle τ : C2 → A defined by s(cc′) = τc,c′ ·s(c)s(c′). We like to indicate
this situation by writing

B = A×̃C = A×̃τC,
and say that the extension C is set-theoretically split. Note that this always holds
in the category of groups, but often fails in the category of group schemes (compare
[39], discussion around Theorem 8.5). Also note that this property is not necessarily
preserved in twisted extensions (32). If s respects the group laws, the above becomes
a semidirect product B = Ao C = Aoϕ C where ϕ is given by conjugacy, and the
extension is called split.

Corollary 9.2. Suppose for all P̄ as above, the extension (32) is set-theoretically
split or the group H0(S, P̄C) is trivial. Then we have a disjoint union

H1(S,B) =
⋃

H1(S, PA),

running over all [P̄ ] from the image of H1(S,B) → H1(S,C). The latter map is
actually surjective, provided that the extension (31) is split.

Proof. Set C ′ = P̄C and A′ = PA. If B′ = PB is set-theoretically split, all fibers
over c′ ∈ H0(S,C ′) are trivial torsors, hence the action of H0(S,C ′) on H1(S,A′)
is trivial. The same holds, of course, if the group H0(S,C ′) itself is trivial. So the
theorem implies the first assertion.

If the projection pr : B → C admits a section s that respects the group structure,
the induced map on cohomology is right inverse to H1(S,B) → H1(S,C), so the
latter is surjective. �

In particular, for B = AoC satisfying the assumptions of the corollary, we get a
disjoint union

H1(S,B) =
⋃

H1(S, PA)

running over all [P̄ ] ∈ H1(S,C). It is convenient to regard its elements as “pairs”
(γ, α) with γ = [P ] ∈ H1(S,C) and α ∈ H1(S, PA). If H1(S,AutA/S) is a singleton,
the choice of isomorphisms h : PA→ A indeed identifies the above with the product
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H1(S,C) × H1(S,A), independent of the h. Note that this carries a canonical
group structure if A and C are commutative, which may happen without B being
commutative.

10. Description of the set of twisted forms

Let K be a ground field of characteristic p > 0, and set S = Spec(K). Using
the general results of the previous section, we seek to compute the first non-abelian
cohomology for the iterated semidirect products Ga o Un o Gm = AutXp,n/K and
thereby the set of isomorphism classes of twisted forms for Xp,n. We are able to do
so for 1 ≤ n ≤ 2.

Throughout, we work over the site C = (Aff/S), endowed with the fppf topology.
Let us start with some general useful facts:

Proposition 10.1. The following holds for group schemes G of finite type:

(i) If G = N×̃Gm for some group scheme N of finite type, then the canonical
map H1(S,N)→ H1(S,G) is bijective.

(ii) In the special case G = G⊕ra ×̃Gm the set H1(S,G) is a singleton.
(iii) If G is infinitesimal the group H0(S,G) is trivial.

Proof. We have H1(S,Gm) = 0 by Hilbert 90, so (i) follows from Corollary 9.2.
With N = G⊕ra we use [28], Chapter III, Theorem 3.7 and Serre’s Vanishing to
get H1(S,N) = 0, and (ii) follows as well. Assertion (iii) is obvious, because an
infinitesimal group scheme has Gred = S. �

Note that for p ≥ 5 the automorphism group scheme for the rational cuspidal
curve X = SpecK[T 2, T 3] ∪ SpecK[T−1] is given by G = Ga o Gm, so this curve
has no twisted forms besides itself. This purely cohomological argument shows
again that quasielliptic curves are confined to characteristic p ≤ 3. The following
observation will also be useful:

Lemma 10.2. Let G1 and G2 be twisted forms of Ga. If they are isomorphic as
schemes, they are isomorphic as group schemes.

Proof. Let f : G1 → G2 be an isomorphism of schemes. Composing with a trans-
lation, we may assume that f(e1) = e2. To verify that f respects the group law,
we may assume that K = Kalg, and this reduces to the case G1 = G2 = Ga. The
induced map ϕ : K[T ] → K[T ] on the coordinate ring is given by ϕ(T ) = λT + µ
for some λ, µ ∈ K. We have λ 6= 0 because f is non-constant, and µ = 0 because f
respects the origin. So for each α ∈ Ga(R) we have f(α) = λα, which respects the
group laws. �

For each pair Φ,Ψ ∈ K[u] of additive polynomials with gcd(Φ,Ψ) 6= 0, in other
words not both polynomials vanish, the resulting homomorphism (Φ,−Ψ) : G⊕2

a →
Ga given by (u, v) 7→ Φ(u)−Ψ(v) is an epimorphism. The short exact sequence

(33) 0 −→ UΦ,Ψ −→ G⊕2
a

(Φ,−Ψ)−→ Ga −→ 0

defines a unipotent group scheme UΦ,Ψ, and the resulting long exact sequence yields

(34) H1(S, UΦ,Ψ) = K/{Φ(u)−Ψ(v) | u, v ∈ K}.
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By Russell’s Theorem ([35], Theorem 2.1) every twisted form of the additive group
is isomorphic to UΦ,Ψ with Φ(u) = up

n
for some n ≥ 0, and Ψ(u) separable. The

following sheds further light on this:

Proposition 10.3. The unipotent group scheme UΦ,Ψ is a twisted form of Ga if and
only if gcd(Φ,Ψ) = u inside the euclidean domain K[u].

Proof. It suffices to treat the case that K is algebraically closed. Set U = UΦ,Ψ.
Suppose first that there are a, b ∈ k[u] with aΦ− bΨ = u. These yield a section for
(Φ,−Ψ) : G⊕2

a → Ga, defined via u 7→ (a(u), b(u)), which does not have to preserve
the group laws. It induces an identification G⊕2

a = U × Ga of schemes. In turn,
the coordinate ring A = Γ(U,OU) has the property A[y] = K[x, y]. According to
Zariski Cancellation ([1], Corollary 2.8) the underlying scheme is isomorphic to the
affine line A1. By Lazard’s Theorem ([12], Chapter IV, 4.1), we must have U ' Ga

as group schemes.
Conversely, suppose that gcd(Φ,Ψ) 6= u. Since K is algebraically closed, we have

Φ(u) =
∏

ω∈A(u−ω)p
m

and Ψ(u) =
∏

ω∈B(u−ω)p
n

for some exponents m,n ≥ 0 and
some finite subgroups A,B ⊂ K. Their intersection is non-zero, by the assumption
on the gcd. Consequently we can write Φ(u) = Φ1(h(u)) and Ψ(u) = Ψ1(h(u)) for
some additive polynomial of the form h(u) =

∏p−1
i=0 (u − iω0), with some non-zero

ω0 ∈ K. In turn, the projection (Φ,−Ψ) : G⊕2
a → Ga factors over the morphism

h : Ga → Ga. In turn, the kernel UΦ,Ψ is disconnected or non-reduced. �

Proposition 10.4. For each group scheme of the form G = GaoQoGm, where Q
is any infinitesimal group scheme of finite type, we have a canonical identification

H1(S,G) =
⋃

α∈H1(S,Q)

K/{Φα(u)−Ψα(v) | u, v ∈ K}

for certain additive polynomials Φα,Ψα ∈ K[u] with gcd(Φα,Ψα) = u.

Proof. By Proposition 10.1, the canonical map H1(S,Ga o Q) → H1(S,G) is bi-
jective. Since Q is infinitesimal, we can apply Proposition 9.2, and the assertion
follows with (34). �

Roughly speaking, to understand this cohomology of G, one has to understand
the cohomology of Q and the dependence of the additive polynomials Φα,Ψα on the
class α. We now seek to unravel this with G = GaoUnoGm. For n = 1 the term in

the middle becomes U1 = αp. The short exact sequence 0 → αpn → Ga
Fn→ Ga → 0

yields an identification H1(S, αpn) = K/Kpn , for every n ≥ 1. The dependence of
the additive polynomials can be described as follows:

Proposition 10.5. For the αp-torsor P = SpecK[y]/(yp−α), the additive polyno-
mials Φ(u) = up and Ψ(v) = v − αvp give the twisted form PGa = UΦ,Ψ.

Proof. Set B = K[x, y]/(yp − α). By definition, the coordinate ring for PGa is the
subring A ⊂ B of elements that are invariant under x 7→ x+λxp and y 7→ y+λ, for
all group elements λ ∈ αp(R) and all rings R. Clearly, v = xp and u = x− xpy are
such invariants, satisfying the relation up = v−αvp. Its partial derivatives generate
the unit ideal, and we conclude that the subring A′ ⊂ A generated by u and v
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is regular and one-dimensional, and can be identified with the residue class ring
K[u, v]/(up − v + αvp). The composite extension K(xp) ⊂ Frac(A′) ⊂ Frac(A) ⊂
Frac(B) has degree p2, and the outer steps have degree p. Consequently A′ = A.
The assertion now follows from Lemma 10.2. �

To tackle the case n = 2 we use the short exact sequence

0 −→ αp −→ U2 −→ αp2 −→ 0,

where the inclusion on the left is λ 7→ 1 + λxp
2
, and the surjection on the right

(1 + λ1x
p + λ2x

p2
) 7→ λ1. Given α, β ∈ K, the finite scheme P = Pα,β defined by

(35) P (R) = {(y, z) ∈ R2 | yp2

= α and zp = β + αyp}
carries an U2-action via the formula (λ1, λ2) · (y, z) = (λ1 + y, λ2 + z + λ1y

p). One
easily checks that this indeed takes values in P (R), that it satisfies the axioms
for group actions, and that the action is free and transitive. The induced αp2-
torsor P̄ is obtained from P as a quotient by αp, in other words, by the action

of λ2. This yields P̄ (R) = {y ∈ R | yp2
= α}. In turn, we get the description

H1(S, U2) =
⋃
K/Kp2 K/Kp. It remains to express the twisted form PGa in terms of

additive polynomials:

Proposition 10.6. For the U2-torsor P as above, the additive polynomials

Φ(u) = up
2

and Ψ(u) = u− αup − βpup2

give the twisted form PGa = UΦ,Ψ.

Proof. Set B = K[x, y, z]/(yp
2−α, zp−β−αyp). The coordinate ring for PGa is the

subring A ⊂ B of elements that are invariant under

x 7−→ x+ λ1x
p + λ2x

p2

and y 7−→ y + λ1 and z 7−→ z + λ2 + λ1y
p,

for all group elements (λ1, λ2) ∈ U2(R) and all rings R. One easily checks that

v = xp
2

and u = x − xpy − xp2
z + xp

2
yp+1 are invariant, and that these invariants

satisfy the relation up
2

= v−αvp−βpvp2
. The argument concludes as in the preceding

proof. �

Note that the invariant u can be found by starting with the non-invariant x and
successively adding monomials to cancel non-invariance. Collecting all the above,
we have determined for Gn = GaoUnoGm in the cases 1 ≤ n ≤ 2 the non-abelian
cohomology:

Theorem 10.7. With the above notation, we have

H1(S,G1) =
⋃
α

K/{up − v + αvp | u, v ∈ K},

where the union runs over all α ∈ K/Kp, and

H1(S,G2) =
⋃

(α,β)

K/{up2 − v − αvp − βpvp2 | u, v ∈ K},

where the union runs over (α, β) ∈
⋃
K/Kp2 K/Kp, with α ∈ K/Kp2

and β ∈ K/Kp.



GENERALIZATIONS OF QUASIELLIPTIC CURVES 34

Note that for 3 ≤ pn ≤ 4 this gives back, in an intrinsic fashion, Queen’s descrip-
tions for quasielliptic curves ([31], [32]).

Also note that for n = 1, the group K/{up−v+αvp | u, v ∈ K} is trivial, provided
that K is separably closed or α ∈ Kp. It follows that the Frobenius map

H1(S,G1) −→ H1(S,G1), P 7−→ P (p) = P ⊗ FK

is trivial, in the sense that it sends every class to the distinguished class. In particu-
lar, every twisted form Y of Xp,1 is untwisted by Frobenius pullback, and becomes a

rational curve (compare [21]). Likewise for n = 2, the groupK/{up2−v−αvp−βpvp2 |
u, v ∈ K} is trivial if K is separably closed or α ∈ Kp2

, β ∈ Kp. Now the map

P 7→ P (p2) is trivial, and every twisted form Y of Xp,2 gets untwisted by the second
Frobenius pullback.

With the notation from the theorem, let T be a Gn-torsor, and α ∈ K/Kpn be
the ensuing class, for 1 ≤ n ≤ 2. Write X̃ for the twisted form of X = Xp,n

corresponding to T .

Proposition 10.8. With the above notation, the curve X̃ is regular provided that
α ∈ K/Kpn does not belong to Kp/Kpn.

Proof. The Gn-torsor T is induced from some torsor P with respect to Ga o Un,
according to Proposition 10.1. By construction, the class α ∈ K/Kpn corresponds to
the quotient P̄ = (GaoUn−1)\P , and the latter has coordinate ring K[T ]/(T p

n−α),
where we write α also for the scalar rather than the class. The coordinate ring is
reduced, in light of our assumption. According to Theorem 8.4, the curve X̃ is
regular. �

It should be possible to extend the above results to all n ≥ 1. For this one has
to find an inductive description for the Un-torsors, analogous to (35). The main
problem is to cope with the non-commutativity involved in the torsors.
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