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Abstract. We show that for each algebraic space that is separated and of finite
type over a field, and whose affinization is connected and reduced, there is a uni-
versal morphism to a para-abelian variety. The latter are schemes that acquire
the structure of an abelian variety after some ground field extension. This gener-
alizes classical results of Serre on universal morphisms from algebraic varieties to
abelian varieties. Our proof relies on corresponding facts for the proper case, to-
gether with the structural properties of group schemes, removal of singularities by
alterations, and ind-objects. It turns out that the formation of the Albanese vari-
ety commutes with base-change up to universal homeomorphisms. We also give a
detailed analysis of Albanese maps for algebraic curves and algebraic groups, with
special emphasis on imperfect ground fields.
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Introduction

The Albanese variety and the Albanese map are fundamental objects in algebraic
geometry. Originally, the construction was purely transcendental, depending on
path integrals over closed holomorphic one-forms. In the form given by Blanchard
[8], it is the universal holomorphic map f : X → Alb(X) from a compact connected
complex space X endowed with a base-point x0 to a complex torus A = Alb(X),
where the image of x0 ∈ X is the zero element 0 ∈ A.

Over arbitrary ground fields k, Albanese maps for proper varieties and schemes
were constructed by Matsusaka [42] and Grothendieck [33], by using the Picard
scheme. In the absence of rational points x0 ∈ X, however, notorious complications
arise. These problems are particularly severe over imperfect fields k of characteristic
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p > 0, when X may become geometrically non-reduced. From my perspective, it is
important to have the Albanese map in full generality, over imperfect fields and for
geometrically non-reduced schemes, and without the troublesome burden of base-
points, to apply it in the theory of group schemes and their torsors, and also for
questions on generic fibers in Mori fibrations, for example related to [13] or [28].

To circumvent these issues, and to clarify the classical situation as well, one has
to replace abelian varieties by the so-called para-abelian varieties. The latter are
schemes P such that for some field extension k ⊂ k′, the base-change P ′ = P ⊗k k′
admits the structure of an abelian variety. Apparently, the name was coined by
Grothendieck, but did not gain widespread use ([33], Theorem 3.3). Roughly speak-
ing, these schemes are like abelian varieties, but may lack rational points and group
laws. This notion, which I find very clarifying, was in the above form introduced
and analyzed in [40], where we constructed for any proper algebraic space X with
h0(OX) = 1 a universal morphism f : X → AlbX/k to a para-abelian variety. The
defining property of this Albanese map is that it induces an isomorphism between
maximal abelian subvarieties inside the Picard schemes. These Albanese maps have
excellent properties: They are functorial in X, commute with ground field exten-
sions k ⊂ k′, and are equivariant with respect to the action of the group scheme
AutX/k.

After the completion of the present work, I learned that Albanese maps where
also constructed in the setting of algebraic stacks by Brochard ([14], Section 7 and
8). They take values in commutative group stacks that combine abelian varieties
and finite group schemes, and exist under the condition that PicτX/k is proper (loc.
cit. Theorem 8.1).

The goal of this paper is to extend the theory of Albanese maps by removing the
assumption that X is universally closed. In other words, given a scheme or more
generally an algebraic space U that is separated and of finite type, we seek a universal
morphism to a para-abelian variety. The first main result of this paper gives a rather
comprehensive answer:

Theorem. (See Thm. 5.4) Let k be an arbitrary ground field, and U be an al-
gebraic space that is separated and of finite type. Suppose the affinization Uaff =
Spec Γ(U,OU) is connected and reduced, and that k coincides with the essential field
of constants for U . Then there is a universal morphism f : U → AlbU/k to a
para-abelian variety, which is functorial in U .

This extends results of Matsusaka [42] and Serre [59] on universal maps from al-
gebraic varieties to abelian varieties, obtained in classical language, compare also
the discussion of Esnault, Srinivas and Viehweg [26]. It also generalizes more re-
cent results of Wittenberg ([63], Appendix) and Achter, Casalaina-Martin and Vial
([1], Appendix in the first arXiv version), where geometrically reduced schemes are
treated. The latter had in the mean time also obtained further results [2], which
also show that our assumption on the affinization Uaff and k are inevitable. Also
note that there are numerous generalizations in connection with Albanese maps, for
example involving a modulus (for example Serre [60], Önsiper [50], Russell [54]), or
in relation to cycles (I just mention Samuel [56], Murre [47], Bloch [9] and Kahn
[34]), but such matters are beyond the scope of this paper.
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Our assumption on the essential fields of constants, a concept introduced in Sec-
tion 5 that appears to be of independent interest, ensures that for all compactifica-
tions U ⊂ X we have h0(OX) = 1. Note that this automatically holds after passing
to a finite field extension inside the ring Γ(U,OU).

The main idea for the proof of the theorem is conceptual and direct: We consider
compactifications iλ : U → Xλ and the resulting maximal abelian subvarieties Aλ
inside the Picard schemes PicXλ/k. The existence of compactifications goes back
to Nagata [48]; for algebraic spaces this was more recently established by Conrad,
Lieblich and Olsson [20]. The collection (Xλ, iλ)λ∈L of all compactifications is, up
to isomorphism, a filtered ordered set, and we get an ind-object of abelian varieties
(Aλ)λ∈L. Note that the concept of ind-objects plays a crucial role in several category-
theoretic constructions of Grothendieck. We then use results of de Jong [22] on
removal of singularities by alterations, together with other results on the behavior
of Picard schemes, to show that (Aλ)λ∈L is essentially constant. It follows that
for sufficiently large λ, the Albanese varieties AlbXλ/k do not depend on the index.
These give the desired Albanese variety AlbU/k, whose universal property easily
follows from the theory of rational maps.

Recall that in differential topology, an open manifold is a manifold without bound-
ary whose connected components are non-compact. In analogy, one may call an al-
gebraic space that is separated and of finite type but not proper an “open algebraic
space”, as occurring in the title.

There is a crucial difference between the proper and the open situation: In the lat-
ter case, the category Cpt(U) of all compactifications usually changes under ground
field extension k ⊂ k′ in a significant way, for lack of initial object. It is therefore
a priori unclear how the Albanese map behaves under ground field extension. Our
second main result clarifies this:

Theorem. (See Thm. 6.1) For arbitrary k ⊂ k′, the comparison map AlbU⊗k′/k′ →
AlbU/k⊗k′ is a finite universal homeomorphism. It is an isomorphism provided that
the extension k ⊂ k′ is separable.

We shall see that over imperfect fields k, the Albanese variety may indeed change
upon inseparable extensions. This phenomenon already appears for algebraic curves
C, if the canonical compactification C̄ by regular points at infinity is not geometri-
cally regular at infinity, as we show in Theorem 7.5.

Our theory of Albanese maps also has consequences for algebraic groups, that
is, group schemes G of finite type. For smooth G the existence of an Albanese
map is a classical result, obtained in various degrees of generality by Barsotti [6],
Rosenlicht [53] and Chevalley [17]. Modern accounts are given by Conrad [18] and
Brion [12], but the general case was apparently not covered so far. Each algebraic
group G sits in a central extension 0→ N → G→ Gaff → 1, where the kernel N of
the affinization map is anti-affine, a notion introduced and analyzed by Brion [11].
Our theory of Albanese varieties applies provided that Gaff and equivalently G are
reduced and connected.

Theorem. (See Thm. 8.5) Suppose that G is reduced and connected. Then AlbG/k =
N/N ′, where N ′ ⊂ N is the smallest subgroup scheme such that N/N ′ is proper and
the induced projection G/N ′ → Gaff admits a section.
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Note that the section, if it exists, does not necessarily respect the group laws.
So the group scheme G/N ′ has as underlying scheme N/N ′ × Gaff, and the group
law arises from the product group law by modifying it with a Hochschild cocy-
cle from Z2(Gaff, G/N ′). The result seems to be relevant in connection with the
pseudo-abelian varieties. These are certain extensions of smooth connected unipo-
tent group schemes by abelian varieties, introduced and studied by Totaro [62]. Us-
ing reduced connected unipotent group schemes U , supersingular abelian varieties
N , and Hochschild cohomology we construct in Proposition 8.7 algebraic groups
whose Albanese map does not respect the group law.

The paper is structured as follows: In Section 1 we recall generalities on compact-
ifications, Macaulayfications, and resolution of singularities by alterations, as well as
the theory of para-abelian varieties. Section 2 contains an analysis of the cokernels
of Picard schemes for modifications f : X → Y , in particular if Y is regular. This is
used in Section 3, to understand the effect on the abelian part of the Picard scheme.
In Section 4 we briefly recall the notion of ind-objects, and give a characterization
of ind-objects of abelian varieties that are essentially constant. Using this, we con-
struct in Section 5 the Albanese map for an algebraic space U that is separated and
of finite type, in terms of the system of its compactifications (Xλ, iλ). In Section 6
we study the behavior of the Albanese variety under ground field extensions. The
last two sections study algebraic curves and algebraic groups, respectively.

Acknowledgement. I wish to thank Brian Conrad and the referee for careful read-
ing and many valuable remarks, which helped to improve the paper, and Sandor
Kovács for pointing out a gap in my application of his results in [39]. This research
was conducted in the framework of the research training group GRK 2240: Algebro-
Geometric Methods in Algebra, Arithmetic and Topology, which is funded by the
Deutsche Forschungsgemeinschaft.

1. Recollections and generalities

Let S be a base scheme, and write (Aff/S) for the category of S-schemes that are
affine. Recall that an algebraic space is a contravariant functor X : (Aff/S)→ (Set)
that satisfies the sheaf axiom with respect to the étale topology, for which the
diagonal monomorphism X → X × X is relatively representable by schemes, and
such that there is an étale surjection U → X from some scheme U . Algebraic
spaces are important generalizations of schemes that in many situations allow more
freely the formation of quotients. Those that are representable by schemes are called
schematic. We refer to the monographs of Artin [4], Knutson [37], Olsson [49] and
the stacks project [61] for a comprehensive treatment.

Let X be an algebraic space. Although not immediate from the definition, it
comes with a topological space, and I want to discuss this matter first: A point is
an equivalence class of some morphism a : Spec(K) → X, where K is a field, and
the equivalence relation is generated by the factorization relation. The set of all
points is denoted by |X|. It is endowed with the Zariski topology, which is the finest
topology that renders all maps |U | → |X| continuous, where U → X runs through
the étale maps from schemes U . If our algebraic space is schematic, each a ∈ |X|
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has via the image x ∈ X a canonical representation by Specκ(x)→ X, so the above
|X| can be identified with the usual underlying topological space of X.

A geometric point is a morphism ā : Spec(Ω) → X for some algebraically closed
field Ω. Note that here we do not pass to equivalence classes. Such morphisms
lift through every given étale surjection U → X from a scheme U . The lift is not
unique, in general, but gives a point u ∈ U , and the relative separable closure for the
inclusion κ(u) ⊂ Ω depends only on the point a ∈ |X| represented by the geometric
point ā. We denote this by κ(a)sep. Likewise, we write Osh

X,a for the resulting strictly
henselian local ring, where the residue field κ(a)sep is separably closed.

Let Y be a noetherian algebraic space. Then there is a dense open subspace
U ⊂ X that is isomorphic to a scheme ([49], Theorem 6.4.1). As explained above,
we may regard the generic points η ∈ |X| as generic points η ∈ X. A modification is
a proper morphism f : X → Y such that f−1(V ) → V is an isomorphism for some
dense open set V ⊂ Y , and that f induces a bijection between the sets of generic
points. These are just the proper birational morphisms, in case Y is integral. An
alteration is a proper morphism f : X → Y such that f−1(V ) → V is a finite
surjection for some dense open set V ⊂ Y , and that f induces a bijection between
the sets of generic points. Let us now recall and collect three deep and fundamental
results:

Theorem 1.1. Suppose the base scheme S = Spec(R) is the spectrum of a noe-
therian ring. Let Y be an algebraic space that is separated and of finite type over
S.

(i) There is an open embedding of algebraic spaces Y ⊂ Ȳ with Ȳ proper.
(ii) If the ring R admits a dualizing complex, there is a modification f : X → Y

with X Cohen–Macaulay.
(iii) If R is excellent of dimension ≤ 2 and Y is reduced, there is an alteration

f : X → Y with X regular.

In the above, one moreover may choose X with an ample invertible sheaf.

The embedding in statement (i) is usually called Nagata compactification. The
above general form is due to Conrad, Lieblich and Olsson ([20], Theorem 1.2.1).
Note that the case of schemes was already treated by Lütkebohmert [41]. The other
two statements are reduced to the case where Y is a scheme with Chow’s Lemma,
which was established by Rydh for algebraic spaces ([55], Theorem 8.8). Morphisms
f : X → Y as in (ii) are called Macaulayfications. Under certain assumptions,
such maps where first constructed by Faltings [27]. The above general form was
established by Kawasaki [36]. Further generalizations, without assumptions on the
dualizing complex of R, were recently obtained by Česnavičius [15]. Result (iii)
is due to de Jong ([22], Corollary 5.15). The case of ground fields was already
established earlier ([21], Theorem 4.1). Throughout the paper, we will freely use the
above facts.

A scheme P over some field k is called a para-abelian variety if some base-change
P ′ = P⊗kk′ admits the structure of an abelian variety. This notion seems to go back
to Grothendieck ([33], Theorem 3.3), in somewhat different but equivalent form, and
was thoroughly studied in [40]. It turns out that the para-abelian varieties P are
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precisely the torsors over abelian varieties G, which is the more traditional point
of view. The crucial fact here is this additional structure of G and its action on
P can be reconstructed, in an intrinsic way, from the para-abelian variety: Inside
AutP/k the group scheme G is the inertia subgroup scheme with respect to PicτP/k
(loc. cit. Theorem 5.3, which actually works in a relative setting). Note that the
para-abelian varieties P are projective, smooth, and connected, but may lack group
laws and rational points. In fact, the group laws on base-changes P ′ correspond to
the elements e′ ∈ P (k′) (loc. cit. Proposition 4.3). Also note that Pic0

P/k = PicτP/k,
according to [46], Corollary 2 on page 178.

Let X be an algebraic space over some base scheme S whose structure morphism
X → S is proper, flat, of finite presentation and cohomologically flat in degree d = 0.
The latter means that f∗(OX) is locally free of finite rank, and that its formation
commutes with base-change. Then the sheafification of the functor R 7→ Pic(X⊗R)
with respect to the fppf topology is representable by an algebraic space PicX/S, which
is locally of finite presentation ([3], Theorem 7.3). Moreover, the subsheaf PicτX/S
stemming from fiberwise numerically trivial sheaves is representable by an algebraic
space that is of finite presentation, and the inclusion is an open embedding ([40],
Theorem 2.1). This subsheaf is stable with respect to the action of the relative
automorphism group scheme.

A family of para-abelian varieties is a proper, flat morphism P → S of finite
presentation, where the total space P is an algebraic space, and all fibers are para-
abelian varieties. Then the subgroup scheme G ⊂ AutP/S that acts trivially on
PicτP/S is a family of abelian varieties (also known as abelian schemes), its action on
P is free and transitive, and we have an identification PicτP/S = PicτG/S ([40], Section
5). Here AutP/S denotes the relative automorphism group scheme for P over the
base scheme S. A morphism f : X → P to a family of para-abelian varieties is
called an Albanese map if the resulting f ∗ : PicτP/S → PicτX/S is a monomorphism
and identifies the abelian varieties As = PicτP/S ⊗κ(s) with the maximal abelian
subvarieties ([40], Section 7) inside the group schemes Gs = PicτX/S ⊗κ(s), for all
points s ∈ S. If it exists, it is universal for morphisms into families of para-abelian
varieties. We then set AlbX/S = P and call it the family of Albanese varieties. Over
ground fields, the existence is automatic ([40], Corollary 10.5, compare also [14]
Theorem 8.1):

Theorem 1.2. If S = Spec(k) is the spectrum of a field, then every proper algebraic
space X with h0(OX) = 1 has an Albanese map X → AlbX/k. Moreover, the forma-
tion of the Albanese variety AlbX/k is functorial in X, equivariant with respect to
the action of the group scheme AutX/k, and commutes with ground field extensions.

Note that indeed the group scheme AutX/k, which in positive characteristics could
be non-regular and even non-reduced, and not only its group of rational points
acts on the Albanese variety, thanks to our treatment of the relative setting ([40],
Corollary 10.3).

Before we proceed, recall that a group scheme U over a ground field k is called
unipotent if the base change U ⊗ kalg admits a composition series whose quotients
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embed into the additive group Ga,kalg . For more details, we refer to [25], Exposé
XVII, Section 1.

Now let h : P1 → P2 be a morphism between para-abelian varieties over a ground
field k. Write Gi ⊂ AutPi/k for the subgroup schemes that act trivially on PicτPi/k.
Then there is a unique homomorphism h∗ : G1 → G2 between these abelian varieties
that makes h equivariant with respect to the resulting G1-actions ([40], Proposition
5.4). Let Ai = PicτGi/k be the dual abelian varieties, and h∗ : A2 → A1 be the
induced homomorphism. These maps are related as follows:

Proposition 1.3. In the above situation, the following equivalences holds:

(i) h is surjective ⇔ h∗ is surjective ⇔ h∗ is finite.
(ii) h is finite ⇔ h∗ is finite ⇔ h∗ is surjective.

(iii) h has geometrically connected fibers ⇔ Ker(h∗)
aff is local ⇔ Ker(h∗)aff is

unipotent.

Proof. It suffices to treat the case that k is algebraically closed. Then there is a
rational point a1 ∈ P1 giving identifications Pi = Gi. So h∗ = h, and we thus may
start with a homomorphism h : G1 → G2 of abelian varieties. Moreover, Im(h) and
Coker(h) are abelian varieties, and N = Ker(h) is proper. These are related by
three short exact sequences:

0 −→ G −→ N −→ N/G −→ 0,

0 −→ Im(h) −→ G2 −→ Coker(h) −→ 0,

0 −→ N −→ G1 −→ Im(h) −→ 0.

The kernel G of the affinization map N → Naff is connected and smooth ([23],
Chapter III, 8.2). It is also proper becauseN is proper. ThusN is an extension of the
finite group scheme N/G by the abelian variety G. Now recall that for any abelian
variety B, the dual abelian variety B∗ = PicτB/k represents the sheaf Ext1(B,Gm),
as explained in [44], Appendix, and that Hom(B,Gm) = 0. Moreover, for any finite
group scheme H, the Cartier dual H∨ represents the sheaf Hom(H,Gm).

Applying the contravariant functor Hom(·,Gm) to the above short exact sequences
and using Lemma 1.4 below, we obtain identifications Ext1(N,Gm) = G∗ and
Hom(N,Gm) = (N/G)∨, together with exact sequences 0 ← Im(h)∗ ← G∗2 ←
Coker(h)∗ ← 0 and 0 ← Ext1(N,Gm) ← G∗1 ← Im(h)∗ ← Hom(N,Gm) ← 0. In
turn, we get a commutative diagram where the sequences with kinks are exact:

0 G∗ G∗1 G∗2 Coker(h)∗ 0

Im(h)∗

0 (N/G)∨ 0

h∗

Using the Snake Lemma, we see that Ker(h∗) is an extension of the abelian variety
Coker(h)∗ by the finite group scheme (N/G)∨. Consequently h is surjective if and
only if Ker(h∗) is finite, which gives (i). Assertion (ii) follows from biduality ([46],
Corollary on page 132). Equivalently, one may argue that h is finite if and only if
G∗ = 0, which means that h∗ is surjective.
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It remains to check (iii). First observe that h : G1 → G2 has geometrically
connected fibers if and only if the finite group scheme H = N/G is connected. De-
compose H = Hm⊕Hu into its multiplicative and unipotent parts, and furthermore

Hm = H0
m ⊕He

m and Hu = H0
u ⊕He

u

into connected and étale parts. Such decompositions indeed exist since k is al-
gebraically closed ([23], Chapter IV, §3, Theorem 1.1). The Cartier duals of the
connected group schemes H0

m and H0
u are unipotent, whereas the étale parts He

m

and He
u have multiplicative Cartier duals. This gives (iii). �

In the above proof, we have used the following fact:

Lemma 1.4. For each inclusion of abelian varieties A ⊂ B over a ground field k,
the induced map Ext1(B,Gm) → Ext1(A,Gm) is surjective. For each finite group
scheme H, the sheaf Ext1(H,Gm) vanishes.

Proof. Note that for both statements one may replace the ground field k by any finite
field extension. So by Poincare’s Complete Reducibility Theorem ([46], Theorem 1
on page 173), we may assume that there is another abelian subvariety A′ such that
A ⊕ A′ → B is surjective, with finite kernel N . Choose an integer n ≥ 1 that
annihilates the group scheme N . In the long exact sequence

. . . −→ Ext1(B,Gm) −→ Ext1(A,Gm)⊕ Ext1(A′,Gm) −→ Ext1(N,Gm) −→ . . . ,

the term on the right is annihilated by n, whereas the cokernel for the map on the
left is an abelian variety. It follows that the map on the right is zero, thus the map
on the left is surjective. Actually, the group Ext1(N,Gm) vanishes, as we are about
to show.

Concerning H, we have to show that each 0 → Gm,R → E → HR → 0 over
some ring R splits after base-change with respect to an fppf extension R ⊂ R′.
According to [23], Chapter IV, §3, Theorem 1.1 there is a short exact sequence
0 → H ′ → H → H ′′ → 0 where H ′ is unipotent and H ′′ is multiplicative. The
arguments for [40], Proposition 6.1 show that Ext1(H ′′,Gm) = 0. It remains to
treat the case that H is unipotent. In characteristic p = 0 the finite group scheme
H must be trivial, so we assume p > 0. After enlarging the ground field k, we
may assume that H admits a composition series whose quotients are isomorphic to
(Z/pZ)k or αp, which reduces the problem to these two particular cases. In both
cases, the Kummer sequence yields a long exact sequence

. . . −→ Ext1(H,µp) −→ Ext1(H,Gm)
p−→ Ext1(H,Gm) −→ . . . ,

where the map on the right is zero. It thus suffices to verify that each extension 0→
µp,R → E → HR → 0 splits over some fppf extension R ⊂ R′. For H = (Z/pZ)k,
this happens if we trivialize the fiber of E → HR over the 1-section, which is a
µp,R-torsor. For H = αp, we pass to the extension 0→ αp,R → E ′ → (Z/pZ)R → 0
of Cartier duals, and argue in the same way. �

2. Modifications and regularity

Let k be a ground field of arbitrary characteristic p ≥ 0, and f : X → Y be a
proper morphism between algebraic spaces that are separated and of finite type over



ALBANESE MAPS 9

the ground field k, with OY = f∗(OX). By the projection formula, the induced map
on Picard groups is injective, giving an inclusion Pic(Y ) ⊂ Pic(X). The goal of this
section is to study the resulting quotient.

Throughout, we are mainly interested in the case that Y is regular. In other
words, the Krull dimension of OY,b coincides with the dimension of the cotangent
space mb/m

2
b , for all points b ∈ Y . But note that Y may fail to be geometrically

regular, and it actually may be geometrically non-reduced. We start with a simple
observation:

Proposition 2.1. If f : X → Y is a modification with Y regular and X normal,
then the group Pic(X)/Pic(Y ) is finitely generated.

Proof. The exceptional locus E = Supp(Ω1
X/Y ) has codimension at least one, and

its image Z = f(E) has codimension at least two. In turn, the inclusion Pic(Y ) ⊂
Pic(X) comes with a canonical retraction, sending an invertible sheaf L to the
bidual f∗(L )∨∨. It follows that Pic(Y ) has a canonical complement inside Pic(X),
given by the isomorphism classes of invertible sheaves of the form L = OX(D),
where D is a Cartier divisor supported by E.

Write DivE(X) for the group of Cartier divisors supported on E. Then the image
of DivE(X) → Pic(X) is the complement for Pic(Y ). Since X is normal, the map
Div(X)→ Z1(X) sending a Cartier divisor to the resulting Weil divisor is injective.
This gives an inclusion DivE(X) ⊂

⊕r
i=1 ZEi, where E1, . . . , Er are the irreducible

components of codimension one contained in the exceptional locus E. Thus DivE(X)
is free and finitely generated, so its image in Pic(X) is at least finitely generated. �

For Y proper we now consider the group schemes PicτY/k, which are of finite type,
and likewise for X. The formation of f∗(OX) commutes with flat base-change. It
follows that for each k-algebra R, the map OY⊗R → (f ⊗ idR)∗(OX⊗R) is bijective
as well, and the same holds for the multiplicative sheaf of units. In turn, the map
on Picard groups Pic(Y ⊗ R) → Pic(X ⊗ R) is injective. Consequently, the map
f ∗ : PicY/k → PicX/k between sheafifications is a monomorphism. It is thus a closed
embedding by [24], Exposé VIB, Corollary 1.4.2. The short exact sequence

0 −→ PicτY/k −→ PicτX/k −→ Q −→ 0

defines another group scheme Q of finite type.

Theorem 2.2. If f : X → Y is a modification with Y proper and regular, then the
group scheme Q defined above is affine.

Proof. It suffices to check this after some ground field extension k ⊂ k′ for which
Y ⊗ k′ remains regular. So from now on, we assume that k is separably closed.
Seeking a contradiction, we assume that Q is not affine. Then the kernel of the
affinization mapQ→ Qaff is non-zero. We now use the functorial three-step filtration
Q ⊃ Q1 ⊃ Q2 ⊃ Q3 introduced in [40], Section 7, which in turn is based on work
of Brion ([11], [12]). Here Q1 is the kernel of the affinization map, and Q2 is a
smooth connected affine group scheme. Moreover, Q1 is anti-affine, which means
h0(OQ1) = 1, and the quotient Q1/Q2 is an abelian variety. In our situation, the
latter is non-trivial, because Q1 is non-trivial and anti-affine, and Q2 is affine.
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We seek to relate this information on the quotient to the Picard scheme. The
cartesian square

P −−−→ Q1y y
PicτX/k −−−→ Q

defines another group scheme P , which is of finite type and comes with an epimor-
phism h : P → Q1. This P is not affine, because otherwise all its quotients, and
in particular Q1 must be affine. As in the preceding paragraph we infer that the
anti-affine group scheme P1 = Ker(P → P aff) is non-trivial. If the composition
P1 → Q1/Q2 vanishes, we get an induced epimorphism P aff = P/P1 → Q1/Q2 from
an affine group scheme to an abelian variety, thus Q1/Q2 = 0, contradiction. Since
P2 is smooth, connected and affine, it belongs to the kernel of P1 → Q1/Q2, and
the image of the latter must be a non-zero abelian variety B, arising as a quotient
of the abelian variety P1/P2. Setting A = P1/P2 we get a short exact sequence

0 −→ P2 −→ P1 −→ A −→ 0,

where the abelian variety A surjects onto B ⊂ Q/Q2.
To proceed, we now fix some prime number ` different from the characteristic

exponent of the ground field k. For each commutative group scheme H of finite
type, the multiplication maps `n : H → H, n ≥ 0 induce multiplication by `n on
the Lie algebra Lie(H). If H is furthermore smooth and connected, it follows that
the kernel H[`n] is finite and reduced, hence `n : H → H is surjective, and thus
an epimorphism. Furthermore, for each rational point a ∈ H the fiber is an H[`n]-
torsor. The torsor is trivial because k = ksep, so the fiber contains a rational point,
and we infer that `n : H(k)→ H(k) is surjective. Applying these facts to our group
schemes H = Pi and H = A, we see that the terms in

0 −→ P2[`n] −→ P1[`n] −→ A[`n]

are finite and étale. Since k = ksep, they are actually constant. Furthermore, the
map on the right is surjective, because `n : P2(k)→ P2(k) is surjective.

Let Tn be the group of rational points in P1[`n]. Their union T =
⋃
n≥0 Tn is

some `-divisible group, whose image in A is Zariski dense. In turn, its image in
B ⊂ Q/Q2 is Zariski dense as well. Since k is separably closed, we have Br(k) = 0,
and hence the canonical map Pic(X) → PicX/k(k) is bijective. We thus have an
inclusion T ⊂ Pic(X), and this subgroup is not contained in Pic(Y ), because its
image in Q/Q2 is non-zero.

Suppose for the moment that X is normal. By Proposition 2.1, the quotient
Pic(X)/Pic(Y ) must be finitely generated, so the projection T → Pic(X)/Pic(Y )
factors over the torsion part, because T is `-divisible. The kernel T ′ ⊂ T belongs
to Pic(Y ), and has finite index in T . We thus conclude that T → B factors over
the finite group T/T ′ ⊂ B. Thus the abelian variety B 6= 0 contains a finite set of
rational points that is Zariski dense, a contradiction.

It remains to reduce the general situation to this special case. Let g : X ′ → X
be the normalization of Xred and set f ′ = f ◦ g. The map OY → f ′∗(OX′) is
bijective, by Zariski’s Main Theorem, and our assertion applies to f ′ : X ′ → Y . The
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morphism g : X ′ → X is proper and surjective, and we write K for the kernel of the
induced homomorphism g∗ : PicτX/k → PicτX′/k. Applying the Snake Lemma to the
commutative diagram

0 −−−→ PicτY/k −−−→ PicτX/k −−−→ Q −−−→ 0y y y
0 −−−→ PicτY/k −−−→ PicτX′/k −−−→ Q′ −−−→ 0

we see that Q is an extension of some subgroup scheme inside Q′ by the kernel K,
so we have to verify that K is affine. If X and Y are schematic, this follows from
[7], Exposé XII, Corollary 1.5, and the reasoning immediately extends to algebraic
spaces. �

If both Y and X are regular, I suspect that Q = 0, but I do not know if this is
always the case. Although not needed in what follows, I like to state the following
general fact:

Proposition 2.3. Suppose Y is proper and f : X → Y satisfies OY = f∗(OX) and
H0(Y,R1f∗(OX)) = 0. Then the group scheme Q is finite.

Proof. We may assume that k is algebraically closed. Furthermore, the Leray–Serre
spectral sequence yields the five-term exact sequence

(1) 0→ H1(OY )→ H1(OX)→ H0(Y,R1f∗(OX))→ H2(OY )→ H2(OX),

giving an identification H1(Y,OY ) = H1(X,OX) and an inclusion H2(Y,OY ) ⊂
H2(X,OX).

Set H = Pic0
Y/k and G = Pic0

X/k. We have an inclusion H ⊂ G, and our task
is to show that dim(G) = dim(H). The Lie algebras h = Lie(H) and g = Lie(G)
are given by the cohomology groups H1(Y,OY ) and H1(X,OX), respectively. Hence
f : X → Y induces a bijection between the Lie algebras. In characteristic zero, we
then have h1(OY ) = dim(H), and likewise for X, so the result follows.

Suppose p > 0. Here we need additional arguments, which rely on Mumford’s
theory of Bockstein operations ([45], Lecture 27). Since k is perfect, the reduced
part Gred ⊂ G is a subgroup scheme, which must be smooth, and dim(G) coincides
with the vector space dimension of Lie(Gred).

Write Wn = Wn(OY ) for the sheaf of Witt vectors of length n. This sheaf of
rings comes with an additive map V : Wn → Wn called Verschiebung. The image
of its m-fold iteration is denoted by V m

n ⊂ Wn. As explained in [29], Section 2
the combination of the short exact sequences 0 → V r

r+1 → Wr+1 → Wr → 0 and

0→ V 1
r → Wr → OY

pr→ 0 yields Wr(k)-linear maps

(2) Im(H i(Wr)
pr∗→ H i(OY ))

βr−→ Coker(H i(V 1
r )

V r−1
∗→ H i+1(V r

r+1)),

where the image on the left is formed with respect to the canonical projection
pr∗Wr → W1 = OY , and the cokernel on the right comes from a composite map
V r−1 : V 1 → V r. The above βr are called Bockstein operators. The kernel of βr
comprises those cohomology classes in H i(Y,OY ) that lift to H i(Y,Wr+1), and we
write H i(Y,OY )[β] for their intersection

⋂
r≥0 Ker(βr). This vector subspace has a
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geometric meaning: According to [45], Theorem on page 196 we have Lie(Gred) =
H1(Y,OY )[β]. It can also be seen as the intersection of the images for H1(Y,Wr)→
H1(Y,OY ), r ≥ 1.

Our remaining task is to verify that the latter images in the cohomology groups
H1(Y,OY ) = H1(X,OX) are the same, whether computed on Y or X. For this,
it suffices to check that the canonical maps H1(Y,Wr) → H1(X,Wr), r ≥ 1 are
bijective. We proceed by induction on r ≥ 1. The case r = 1 is trivial. Suppose
now r ≥ 2, and that the assertion holds for r−1. Consider the short exact sequence
0 → V r−1

r → Wr → Wr−1 → 0 on Y . First note that H0(Y,Wr) → H0(Y,Wr−1) is
surjective, because the map of set-valued sheaves Wr → Wr−1 admits a section, and
the same holds on X. In turn, we get a commutative diagram

0 −−−→ H1(Y, V r−1
r ) −−−→ H1(Y,Wr) −−−→ H1(Y,Wr−1) −−−→ H2(Y, V r−1

r )y y y y
0 −−−→ H1(X, V r−1

r ) −−−→ H1(X,Wr) −−−→ H1(X,Wr−1) −−−→ H2(X, V r−1
r )

with exact rows. The Verschiebung V : Wn → Wn is additive, and its (r − 1)-fold
composition induces identifications O = Wr/V

1
r → V r−1

r /V r
r = V r−1

r on both Y and
X. Consequently, the vertical map on the left is bijective, and the vertical map on
the right is injective. By induction, H1(Y,Wr−1) → H1(X,Wr−1) is bijective, and
we conclude with the Five Lemma ([43], Chapter I, Proposition 21.1). �

In the first version of this paper, I claimed that Q is finite for any modification
f : X → Y with Y proper and regular, but the arguments contained a gap. The
statement holds if R1f∗(OX) = 0, by the above, and this indeed is true if X is
Macaulay and also normal, according to the work of Kovács [39]. The existence of
a modification X ′ → X that is both Macaulay and normal seems to be an open
problem.

3. The abelian part of the Picard scheme

Let k be a ground field of characteristic p ≥ 0. As explained in [40], Section 7
any group scheme G of finite type contains a maximal abelian subvariety A ⊂ G,
which is functorial in G and compatible with ground field extensions k ⊂ k′. Let Y
be a proper algebraic space. Recall from Section 1 that PicτY/k is a group scheme of
finite type. The following analogous notation seems useful:

Definition 3.1. We write PicαY/k for the maximal abelian subvariety inside PicτY/k,
and call it the abelian part of the Picard scheme.

Each proper morphism f : X → Y induces a homomorphism f ∗ : PicαY/k → PicαX/k
of abelian varieties. We need the following:

Proposition 3.2. Suppose Y is regular and that f : X → Y is a modification. Then
the homomorphism f ∗ : PicαY/k → PicαX/k of abelian varieties is an isomorphism.

Proof. Regard P ′ = PicτY/k as a subgroup scheme of P = PicτX/k, giving an inclusion
PicαY/k ⊂ PicαX/k. According to Theorem 2.2, the quotient P/P ′ is affine. Set A =
PicαX/k and A′ = A∩P ′. The subgroup scheme A/A′ ⊂ P/P ′ is likewise affine. Being
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the quotient of an abelian variety, it has h0(OA/A′) = 1. Thus A/A′ is trivial, hence
A ⊂ P ′. The maximality of PicαY/k yields PicτX/k = A ⊂ PicαY/k inside P ′, and the
assertion follows. �

The main observation in this section is the following boundedness result on the
abelian part for modifications:

Proposition 3.3. There are constants d ≥ 0 and l ≥ 1 depending on our proper
algebraic space Y such that for every modification f : X → Y , the following holds:

(i) The abelian variety PicαX/k has dimension ≤ d.
(ii) The kernel for the induced map f ∗ : PicαY/k → PicαX/k has order ≤ l.

Proof. The idea is to reduce the problem to the case that Y is regular. Let Y ′ be an
alteration of Yred such that Y ′ is regular, and let X ′ be the reduction for X ×Y Y ′.
This gives a commutative diagram

X ←−−− Xred ←−−− X ′

f

y y y
Y ←−−− Yred ←−−− Y ′

where the vertical maps are modifications. According to Proposition 3.2, the induced
map PicαY ′/k → PicαX′/k is an isomorphism. Since X ′ → X is surjective, the kernel
K for PicX/k → PicX′/k is affine, according to [7], Exposé XII, Corollary 1.5. So the
same holds for the induced map A→ A′ on maximal abelian subvarieties. Its kernel
K ∩A is proper and affine, hence finite. Consequently dim(A) ≤ dim(A′). Thus the
dimension d ≥ 0 for the abelian parts PicαX′/k = PicαY ′/k is the desired bound.

Now set B = PicαY/k and B′ = PicαY ′/k. As in the preceding paragraph, the
kernel N for the induced map B → B′ is finite. In light of the above commutative
diagram and the identification PicαY ′/k = PicαX′/k, we see that N contains the kernel
for PicαY/k → PicαX/k. Thus l = |N | is the desired bound for the kernel orders. �

4. Ind-objects of abelian varieties

Throughout this section C denotes some category. Let us briefly discuss the nota-
tion of ind-objects, which was introduced by Grothendieck ([5], Exposé 1, Section 8,
compare also [35], Section 6.1). These are nothing but covariant functors A : L→ C
defined on some filtered category L. Recall that if the category L is just an ordered
set, filtered means that for all λ, λ′ ∈ L there is some µ ∈ L with λ, λ′ ≤ µ. For
simplicity one often writes an ind-object as (Aλ)λ∈L, and calls L the index category.
The morphisms tλµ : Aλ → Aµ for λ→ µ are usually called transition maps.

Each ind-object defines a presheaf “lim−→”Aλ on the category C, via the formula
Hom(X, “lim−→”Aλ) = lim−→Hom(X,Aλ). Hence a morphism “lim−→”Aλ → “lim−→”Bµ is a
natural transformation

lim−→
λ

Hom(X,Aλ)
ΦX−→ lim−→

µ

Hom(X,Bµ).
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By the universal property of direct limits and the Yoneda Lemma, this is a compat-
ible collection of morphisms fλ : lim−→µ

Hom(Aλ, Bµ). This shows

(3) Hom(“lim−→
λ

”Aλ, “lim−→
µ

”Bµ) = lim←−
λ

lim−→
µ

Hom(Aλ, Bµ).

The collection of all ind-objects, together with the above Hom sets, form the category
Ind(C). Each B ∈ C can be seen as an ind-object, with a singleton as index category,
and this gives a fully faithful inclusion C ⊂ Ind(C ). By the above, a morphism
(Aλ)λ∈L → B is a compatible collection of morphisms fλ : Aλ → B. This morphism
is an isomorphism if for some index λ0, there is a morphism g : B → Aλ0 so that for
all arrows λ0 → λ, the composition

B
g−→ Aλ0

tλ0,λ−→ Aλ
fλ−→ B

coincides with the identity map for B. An ind-object (Aλ)λ∈L is called constant if
all transition maps are isomorphisms. More generally, it is called essentially constant
if there is an index λ0 such that for all λ0 → λ the transition maps tλ0,λ : Aλ0 → Aλ
are isomorphisms. By abuse of notation we say that B = Aλ0 is the essential value.
Choosing for each λ′ some diagram λ′ → λ← λ0, the compositions fλ = t−1

λ0,λ
◦ tλ′,λ0

define compatible morphisms fλ : Aλ → B that do not depend on the choices, and
yield an isomorphism f : “lim−→”Aλ → B. Thus each essentially constant ind-object
belongs to the essential image of C ⊂ Ind(C).

We need the following criterion for abelian varieties:

Lemma 4.1. Let (Aλ)λ∈L be an ind-object of abelian varieties over some ground
field k. Suppose for each index λ, there are constants d ≥ 0 and l ≥ 1 such that for
each arrow λ→ µ we have

dim(Aµ) ≤ d and |Ker(Aλ → Aµ)| ≤ l.

Then the ind-object (Aλ)λ∈L is essentially constant.

Proof. We may replace L by any cofinal subcategory. It thus suffices to treat the
case that the filtered category L is just a directed ordered set, having some smallest
element λ. Since the dimensions of the Aµ are bounded, there is some λ′ ∈ L
where dim(Aλ′) takes the largest value. Replacing λ by λ′, we may assume that
this already happens for Aλ. Given λ ≤ µ, the transition map Aλ → Aµ has finite
kernel, and hence dim(Aλ) = dim(Aµ). Thus the dimensions are constant. In turn,
the transition maps Aλ → Aµ are surjective.

Set A = Aλ, and consider the kernels Kµ = Ker(A → Aµ). The Isomorphism
Theorem gives Aµ = A/Kµ. The orders lµ = |Kµ| satisfy lµ ≤ lη whenever µ ≤ η.
On the other hand we have lµ ≤ l. Passing to some cofinal subset, we may assume
that the orders lµ are constant for all λ < µ, so the inclusions Kµ ⊂ Kη are equalities.
Hence the transition maps Aµ = A/Kµ → A/Kη = Aη are isomorphisms. �

5. Compactifications and Albanese maps

Throughout this section, k is a ground field of arbitrary characteristic p ≥ 0, and
U be an algebraic space that is separated and of finite type over our ground field k.
We also assume that the ring of global sections H0(U,OU) is indecomposable and has
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trivial nil-radical. Equivalently, the affine hull Uaff = SpecH0(U,OU) is connected
and reduced. Recall that if U is proper with h0(OU) = 1, there is a universal map
to a para-abelian variety ([40], Corollary 10.5, confer also [14], Theorem 8.1). The
ultimate goal of this section is to remove the properness assumption.

Recall that a compactification is a pair (X, i) where X is a proper algebraic space,
and i : U → X is an open embedding such that X is the smallest closed subspace
through which i factors. If X is a scheme, this means that U ⊂ X is dense and
contains the finite set Ass(OX). One also says that U ⊂ X is schematically dense.
We will apply the same locution for algebraic spaces.

The compactifications of U form a non-empty category Cpt(U), where an arrow
(X, i) → (Y, j) is a morphism f : X → Y with f ◦ i = j. We then say that X
dominates Y . The schematic density of U ensures that the Hom sets are empty or
singletons, in other words, the category Cpt(U) is equivalent to an ordered set.

Given compactifications (X1, i1) and (X2, i2), the smallest closed subspace through
which the diagonal (i1, i2) : U → X1 ×X2 factors defines another compactification,
and we see that the opposite category Cpt(V )op is filtered. For each cofinal L ⊂
Cpt(V )op, we thus get ind-objects

(Hj(Xλ,OXλ))λ∈L and (PicτXλ/k)λ∈L and (PicαXλ/k)λ∈L

taking respective values in finite-dimensional vector spaces, group schemes of finite
type, and abelian varieties. These ind-objects should be seen as invariants of interest
for the algebraic space U . Before we proceed we have to address the problem of so-
called constant field extensions.

Lemma 5.1. For each compactification (Y, j) the finite k-algebra H0(Y,OY ) is a
field. Moreover, the ind-object of fields (H0(Xλ,OXλ))λ∈L is essentially constant.

Proof. The morphism j : U → Y induces an inclusion H0(Y,OY ) ⊂ H0(U,OU).
Since Y is proper, the k-algebra F = H0(Y,OY ) is finite. Hence each point in
Spec(F ) is generic, so the dominant map Y → Spec(F ) is surjective. Since the ring
H0(U,OU) is reduced, the same holds for the subring F . Using that U is connected,
and also dense in Y , we infer that Y and hence its image Spec(F ) is connected. This
proves the first assertion.

Before we come to the second assertion, we make a little observation: Let Y ′ → Y
be the normalization of Yred. Consider the finite k-algebra H0(Y ′,OY ′), which is a
finite product of finite field extensions of k. Let f : (X, i) → (Y, j) be a morphism
from another compactification, and set X ′ = (Y ′×YX)red. We obtain a commutative
diagram

X ′ −−−→ Xy yf
Y ′ −−−→ Y.

The first projection X ′ → Y ′ is a modification of the normal algebraic space Y ′,
and Zariski’s Main theorem implies that H0(Y ′,OY ′) = H0(X ′,OX′). The second
projection X ′ → X induces a homomorphism H0(X,OX) → H0(X ′,OX′), which
must be injective because F = H0(X,OX) is a field. It follows that h0(OX) ≤
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h0(OY ′). Summing up, the integers h0(OX) are bounded above by some number
that depends only on Y .

This easily gives the second assertion: By passing to a cofinal set, we may assume
that L has a smallest member (Y, j). According to the preceding paragraph, the
numbers h0(OXλ) are bounded. It follows that the ind-object (H0(Xλ,OXλ))λ∈L of
fields is essentially constant. �

Let us call k′ = “lim−→”H0(Xλ,OXλ) the essential field of constants for the algebraic

space U . The morphism U ⊂ Xλ → (Xλ)
aff = Spec(k′), with sufficiently large index

λ, endows the algebraic space U over k with a canonical k′-structure. After replacing
k by k′, the ground field and the essential field of constants coincide. In what follows,
we usually make this assumption, because the theory of Albanese maps for proper
algebraic spaces was developed in [40] under this condition.

Proposition 5.2. Suppose the ground field k equals the essential field of constants
for U . Then the ind-object (PicαXλ/k)λ∈L of abelian varieties is essentially constant.

Proof. By passing to a cofinal subset, we may assume that L contains a smallest
member (Y, i). Combining Proposition 3.3 and Lemma 4.1, we see that our ind-
object is essentially constant. �

Corollary 5.3. Suppose the ground field k equals the essential field of constants
for U . Then there is an index λ ∈ L such that for all µ ≥ λ the transition map
f : Xµ → Xλ induces an isomorphism f∗ : AlbXµ/k → AlbXλ/k of para-abelian
varieties.

Proof. In light of the Proposition, we may pass to a cofinal index set and assume
that the homomorphisms f ∗ : PicαXλ/k → PicαXµ/k are isomorphisms, for all µ ≥ λ
in L. Let Pλ = AlbXλ/k be the Albanese varieties, and gλ : Xλ → Pλ be the
Albanese maps. By our definition of Albanese maps ([40], Section 8), the induced
map g∗λ : PicαPλ/k → PicαXλ/k of abelian varieties is an isomorphism. It follows that
f∗ : Pµ → Pλ induces an isomorphism PicτPλ/k → PicτPµ/k. According to Proposition
1.3, the former is an isomorphism as well. �

We now come to the main result of the paper:

Theorem 5.4. Suppose the ground field k equals the essential field of constants for
U . Then there is a para-abelian variety P and a morphism f : U → P such that
for each other para-abelian variety Q with a morphism g : U → Q, there is a unique
morphism h : P → Q such that g = h ◦ f .

Proof. Choose a cofinal index set L ⊂ Cpt(V )op such that f∗ : AlbXµ/k → AlbXλ/k
are isomorphisms for all transition maps f : Xµ → Xλ with λ, µ ∈ L, and that there
is a smallest member (Y, j). Let P = AlbY/k be the Albanese variety of the proper
algebraic space Y . We obtain a morphism f : U → P as the composition of the
Albanese map a : Y → P with the inclusion j : U → Y .

We have to verify the universal property. Let g : U → Q be a morphism to some
other para-abelian variety. It can be seen as a rational map g : Y 99K Q. Taking
the closure of the graph Γg ⊂ Y ×Q we obtain another compactification (X, i). The
projection pr : X → Y is a morphism of compactifications, and the rational map
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g : Y 99K Q extends to a morphism g̃ : X → Q. We have the following commutative
diagram:

U Y X

P

Q

j

g

i

a

pr

g̃

h

By construction, a : Y → P is the Albanese map, and pr : X → Y induces an
isomorphism between Albanese varieties. Consequently, the composition a ◦ pr :
X → P is the Albanese map for the proper algebraic space X, hence there is a
unique morphism h : P → Q with h ◦ a ◦ pr = g̃. We then also have h ◦ a ◦ j =
h ◦ a ◦ pr ◦i = g̃ ◦ i = g, so the whole diagram is commutative.

It remains to verify uniqueness: Suppose there is another morphism h′ : P → Q
with h′ ◦ a ◦ j = g. Again the corresponding diagram with h′ instead of h is
commutative, and h ◦ a ◦ j = h′ ◦ a ◦ j. The compactification j : U → Y is an
epimorphism by schematic density. To see this, choose an étale surjection Ũ → U
from some scheme U ′, and apply [51], Lemma 2.1.1 to the resulting morphisms of
schemes Ũ → Y . It follows h ◦ a = h′ ◦ a, and in particular h ◦ a ◦ pr = h′ ◦ a ◦ pr.
Now recall that a ◦ pr : X → P is the Albanese map for X. Its universal property
ensures h = h′. �

By the Yoneda Lemma, the pair (P, f) is unique up to unique isomorphism. We
then write P = AlbU/k and call it the Albanese variety of the algebraic space U .
Moreover, the morphism f : X → AlbU/k is called the Albanese map. Note that if U
is already proper, the category Cpt(U) is equivalent to a singleton, hence our new
construction for algebraic spaces that are separated and of finite type coincides with
the old construction for proper algebraic spaces.

Proposition 5.5. Let g : U ′ → U be a morphism between algebraic spaces that
are separated and of finite type over the ground field k. Suppose k coincides with
the essential field of constants for both U and U ′, and that their affine hulls are
connected and reduced. Then there is a unique morphism g∗ : AlbU ′/k → AlbU/k
making the diagram

U ′
g−−−→ U

f ′

y yf
AlbU ′/k −−−→

g∗
AlbU/k

commutative, where the vertical arrows are the Albanese maps.

Proof. This is an immediate consequence of the universal property for Albanese
maps. Note that the assumptions are made to ensure the existence of the Albanese
varieties for U and U ′. �
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In particular, the action of the automorphism group Aut(U) induces an action
on AlbU/k such that the Albanese map is equivariant. It would be interesting to
understand to what extend this holds true for group scheme actions. Let us close
the section with the following observation:

Proposition 5.6. Suppose that U is connected and reduced, and that all its irre-
ducible components are geometrically integral. Then the ground field k coincides
with the essential field of constants for U .

Proof. Choose a sequence of irreducible components Ui ⊂ U , 1 ≤ i ≤ r so that
the successive intersections Ui ∩ Ui+1 are non-empty, and U = U1 ∪ . . . ∪ Ur, with
repetitions allowed. Then the base-changes Ui ⊗ kalg remain integral, and it follows
that U is geometrically connected and geometrically reduced. So the k-algebra
R = H0(U,OU) is geometrically indecomposable and geometrically reduced.

We proceed by showing that k ⊂ R is integrally closed. Suppose there is some
intermediate field k ⊂ k′ ⊂ R. Then R ⊗ kalg contains k′ ⊗ kalg. If [k′ : k] > 1, the
ring k′ ⊗ kalg contains idempotent elements e 6= 0, 1 or nilpotent elements f 6= 0, so
the same holds for the over-ring R⊗ kalg, contradiction. Thus k is integrally closed
in R, and thus must coincide with the essential ground field for U . �

6. Behavior under base change

Let k0 be a ground field of characteristic p ≥ 0, and U0 be an algebraic space that
is separated and of finite type over k0. Given a field extension k0 ⊂ k, we consider
the base-change U = U0 ⊗ k. Suppose that Uaff is reduced and connected, and that
k is the essential field of constants for U . Then the same properties hold for U0, and
we have Albanese maps

f0 : U0 −→ AlbU0/k0 and f : U −→ AlbU/k,

and also the base-change of the Albanese map f0,k : U → AlbU0/k0 ⊗k. The universal
property of f gives a comparison map

(4) c : AlbU/k −→ AlbU0/k0 ⊗k,
such that c◦f = f0,k. This is an isomorphism, provided U0 = X0 is proper, according
to [40], Corollary 10.5. In general, the situation is more complicated, because the
base-change functor Cpt(U0)→ Cpt(U) usually is not an equivalence of categories.
In fact, we shall see in the next section examples of algebraic curves over imperfect
fields where the comparison map fails to be an isomorphism.

In this section we want to establish a positive result. Recall that the field extension
k0 ⊂ k is called separable if for each reduced k0-algebra A0, the base-change A =
A0 ⊗ k remains reduced.

Theorem 6.1. In the above setting, the comparison map (4) is a finite universal
homeomorphism. It is actually an isomorphism provided the field extension k0 ⊂ k
is separable.

Before entering the proof, let us simplify notation and examine the assertions
from various angles. Set

P0 = AlbU0/k and P = AlbU/k and P0,k = AlbU0/k0 ⊗k.



ALBANESE MAPS 19

So our Albanese maps are f0 : U0 → P0 and f : U → P , and the comparison map
becomes c : P → P0,k. Let G ⊂ AutP/k be the subgroup scheme that acts trivially
on PicτP/k. Then G is an abelian variety, its action on P is free and transitive, and
we have an identification PicτG/k = PicτP/k, according to [40], Section 5. Similarly,
we form G0 ⊂ PicP0/k0 and its base-change G0,k = G0 ⊗ k. Then there is a unique
homomorphism c∗ : G→ G0,k making the comparison map c : P → P0,k equivariant,
by loc. cit. Proposition 5.4. We see that the assertion holds for c if and only if the
corresponding statement holds for c∗. The latter respects the group laws, so the as-
sertion of the theorem means that c∗ is surjective and has local kernel. Furthermore,
c and c∗ induce the same homomorphism

PicτG0/k0
⊗k = PicτP0/k0

⊗k c∗−→ PicτP/k = PicτG/k .

In light of Proposition 1.3, the assertion of the theorem means that c∗ is surjective
and has unipotent kernel.

Suppose we have a compactification i0 : U0 → X0 over k0, and another compact-
ification i : U → X over k that dominates the base-change of i0. We then get a
commutative diagram

(5)

U X P

X0,k P0,k

i

i0,k

f̄

g c

f̄0,k

of k-algebraic spaces, where f̄0 : X0 → P0 is the Albanese map for the proper
algebraic space X0, such that f0 = f̄0 ◦ i0, and likewise for f̄ : X → P . The vertical
map to the right is the comparison map. By definition of Albanese maps in the
proper case, the pull-back maps f̄ ∗0 and f̄ ∗ give identifications PicαX0/k0

= PicαP0/k0

and PicαX/k = PicαP/K . So the assertion of the theorem means that

(6) g∗ : PicαX0/k0
⊗k −→ PicαX/k

is surjective with unipotent kernel.

Proof of Theorem 6.1. We proceed in six steps. Note that we may replace X0 by
any other compactification X̃0 of U0 that dominates X0, and simultaneously replace
X by some X̃ that dominates the schematic closure of U inside the fiber product
X×X0 X̃0. We call this process passing to dominating compactifications, and do this
several times throughout to improve the situation.

Step 1: The comparison map c : P → P0,k is surjective. In light of Lemma 1.3,
this equivalently means that the kernel of (6) is finite. By construction, g : X → X0,k

is surjective. According to [7], Exposé XII, Corollary 1.5 the induced map on Picard
schemes has affine kernel. Its intersection with the maximal abelian subvariety is
proper. In turn, Ker(g∗) is finite.

Step 2: Reduction to the case that the field extension k0 ⊂ k is finitely generated.
Choose an intermediate field k0 ⊂ k1 ⊂ k that is finitely generated over k0, and
such that there is a proper algebraic space X1 and a para-abelian variety P1 over k1,
together with morphisms i1 : U1 → X1 and f̄1 : X1 → P1 inducing the upper row in
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the diagram (7), where we set U1 = U0 ⊗ k1. By enlarging k1 if necessary, we may
assume that there are morphisms that make the diagram

(7)

U
i−−−→ X

f̄−−−→ Py y y
U1

i1−−−→ X1
f̄1−−−→ P1y y y

U0 −−−→
i0

X0 −−−→
f̄0

P0

commutative. According to [40], Proposition 8.2 the morphism f̄1 : X1 → P1 is an
Albanese map for the proper k1-algebraic space X1. We claim that the composite
map f1 : U1 → P1 is an Albanese map for the k1-algebraic space U1. It suffices to
check that each morphism h1 : U1 → Q1 to some para-abelian variety, viewed as
a rational map X1 99K Q1, is defined everywhere. In other words, the schematic
closure of the graph Γh1 inside X1 × Q1 remains a graph. By construction, this
holds after base-changing along k1 ⊂ k. Since the formation of schematic closure
commutes with flat base-change, we infer that X1 99K Q1 is defined everywhere.

Step 3: The case that the extension k0 ⊂ k is finite and separable. This is
well-known, and we give the arguments for the sake of completeness: One uses the
universal property of Albanese maps to deduce that the comparison map (4) is an
isomorphism. There is a finite extension k ⊂ k′ such that k′ is Galois over both
k0 and k. Thus it suffices to treat the case that k0 ⊂ k is finite and Galois. Write
Γ = Gal(k/k0) for the Galois group, and let s : P → Spec(k) be the structure
morphism. Fix some σ ∈ Γ, and consider the commutative diagram

U0 ⊗ k U0 ⊗ k

P P

Spec(k) Spec(k).

idU0
⊗σ

f f

s

ψσ

s

Spec(σ)

We now observe that the upper diagonal arrow f ◦ (idU0⊗σ) is a k-morphism to the
para-abelian variety P , provided that the latter is endowed with the lower diagonal
arrow Spec(σ)−1 ◦ s as new structure morphism. By the universal property of the
Albanese map f , there is a unique dashed arrow ψσ : P → P making the triangles
on the left commutative. It follows that the whole diagram is commutative. The
uniqueness of ψσ ensures that the map Γ → Autk0(P ) given by σ 7→ ψσ respects
the group laws, and that the structure morphism s : U → Spec(k) is equivariant.
Since P is a projective k0-scheme, the quotient P/Γ exists as a projective k0-scheme.
We then have a canonical identification P = (P/Γ) ⊗k0 k. In particular, P/Γ is a
para-abelian variety over k0. By the above commutative diagram, the Albanese map
f : U → P over k descends to a k0-morphism U0 → P/Γ. Arguing as above, one
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sees that the latter has the universal property of the Albanese map, and infer that
the comparison map must be an isomorphism.

Step 4: Reduction to the cases k = k0(t) and k = k0(λ1/p). In light of step 2, it
suffices to treat the case that k0 ⊂ k is finitely generated. Choose a transcendence
basis t1, . . . , tn. Set k1 = k0(t1, . . . , tn) and let k2 be its relative separable closure in
k. The extension k2 ⊂ k is an equality in characteristic zero. For p > 0, it can be

written as the successive adjunction of certain elements λ
1/p
1 , . . . , λ

1/p
m , according to

[10], Chapter V, §7, No. 7, Proposition 13. Using inductions on n ≥ 0 and m ≥ 0,
together with step 3, we get the desired reduction.

Step 5: The case k = k0(t). This involves the passage to a relative setting.
For the sake of exposition, we write F for the field k = k0(t), and regard it as
the function field of the affine line A1

k0
. Choose a localization k0[t] ⊂ R by a

non-zero polynomial so that X extends to a proper morphism s : X → Spec(R).
Localizing further, we may assume that s is flat, and also cohomologically flat in
degree zero. In turn, the numerically trivial part PicτX/R exists ([40], Theorem 2.1).
Doing another localization, we may assume that P extends to a family of para-
abelian varieties P → Spec(R), and that the morphism f̄ : X → P extends to a
morphism f̄R : X → P. Localizing further, we may assume that the diagram (5)
spreads out to a commutative diagram

(8)

U0 ⊗R X P

X0 ⊗R P0 ⊗R,

iR

i0,R

f̄R

gR cR

f̄0,R

where all tensor products are over k0. Moreover, we may assume that for each prime
ideal p ⊂ R, the fiberwise morphisms U0⊗k0 κ(p)→ X⊗Rκ(p) are compactifications
that dominate U0 ⊗k0 κ(p) → X0 ⊗k0 κ(p). Making a final localization, we can
achieve that the cokernel of cR is a family of abelian varieties, and that the kernel
is an extension of a family of finite group schemes by a family of abelian varieties.

Now recall that R is a localization of the polynomial ring. Write S = Spec(R).
Then the closed points σ ∈ S whose residue field κ = κ(σ) is separable over k0 form
a Zariski dense set. For such points, the morphisms cκ : P ⊗R κ → P0 ⊗ κ are
isomorphisms by step 3. Using flatness, we infer that cR is an isomorphism, and in
particular c = cF is an isomorphism.

Step 6: The case k = k0(λ1/p) in characteristic p > 0. This is the most inter-
esting and most challenging part. Recall that by step 1 we already know that the
comparison map c : P → P0,k is surjective. It remains to check that it is injective.

First, consider the finitely many codimension-one points ζ1, . . . , ζr ∈ X0 that do
not belong to U0. Passing to dominating compactifications, stemming from the
semi-normalizations of the local rings OX0,ζi , we may assume that the local rings
OX0,ζi and OX,ζi are unibranch. In other words, their henselizations have integral
reductions. Here we regard ζi as points in both X0 and X, which indeed have the
same underlying topological space. Since k0 ⊂ k is purely inseparable, it follows
that the modification g : X → X0,k is a universal homeomorphism over some open
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set V0 ⊂ X0 that contains U0∪{ζ1, . . . , ζr}. Making a further passage to dominating
compactifications, we may assume that P0 = AlbU0/k0 = AlbV0/k0 = AlbX0/k0 .

Next, consider the sheaf of OX-algebras A given by Γ(W0,A ) = Γ(W0∩V0,OX0).
This is a coherent sheaf, by [31], Proposition 5.11.1 and coincides with OX0 on V0.
Now pass to dominating compactifications, where X0 is replaced by the relative spec-
trum of A . It then follows that the local rings R = OX0,a satisfy Serre’s condition
(S2), at each boundary point a ∈ X0 r U0. In other words, the local cohomology
group H i

m(R) vanishes for i ≤ 1. Thus the restriction map k = H0(X0,OX0) →
H0(V0,OV0) is bijective.

We now consider the finite universal homeomorphisms g : g−1(V0,k) → V0,k. Ac-
cording to [38], Proposition 6.6 there is an integer n ≥ 0 so that the iterated relative
Frobenius map F n : g−1(V0,k)→ g−1(V0,k)

(pn) factors over V0,k. Consider the kernel
G′ = G[F n] for the corresponding Frobenius map F n : G → G(pn). The quotient
P ′ = P/G′ is para-abelian, being a torsor for the abelian variety G/G′. We claim
that the diagram

g−1(V0,k) P

V0,k P ′,

f

g q

f ′

can be completed by a dashed arrow f ′. Since the vertical arrows are homeomor-
phisms, f ′ clearly exists as a continuous map. By the very definition of morphisms of
locally ringed spaces, we have to check, for a given point a ∈ g−1(V0,k) with images
b = f(a) and b′ = q(b), that the composite map ϕ : OP ′,b′ → Og−1(V0,k),a factors over

the subring O(V0,k),g(a). The elements of OP ′,b′ = k · Opn

P,b are sums of λ · hpn , with

λ ∈ k and h ∈ OP,b. By our choice of n ≥ 0, the image ϕ(λ · hpn) = λ · ϕ(h)p
n

belongs to O(V0,k),g(a). Thus the desired f ′ : V0,k → P ′ exists.
To proceed we use the existence of Weil restrictions along Spec(k) → Spec(k0).

Indeed, for each k-scheme Y of finite type, the functor

(Aff/k) −→ (Set), R0 7−→ Y (R0 ⊗k0 k)

is representable by a k0-scheme Resk/k0(Y ) of finite type. We refer to the monograph
of Conrad, Gabber and Prasad [19], Appendix A.5 for a comprehensive treatment of
Weil restrictions. The functor respects products and closed embeddings, and there-
fore also group structures, torsor structures with respect to smooth group schemes,
and being separated. In particular Resk/k0(P ′) is a torsor with respect to the group
scheme Resk/k0(G′). Moreover, the morphism f ′ : V0 ⊗ k → P ′ corresponds to a
morphism f ′0 : V0 → Resk/k0(P ′).

We already saw that h0(OV0) = 1, whence the image of V0 in the affine hull of
the Weil restriction is a rational point. According to Proposition 6.2 below, the
kernel of the affinization map of the group scheme Resk/k0(G′) is an abelian variety.
It follows that f ′0 factors over some para-abelian variety inside Resk/k0(P ′). It thus
also uniquely factors over a morphism P0 = AlbV0/k0 → Resk/k0(P ′), by the universal
property of Albanese maps. In turn, g−1(V0,k) → P ′ factors over some morphism
P0 ⊗ k → P ′. Passing to some dominating compactifications, we may assume that
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the composition X → P → P ′ factors over AlbV0/k0 ⊗k. Summing up, we have a
commutative diagram of para-abelian varieties

P

P0,k P ′.

c
can

Recall that the vertical arrow P → P ′ is the quotient map with respect to the
infinitesimal group scheme G′ = G[F n], and therefore a bijection for the underlying
topological spaces. It follows that the comparison map c : P → P0,k is injective. �

In the above proof we have used the following fact:

Proposition 6.2. Suppose p > 0. Let k0 $ k be a purely inseparable finite field
extension, A 6= 0 be an abelian variety over k, and G0 = Resk/k0(A) the Weil
restriction. Then the affinization Gaff

0 is a smooth connected unipotent group scheme
of dimension n ≥ 1, and the kernel of G0 → Gaff

0 is an abelian variety of dimension
g = dim(A).

Proof. By descent, it suffices to check the properties for E = G0⊗k0 k. According to
[19], Proposition A.5.11 the canonical homomorphism f : E = Resk/k0(A)⊗k0 k → A
is smooth and surjective, with geometrically connected fibers, and U = Ker(f) is
unipotent and non-zero. It follows that E and whence also its affinization are smooth
and connected. Write h : E → Eaff for the affinization map. Its kernel N is smooth
with h0(ON) = 1, according to [23], Chapter III, §3, 8.2. It must be an extension
of some abelian variety by a torus, by [11], Proposition 2.2. In our situation, the
torus is trivial, so N is an abelian variety. The cokernel for U → Eaff is affine (loc.
cit., Chapter III, §3, Theorem 5.6). This cokernel is also the quotient of the abelian
variety A = E/U . It follows that U → Eaff is surjective, whence Eaff is unipotent,
of some dimension n ≥ 1. The kernel for U → Eaff is affine and belongs to N , hence
is proper, and therefore finite. In turn, dim(N) = dim(A). �

7. The case of algebraic curves

Let k be a ground field of characteristic p ≥ 0. In this section, C denotes an
algebraic curve, that is, a scheme that is separated, of finite type, equi-dimensional,
and of dimension d = 1. Write C1, . . . , Cr for the irreducible components. We regard
each Ci as the schematic images of the local Artin schemes Spec(OC,ηi), where ηi ∈ C
denote the generic points. Note that we do not assume that C is proper, or reduced.
However, each Ci is either proper or affine. We start by describing the affinization
map for C:

Proposition 7.1. The k-algebra Γ(C,OC) is of finite type, the affinization map f :
C → Caff is projective with f∗(OC) = OCaff, and the exceptional locus Exc(C/Caff) =
Supp(Ω1

C/Caff) is the union of the irreducible components Ci that are proper.

Proof. Choose some compactification X = C̄. By definition, all embedded points
lie inside the open set C, so the local rings for the points at infinity are Cohen–
Macaualay. Thus there is some effective Cartier divisor D ⊂ X whose support is
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the closed set X r C. The ensuing short exact sequence 0 → L ⊗n−1 → L ⊗n →
L ⊗n
D → 0 induces a long exact sequence

H0(X,L ⊗n) −→ H0(X,L ⊗n
D ) −→ H1(X,L ⊗n−1) −→ H1(X,L ⊗n) −→ 0.

We conclude that h1(L ⊗n) is decreasing in n, hence becomes constant for n � 0.
Then the map on the left must be surjective, and it follows that L is semi-ample.
Passing to a multiple we may assume that L is globally generated. The homoge-
neous spectrum Y = P (X,L ) of the graded ring R(X,L ) =

⊕
n≥0 Γ(X,L ⊗n) is a

projective scheme and defines a morphism f : X → Y with OY = f∗(OX). More-
over, L is the preimage of the ample invertible sheaf OY (1). The map contracts
the irreducible components Xi = C̄i that are disjoint from D; these are exactly
the Ci that are proper. Let s ∈ Γ(Y,OY (1)) be the global section whose preimage
f ∗(s) ∈ Γ(X,L ) vanishes precisely at D. Then the non-zero locus Ys is an affine
open set, with preimage C = X rD = f−1(Ys). Using OY = f∗(OX) we infer that
Ys must be the affinization Caff. �

Suppose that the affine irreducible components Ci are generically reduced. Ap-
plying [30], Corollary 7.4.11 to the normalization of Cred, we see that there is a
compactification C̄ such that for each point at infinity a ∈ C̄ the local ring OC̄,a is
a discrete valuation ring. We call it the canonical compactification.

Proposition 7.2. Assumptions as above. Then the canonical compactification C̄
is an initial object in the category Cpt(C) of all compactifications. Moreover, the
formation of C̄ commutes with separable ground field extensions k ⊂ k′.

Proof. Let C ⊂ X be any compactification. By assumption, the finite set Z = XrC
admits an open neighborhood U such that U r Z is regular. It then follows that
the canonical compactification C̄ arises from X by normalization on the open set U ,
and making no change on the open set X r Z. In particular, there is a morphism
C̄ → X between compactifications, so C̄ yields an initial object in Cpt(C).

For the second assertion, write the locus at infinity as C̄ rC = {a1, . . . , ar}, and
consider the residue fields ki = κ(ai). Suppose the field extension k ⊂ k′ has the
property that the finite k′-algebra ki⊗k′ is regular, that is, a product of fields. Then
C̄ ⊗ k′ remains regular over each ai ∈ C̄, hence must coincide with the canonical
compactification of C ⊗ k′. This happens in particular if k ⊂ k′ is separable. �

We see that the canonical compactification Xλ = C̄ is a final object in the opposite
category Cpt(C)op. Choosing the singleton L = {λ} as a cofinal index set, the proof
for Theorem 5.4 immediately gives:

Proposition 7.3. Assumptions as in the previous proposition. Suppose Caff is con-
nected and reduced, and k = H0(C̄,OC̄). Then the composition C ⊂ C̄ → AlbC̄/k is
the Albanese map for the algebraic curve C.

Note that there is no final object in Cpt(C)op for more general curves C. For
example, the infinitesimal extensions P1 ⊕ OP1(n) of the projective line, with n
arbitrary, can be seen as compactifications of the non-reduced curve C = A1

k[ε],

where ε2 = 0.
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Let us unravel the condition that Caff is connected and reduced. Write Γ(C)
for the dual graph of the scheme C. Recall that its vertices correspond to the
irreducible components Ci, and two vertices are joined by an edge if Ci ∩Cj is non-
empty (compare for example [58], discussion before Proposition 1.2). Let C ′ ⊂ C
be the union of the proper irreducible components, and C ′′ ⊂ C be the union of the
affine irreducible components. We regard these closed sets as closed subschemes, by
declaring C ′′ as the schematic image of the morphism Spec(

∏
OC,η) → C, where

the product runs over the generic points η ∈ C ′′, and likewise for C ′. These closed
subschemes correspond to coherent sheaves of ideals I ′ ⊂ OC and I ′′ ⊂ OC ,
respectively. Under the assumption that C has no embedded components, we have
Supp(I ′′) = C ′, and may regard the sheaf of ideals I ′′ also as abelian sheaf on C ′,
sitting in a short exact sequence 0 → I ′ ∩ I ′′ → I ′′ → I ′′OC′ → 0, where the
outer terms are OC′-modules.

Proposition 7.4. Notation as above. Suppose that the algebraic curve C is not
proper. Then the affine hull Caff is connected and reduced if and only if the following
conditions hold:

(i) The dual graph Γ(C) is connected.
(ii) The scheme C has no embedded components.

(iii) The affine curve C ′′ is generically reduced.
(iv) The group of global sections H0(C ′,I ′′) vanishes.

Proof. First, suppose that that Caff is connected and reduced. Then the noetherian
scheme C must be connected, so the same holds for the dual graph Γ(C). Moreover,
the structure sheaf OC has no global sections whose support is zero-dimensional.
Since dim(C) = 1 we infer that C has no embedded components. According to
Proposition 7.1, the induced map C ′′ → Caff is a modification, and it follows that
C ′′ is generically reduced. The short exact sequence 0 → I ′′ → OC → OC′′ → 0
gives an exact sequence

0 −→ H0(C,I ′′) −→ H0(C,OC) −→ H0(C ′′,OC′′),

hence the term on the left vanishes. The latter can be written as H0(C ′,I ′′), in
light of our chosen scheme structure on C ′′.

Conversely, suppose that conditions (i)–(iv) hold. The scheme C is connected
by (i). The map C → Caff is surjective, according to Proposition 7.1, so Caff

is connected as well. In the above exact sequence, the term on the left vanishes
by (iv), and the ring on the right is reduced by (iii). Consequently H0(C,OC) is
reduced. �

Let k ⊂ k′ be a field extension, and set C ′ = C⊗k′. Suppose that C ′ is connected
and reduced, and k′ = H0(C̄ ′,OC̄′), and consider the resulting comparison map

(9) c′ : AlbC′/k′ −→ AlbC/k⊗k′

We shall see now that this may fail to be an isomorphism. As in [29], Section 2
we write Sing(C̄/k) for the locus of non-smoothness. It carries a scheme structure,
defined by the first Fitting ideal Fitt1(Ω1

C̄/k
). Note that it contains the singular

locus Sing(C̄), but over imperfect fields may be much larger.
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Theorem 7.5. In the above setting, suppose that for the curve C and the extension
k ⊂ k′ the following holds:

(i) The locus of non-smoothness Sing(C̄/k) is non-empty and contained in the
locus at infinity C̄ r C.

(ii) The normalization X for the base-change Y = C̄ ⊗ k′ is a smooth curve of
genus g ≥ 1.

Then the comparison map (9) is not an isomorphism.

Proof. Our assumptions ensure that X is the canonical compactification of C ′, and
we have a commutative diagram

Y
ν←−−− X

g

y yf
AlbY/k′ ←−−−

c
AlbX/k′ .

By definition, AlbY/k′ is the base-change of AlbC/k, whereas AlbX/k = AlbC′/k′ . The
Albanese map f : X → AlbX/k′ is a closed embedding, in light of (ii).

Seeking a contradiction, we assume that the comparison map is an isomorphism.
Then the composition g◦ν = c◦f is affine, and the same holds for the normalization
map ν : X → Y . Using the Leray–Serre spectral sequence and Serre’s Criterion ([30],
Corollary 5.2.2), we infer that g : Y → AlbY/k is affine. Since the composition

OAlbY/k′
→ g∗(OY )→ (g ◦ ν)∗(OX)

is surjective, it follows that ν : X → Y is a closed embedding. Hence this is an
isomorphism, consequently C̄ is smooth, in contradiction to (i). �

Let us discuss explicit examples. Suppose the ground field k is imperfect of
characteristic p > 0, and consider inside A2 = Spec k[x, y] the affine plane curve

Z : yl =
n∏
i=1

(xqi − λi),

where l ≥ 2 is prime to the characteristic, and qi = pνi > 1 are powers of the
characteristic, and λi ∈ k are pairwise different scalars that are not p-powers in k,
and n ≥ 3 is some integer. The right-hand side of the equation is an inseparable
square-free polynomial of degree q = q1 + . . . + qn, and we see with Eisenstein’s
Criterion that Z is integral. Note that such curves where used by Totaro to construct
pseudo-abelian varieties that are not abelian varieties ([62], Example 3.1).

To simplify the exposition, we now also assume that l = q+1. Then the projection
Z → A1 = Spec k[x] immediately gives the canonical compactification h : Z̄ → P1,
via the equation y′l = x′ ·

∏
(1 − λix

′qi) in the new indeterminates x′ = 1/x and
y′ = y/x. One sees that h−1(∞) contains only the rational point given by x′ = y′ = 0
and that Z̄ is regular there, and hence also smooth ([28], Corollary 2.6).

The ideal a ⊂ k[x, y] for the locus of non-smoothness Sing(Z/k) ⊂ A2 is generated
by the defining equation and its partial derivatives. One easily computes that the
underlying closed set is given by y = 0 and

∏
(xqi − λi) = 0. The equation y = 0
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defines an effective Cartier divisor D ⊂ Z whose coordinate ring is the product of

the residue fields k(λ
1/qi
i ), and it follows that the affine plane curve Z is regular.

Let k ⊂ k′ be an extension field that contains the roots λ
1/qi
i , and set C ′ = C⊗k′.

At each singularity ai ∈ C ′, the complete local ring becomes R = k′[[u, v]]/(ul −
vm), where u = x and v = y − λ

1/qi
i and m = qi. Its normalization is k[[t]],

with normalization map determined by u = tm and v = tl. We conclude that
the normalization X of the base-change Y = Z̄ ⊗ k′ is smooth, of certain genus
g = h1(OX). It comes with a branched covering X → P1

k′ of degree l. In the
Riemann–Hurwitz Formula 2g− 2 = l · (−2) +

∑n
i=0(l− 1), the term on the right is

l · (−2) +
n∑
i=0

(l − 1) = (n+ 1)(l − 1)− 2l ≥ 4(l − 1)− 2l = 2l − 4 ≥ 0,

and it follows that X is a curve of genus g ≥ 1. Now consider the affine curve
C = Z r Sing(Z/k). Then C̄ = Z̄, and the two conditions in Theorem 7.5 are
satisfied. We see that the comparison map (9) is not an isomorphism.

8. The case of algebraic groups

Let k be a ground field of characteristic p ≥ 0. Throughout this section, G denotes
a group scheme of finite type, which are also called algebraic groups in the literature.
First note that G is connected and reduced if and only if the respective properties
hold for the affinization Gaff = Spec Γ(G,OG). Throughout, we will assume that
these equivalent conditions hold.

Since the neutral element e ∈ G is a rational point, the ground field k coincides
with the essential field of constants for G. By Theorem 5.4, there is an Albanese
map f : G→ AlbG/k. The Albanese variety is a para-abelian variety endowed with
a rational point f(e). The latter becomes the zero element 0 ∈ AlbG/k for a unique
group law, according to [40], Proposition 4.3. In what follows we regard AlbG/k as
an abelian variety.

The goal of this section is to analyze how the various group laws interact with
the Albanese map. We shall see that f does not necessarily respect the group laws.
However, the following key fact ([12], Proposition 4.1.4) ensures that it does so on
many subgroup schemes:

Lemma 8.1. The restriction of the Albanese map f : G → AlbG/k to any smooth
connected subgroup scheme H ⊂ G respects the group laws.

If k is perfect, then the reduced group scheme G itself is smooth, so the Albanese
map is the universal homomorphism to an abelian variety.

The following terminology, which applies to any closed subscheme E ⊂ G con-
taining the origin e ∈ G, will be useful: We say that f |E is trivial if it factors over
the zero element 0 ∈ AlbG/k, viewed as a reduced closed subscheme. More generally,
we say that f |E is set-theoretically trivial if f(g) = 0 for every point g ∈ E. In this
case, the schematic image Z ⊂ AlbG/k is some closed subscheme supported by the
zero element. In turn, Z = Spec(R) for some finite local k-algebra R with residue
field R/mR = k.
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Proposition 8.2. The restriction f |H to any reduced connected affine subgroup
scheme H ⊂ G is trivial.

Proof. We start with the case that f |H respects the group law. According to [23],
Chapter II, Proposition 5.1 the set-theoretical image of f |H is a closed set. It must
be connected, because H is connected. Write E for this closed set, endowed with
the reduced scheme structure. Since H is reduced, f : H → AlbG/k factors over E.
By loc. cit. E is a subgroup scheme, and the homomorphism f : H → E is faithfully
flat. In turn, we have E = H/H ′ where H ′ = Ker(f |H), and the quotient must be
affine, according to [23], Chapter III, Theorem in 7.2. Since the Albanese variety is
proper, the same holds for E. Being proper and affine, the group scheme E must
be finite. Since it is connected it must be a singleton, thus f |H is trivial.

In light of Lemma 8.1, our assertion holds if H is smooth. Suppose now that
H is not smooth. Then we are in characteristic p > 0. Consider the Frobenius
kernels H[F n] for the iterated relative Frobenius maps F n : H → H(pn). According
to [23], Chapter III, Lemma 6.10 the quotient H/H[F n] is smooth for sufficiently
large n ≥ 0. Set A = AlbG/k and consider the induced morphism fn : G(pn) → A(pn).

Its restriction to the subgroup scheme H/H[F n] inside H(pn) ⊂ G(pn) is trivial, by
the preceding paragraph, and we infer that f |H is at least set-theoretically trivial.
Let Z = Spec(R) be its schematic image. Then R is a finite local k-algebra with
residue field R/mR = k, and the canonical map R → Γ(H,OH) is injective. Since
H is reduced, the same holds for R, and thus R = k. �

Note that the above arguments also give the fact that each subscheme H ⊂ G
that inherits a group law must be a closed subscheme. Each such H ⊂ G acts via
translations on G, from both sides. If f |H respects the group law, H likewise acts
on AlbG/k via translations, also from both sides.

Proposition 8.3. Let H ⊂ G be a smooth connected subgroup scheme. Then the
Albanese map f : G→ AlbG/k is equivariant with respect to the H-actions.

Proof. We have to verify that the graph Γf ⊂ G×AlbG/k is H-stable, where H acts
diagonally. In light of Theorem 6.1, it suffices to treat the case that k is separably
closed. Let H ′ ⊂ H be the stabilizer of the graph. Each element σ ∈ H(k) defines
a translation automorphism σ : G → G. From the universal property of Albanese
maps, it induces a compatible automorphism of the Albanese variety; it follows that
the inclusion H ′(k) ⊂ H(k) is an equality. Since H is smooth, the set H(k) is dense,
and thus the inclusion of the closed set H ′ is an equality. �

Note that for reduced but non-smooth H, the regular locus Reg(H) is open and
dense, but contains no rational point ([28], Corollary 2.6), and it can easily happen
that the group H(k) is trivial ([57], Section 8).

Corollary 8.4. Let H ⊂ G be a smooth connected subgroup scheme that is also
affine. Then the Albanese map f : G→ AlbG/k uniquely factors over G/H.

Proof. By Proposition 8.2, the homomorphism f |H is trivial, hence the H-action on
the Albanese variety is trivial. Passing to quotients we get G/H → AlbG/k. Such a
factorization is unique because the projection G→ G/H is an epimorphism. �
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Since affinization of schemes that are separated and of finite type commutes with
products, Gaff inherits a group law, and the affinization map p : G → Gaff is a
homomorphism. Let N be its kernel and write i : N → G for the inclusion map. By
the Affinization Theorem ([23], Chapter III, 8.2), we get a central extension

(10) 0 −→ N
i−→ G

p−→ Gaff −→ 1.

Furthermore, N is smooth and connected, with h0(ON) = 1. Such group schemes
are called anti-affine. Their structure was analyzed by Brion [11]. Note that on
G and Gaff, the group laws are written in a multiplicative way, whereas for N we
choose additive notation. Let us say that the group scheme G weakly splits if there
is a morphism of schemes s : Gaff → G with p ◦ s = idGaff . Then

(11) N ×Gaff −→ G, (x, y) 7−→ i(x) · s(y)

is an isomorphism of schemes. If the section s additionally respects the group laws,
we say that G strongly splits ; then the above is actually an isomorphism of group
schemes.

We now can formulate our main result on the Albanese variety of group schemes
G of finite type that are reduced and connected. It unravels how the Albanese map
f : G → AlbG/k is related to the central extension 0 → N → G → Gaff → 0.
Note that by Proposition 8.2, the restriction f |N respects the group law, and we
set N ′ = Ker(f |N).

Theorem 8.5. In the above situation, the kernel N ′ ⊂ N inside the anti-affine
group scheme N is the smallest subgroup scheme such that N/N ′ is proper and
G/N ′ weakly splits. Moreover, for any section s : Gaff → G/N ′, the composition

G
can−→ G/N ′

(i,s)−1

−→ N/N ′ ×Gaff pr1−→ N/N ′

is an Albanese map for G.

Proof. Let B be the cokernel of f |N , which is an abelian variety. According to
Proposition 8.3, the Albanese map f : G → AlbG/k induces a morphism Gaff =
G/N → B. The latter is trivial, by Proposition 8.2, and the universal property
of f reveals that B = 0. Thus f |N is surjective, and we get AlbG/k = N/N ′. In
particular, N/N ′ is proper.

Set A = AlbG/k. The Albanese map f : G → A factors over G/N ′. The induced
morphism g : G/N ′ → A is equivariant with respect to the actions of N/N ′ and
the restriction of g to N/N ′ is an isomorphism of abelian varieties. In turn, r =
(g|N/N ′)−1 ◦ g is an equivariant retraction for the inclusion j : N/N ′ → G/N ′. It
follows that the composition

Gaff −→ {e} ×Gaff −→ N/N ′ ×Gaff (r,p)−1

−→ G

is a section for the projection G/N ′ → Gaff. Thus G/N ′ weakly splits.
Next, we describe the Albanese map in the special case that G is weakly split.

Since Albanese maps depend only on the underlying scheme, it suffices to treat the
case that G is strongly split. Let N1 ⊂ N be the maximal smooth connected affine
subgroup scheme. Using that the Albanese map factors over N/N1, we reduce to
the case N1 = 0. Then N is an abelian variety, (this depends on Brion’s result [11],
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see also [40], Proposition 7.1). We now have to verify that pr1 : N ×Gaff → N is an
Albanese map. Consider the commutative diagram

N N ×Gaff

AlbG/k N,

i

pr1f

g

where g comes from the universal property of the Albanese map. The left diagonal
arrow f ◦ i is surjective, by the preceding paragraph, and has trivial kernel, because
g ◦ f ◦ i = idN . It follows that g is an isomorphism, whence pr1 is an Albanese map.

We come back to the general case. Let H ⊂ N be any subgroup scheme with
G/H weakly split and N/H proper. It only remains to check that N ′ ⊂ H. Choose
a section s for the projection G/H → Gaff and consider the commutative diagram

N G G/H N/H ×Gaff

N/N ′ AlbG/k N/H,

i

can

can

f

(i, s)−1

pr1

g

where g comes from the universal property of the Albanese map f . We see that
the composite map N → N/H is equivariant with respect to the action of N , and
factors over N/N ′, which ensures N ′ ⊂ H. �

Suppose G is weakly split, and choose a section s for the projection p. Then the
identification i · s : N × Gaff → G from (11) is an isomorphism of schemes, and
the group law on G arises from the product group law by a modification with a
Hochschild two-cocycle ϕ : (Gaff)2 → N . In fact, the isomorphism classes of central
extensions 0→ N → E → Gaff → 0 where the projection E → Gaff admits a section
correspond to classes in the Hochschild cohomology group H2

0 (Gaff, N), where N is
viewed as a module over Gaff with trivial action, see the discussion in [23], Chapter
II, §3. This yields the following:

Corollary 8.6. Suppose our group scheme G is weakly split and that N is proper.
Then the Albanese map f : G → AlbG/k respects the group law if and only if G
strongly splits.

Proof. We may assume that G = N × Gaff as schemes, and choose the two-cocycle
ϕ : (Gaff)2 → N so that the inclusion i : N → G is given by x 7→ (x, e). The
projection pr1 : G→ N is an Albanese map, by the theorem.

Suppose now that pr1 : G → N respects the group law. Then the identity mor-
phism G→ N ×Gaff respects the group laws, hence G is strongly split. Conversely,
if G is strongly split, then pr1 respects the group law. �

We now construct examples where the Albanese map does not respect the group
laws. Recall that a group scheme U is unipotent if it is of finite type, and the
base-change U ⊗ kalg admits a composition series whose quotients can be embedded
into the additive group Ga,kalg . We refer to [25], Exposé XVII for a comprehensive
treatment. Note that if U is connected, at least one composition series is already
defined over k (loc. cit. Theorem 3.5).
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Proposition 8.7. Let U be a reduced connected unipotent group scheme, and N
be an abelian variety. Suppose we are in characteristic p > 0, and that there is an
epimorphism U ⊗ kalg → αp,kalg and a monomorphism αp,kalg → N ⊗ kalg. Then the
following holds:

(i) The Hochschild cohomology group H2
0 (U,N) is non-zero.

(ii) For all γ ∈ H2
0 (U,N) the resulting extension G is reduced and connected.

(iii) If γ 6= 0, the Albanese map G→ AlbG/k does not respect the group law.

Proof. To see (ii), observe that in the extension 0 → N → G → U → 1 the
projection G → U has the structure of a principal N -bundle. By our assumptions,
all fibers are smooth and connected, and the base is reduced and connected. So the
latter also holds for the total space G. This gives (ii). Assertion (iii) is a direct
consequence of Corollary 8.6.

It remains to verify (i). For this we first recall the computation of the cocycle
group Z2(Ga,Ga) for Hochschild cohomology. The cochains are just morphisms
G2
a → Ga. These correspond to homomorphisms k[Z]→ k[X]⊗ k[Y ] of k-algebras.

The latter are determined by the images of Z, hence are given by a polynomial in X
and Y . By the computation in [23], Chapter II, §3, Subsection 4.6 the polynomials

Q(X, Y ) =

p−1∑
i=1

(
p

i

)
X iY p−i and XY pr (r ≥ 1)

satisfy the cocycle condition. We remark in passing that these freely generate a
complement for B2 ⊂ Z2, viewed as modules over the skew polynomial ring k[F ],
where Fλ = λpF holds. The polynomial Q(X, Y ) induces a non-zero homomorphism

k[Z]/(Zp) −→ k[X]/(Xp)⊗ k[Y ]/(Y p),

giving a non-trivial element in Z2(αp, αp). Using the epimorphism U ⊗kalg → αp,kalg

over kalg and applying descent, we conclude that Z2(U, αp) is non-zero.
Now let us examine the group of one-cochains C1(U, αp), whose elements are

morphism of schemes h : U → αp. Since U is reduced, any such morphism factors
over e ∈ αp, viewed as a reduced closed subscheme. Thus the coboundary operator
C1(U, αp)→ Z2(U, αp) is the zero map, and we conclude H2

0 (U, αp) 6= 0.
Now consider the abelian variety N . Its Lie algebra Lie(N) has trivial brack-

ets, and comes with an additional structure given by the p-map x 7→ x[p]. By the
Demazure–Gabriel Correspondence ([23], Chapter II, §7, Theorem 3.5) the homo-
morphisms αp → N correspond to the vectors x ∈ Lie(N) with x[p] = 0. Since the
brackets are trivial, the p-map is additive. Our assumption on N ⊗ kalg ensures
that there is a non-zero homomorphism αp → N . In turn, we get an inclusion
Z2(U, αp) → Z2(U,N), so these groups are non-zero. Again we consider C1(U,N).
Fix an element h : U → N . By Proposition 8.2, this morphisms factors over a
rational point a ∈ N . In turn, the coboundary map C1(U,N)→ Z2(U,N) is trivial,
and we conclude again that H2

0 (U,N) 6= 0. �

It is easy to make this concrete, over any imperfect field k of characteristic p > 0:
Choose an element t ∈ k that is not a p-power, and let U be the kernel of the
homomorphism G2

a → Ga given by (x, y) 7→ xp − typ. Then U is integral, pr1 |U is
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surjective, and the kernel is isomorphic to αp. Over the field extension k′ = k(t1/p),
the section given by z 7→ (z, t1/pz) defines the desired splitting U⊗k′ ' (Ga×αp)⊗k′.
Furthermore, there is a supersingular elliptic curve N over k (well-known, see for
example [52], Lemma 3.1), which indeed contains a copy of αp.
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Alvero, G. Welters and S. Xambó-Descamps (eds.), Algebraic geometry, Sitges (Barcelona),
pp. 216–261. Springer, Berlin, 1985.

[48] M. Nagata: Imbedding of an abstract variety in a complete variety. J. Math. Kyoto Univ.
2 (1962), 1–10.

[49] M. Olsson: Algebraic spaces and stacks. American Mathematical Society, Providence, RI,
2016.
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