Übungen zu Algebraische Geometrie II

Blatt 2

Aufgabe 1. Sei X eine projektive Fläche. Verifizieren Sie, dass N(X) eine Basis hat, für welche die Gram-Matrix lauter strikt positive Einträge hat.

Aufgabe 2. Sei $f:X\to Y$ ein Morphismus zwischen eigentlichen Schemata. Zeigen Sie, dass die induzierte Abbildung

$$f^* : \operatorname{Pic}(Y) \longrightarrow \operatorname{Pic}(X), \quad \mathscr{L} \longmapsto f^*(\mathscr{L})$$

numerisch triviale Garben auf numerisch triviale Garben schickt und somit ein Homomorphismus $f^*: N(Y) \to N(X)$ induziert.

Aufgabe 3. Berechnen Sie für die Fläche $S=\mathbb{P}^1\times\mathbb{P}^1$ die beiden Kegel

$$\operatorname{Amp}(S) \subset \operatorname{Nef}(S) \subset N(S)_{\mathbb{R}} = \mathbb{R}^{\oplus 2}.$$

Zeigen Sie weiterhin, dass es keine negativ-definiten Kurven $E \subset S$ gibt.

Aufgabe 4. Sei $f: X' \to X$ ein birationaler Morphismus zwischen eigentlichen integren Flächen. Seine \mathcal{L}, \mathcal{N} zwei invertierbare Garben auf X, und $\mathcal{L}', \mathcal{N}'$ ihre Urbilder auf X'. Beweisen Sie mit der Leray–Serre Spektralsequenz die Gleichheit

$$(\mathscr{L}\cdot\mathscr{N})=(\mathscr{L}'\cdot\mathscr{N}')$$

der Schnittzahlen.

Abgabe: Bis Freitag, den 4. Mai um 8:25 Uhr im Zettelkasten.