Holomorphic torsion on Hermitian symmetric spaces

Kai Köhler

Abstract

We calculate explicitly the equivariant holomorphic Ray-Singer torsion for all equivariant Hermitian vector bundles over Hermitian symmetric spaces G / K with respect to any isometry $g \in G$. In particular, we obtain the value of the usual non-equivariant torsion. The result is shown to provide very strong support for Bismut's conjecture of an equivariant arithmetic Grothendieck-Riemann-Roch theorem.

Torsion holomorphe pour des espaces hermitiens symétriques

Résumé - On calcule explicitement la torsion équivariante holomorphe de Ray-Singer pour tous les fibrés vectoriels hermitiens équivariants sur les espaces hermitiens symétriques compactes G / K relativement à chaque isométrie $g \in G$. En particulier on obtient la valeur de la torsion non-équivariante. Le resultat va dans le sens de la conjecture de Bismut d'un théorème de Grothendieck-Riemann-Roch arithmétique equivariant.

Version française abrégée - Soit E un fibré holomorphe hermitien sur une variété complexe compacte M. Soit $\square_{q}:=\left(\bar{\partial}+\bar{\partial}^{*}\right)^{2}$ l'opérateur de Laplace-Kodaira agissant sur $\Gamma\left(\Lambda^{q} T^{* 0,1} M \otimes E\right)$. Soit g une isométrie holomorphe de M et supposons que le fibré hermitien soit invariant par l'action de g. Soit $\tau_{g}(M, E)$ la torsion équivariante comme définie dans [8]. Elle est donnée par la dérivée en zéro d'une certaine fonction zêta associée au spectre de \square et à l'action de g sur les espaces propres de \square. La torsion joue un rôle crucial dans la définition d'une image directe dans la K-théorie arithmétique de Gillet-Soulé.

Considérons un groupe de Lie compact et semi-simple G. Soit G / K un espace hermitien symétrique equipé d'une métrique G-invariante $\langle\cdot, \cdot\rangle_{\diamond}$. Soit $T \subseteq K$ un tore maximal et Ψ un système de racines d'une structure complexe invariante de G / K dans le sens de [4]. Soit ρ_{G} la demi-somme des racines positives de G. On pose $\left(\alpha, \rho_{G}\right):=2\left\langle\alpha, \rho_{G}\right\rangle_{\diamond} /\|\alpha\|_{\diamond}^{2}$ pour chaque poids α. Soit χ_{α} le caractère virtuel associé à α.

Choisissons une représentation irréductible V de K du poids maximal Λ. Soit $E:=$ $(G \times V) / K$ le fibré vectoriel associé. Pour exprimer la torsion de E, il faut d'abord établir quelques notations. Soit $P: \mathbf{Z} \rightarrow \mathbf{C}$ une fonction du type $P(k)=\sum_{j=0}^{m} c_{j} k^{n_{j}} e^{i k \phi_{j}}$ où $m, n_{j} \in \mathbf{N}_{0}, c_{j} \in \mathbf{C}, \phi_{j} \in \mathbf{R}$. Soit ζ_{L} la fonction zêta de Lerch. On pose $P^{\text {odd }}(k):=$ $(P(k)-P(-k)) / 2$ et

$$
\begin{array}{r}
\boldsymbol{\zeta} P:=\sum_{j=0}^{m} c_{j} \zeta_{L}\left(-n_{j}, \phi_{j}\right), \quad \boldsymbol{\zeta}^{\prime} P:=\sum_{j=0}^{m} c_{j} \zeta_{L}^{\prime}\left(-n_{j}, \phi_{j}\right) \\
\text { et } \quad P^{*}(p):=-\sum_{\substack{j=0 \\
\phi_{j}=0 \bmod 2 \pi}}^{m} c_{j} \frac{p^{n_{j}+1}}{4\left(n_{j}+1\right)} \sum_{\ell=1}^{n_{j}} \frac{1}{\ell} .
\end{array}
$$

Alors on obtient le résultat suivant par des méthodes similaires à [8]

Theorem 1 ([9]) Le logarithme de la torsion équivariante de E sur G / K est donné par

$$
\begin{aligned}
& \log \tau_{g}=\zeta^{\prime} \sum_{\alpha \in \Psi} \chi_{\rho_{G}+\Lambda+k \alpha}^{\mathrm{odd}}(g)-\sum_{\alpha \in \Psi} \chi_{\rho_{G}+\Lambda-k \alpha}(g)^{*}\left(\left(\alpha, \rho_{G}+\Lambda\right)\right) \\
& \quad+\frac{1}{2} \sum_{\alpha \in \Psi} \sum_{k=1}^{\left(\alpha, \rho_{G}+\Lambda\right)} \chi_{\rho_{G}+\Lambda-k \alpha}(g) \log k+\frac{1}{2} \sum_{\alpha \in \Psi}\left(\frac{1}{2}-\zeta \chi_{\rho_{G}+\Lambda+k \alpha}^{\mathrm{odd}}(g)\right) \log \frac{\|\alpha\|_{\diamond}^{2}}{2}
\end{aligned}
$$

pour $g \in G$.
Ce resultat correspond très bien à la conjecture d'un théorème de Grothendieck-RiemannRoch arithmétique équivariante de Bismut [2].

The Ray-Singer analytic torsion is a positive real number associated to the spectrum of the Kodaira-Laplacian on Hermitian vector bundles over compact Hermitian manifolds [10]. It was shown by Quillen, Bismut, Gillet and Soulé that the torsion provides a metric with very beautiful properties on the determinant line bundle of direct images in K-theory over Kähler manifolds.

The main application of this construction is related to arithmetic geometry. Extending ideas of Arakelov, Gillet and Soulé constructed for arithmetic varieties \mathcal{X} (i.e. flat regular quasi-projective schemes over Spec \mathbf{Z} with projectiv fibre $\mathcal{X}_{\mathbf{Q}}$ over the generic point) a Chow intersection ring and a K-theory by using differential geometric objects on the Kähler manifold $X:=\mathcal{X} \otimes \mathbf{C}[11]$. In particular, the K-theory consists of arithmetic vector bundles on \mathcal{X} with Hermitian metric over X and certain classes of differential forms. Using the torsion as part of a direct image, Bismut, Lebeau, Gillet and Soulé were able to prove an arithmetic Grothendieck-Riemann-Roch theorem relating the determinant of the direct image in the K-theory to the direct image in the arithmetic Chow ring. For a generalization of these concepts to higher degrees, see Bismut-Köhler [3] and Faltings [5].

One important step in the proof of the theorem was its explicit verification for the canonical projection of the projective spaces to Spec Z by Gillet, Soulé and Zagier [6]. In particular, the Gillet-Soulé R-genus, a rather complicated characteristic class occuring in the theorem was determined this way. The discovery of the same genus in a completely different calculation of secondary characteristic classes associated to short exact sequences by Bismut gave further evidence for the theorem.

In [8], an equivariant version of the analytic torsion was introduced and calculated for rotations with isolated fixed points of complex projective spaces. The result led Bismut to conjecture an equivariant arithmetic Grothendieck-Riemann-Roch formula [2]. Redoing his calculations concerning short exact sequences, he found an equivariant characteristic class R which equals the Gillet-Soulé R-genus in the non-equivariant case and the function $R^{\text {rot }}$ in the case of isolated fixed points. In [1], he was able to show the compatibility of his conjecture with immersions.

In this note, we give the equivariant torsion for all compact Hermitian symmetric spaces G / K with respect to the action of any $g \in G$ as calculated in [9]. The result is of interest also in the non-equivariant case: The torsion was known only for very
few manifolds; the projective spaces, the elliptic curves and the tori of dimension >2 (for which it is zero for elementary reasons). Also, Wirsching [12] found a complicated algorithm for the determination of the torsion of complex Grassmannians $G(p, n)$, which allowed him to calculate it for $G(2,4), G(2,5)$ and $G(2,6)$. Thus, our results extend largely the known examples for the torsion.

Let M be a compact n-dimensional Kähler manifold with holomorphic tangent bundle $T M$. Consider a hermitian holomorphic vector bundle E on M and let $\bar{\partial}$ and $\bar{\partial}^{*}$ denote the associated Dolbeault operator and its formal adjoint. Let $\square_{q}:=\left(\bar{\partial}+\bar{\partial}^{*}\right)^{2}$ be the Kodaira-Laplacian acting on $\Gamma\left(\Lambda^{q} T^{* 0,1} M \otimes E\right)$. We denote by $\operatorname{Eig}_{\lambda}\left(\square_{q}\right)$ the eigenspace of \square_{q} corresponding to an eigenvalue λ. Consider a holomorphic isometry g of M which induces a holomorphic isometry g^{*} of E. Then the equivariant analytic torsion is defined via the zeta function

$$
Z_{g}(s):=\sum_{q>0}(-1)^{q} q \sum_{\substack{\lambda \in \mathrm{Spec⿻}_{\begin{subarray}{c}{ } }}^{\lambda \neq 0}}\end{subarray}} \lambda^{-s} \operatorname{Tr} g_{\mid \operatorname{Eig}}^{\lambda}\left(\square_{q}\right)
$$

for $\mathfrak{R e} s \gg 0$. Classically, this zeta function has a meromorphic continuation to the complex plane which is holomorphic at zero. The equivariant analytic torsion is defined as $\tau_{g}:=\exp \left(-Z_{g}^{\prime}(0) / 2\right)$. This gives for $g=\operatorname{Id}_{M}$ the ordinary analytic torsion τ of Ray and Singer [10].

Let G / K be a compact hermitian symmetric space, equipped with any G-invariant metric $\langle\cdot, \cdot\rangle_{\diamond}$. We may assume G to be compact and semi-simple. Let $T \subseteq K$ denote a fixed maximal torus. Let Θ be a system of positive roots of K (with respect to some ordering) and let Ψ denote the set of roots of an invariant complex structure in the sense of [4]. Then $\Theta \cup \Psi=: \Delta^{+}$is a system of positive roots of G for a suitable ordering, which we fix $[4,13.7]$.

Let ρ_{G} denote the half sum of the positive roots of G and let W_{G} be its Weyl group. As usual, we define $\left(\alpha, \rho_{G}\right):=2\left\langle\alpha, \rho_{G}\right\rangle_{\diamond} /\|\alpha\|_{\diamond}^{2}$ for any weight α. For any weight b, the (virtual) character χ_{b} evaluated at $t \in T$ is given via the Weyl character formula by

$$
\chi_{b}(t)=\frac{\sum_{w \in W_{G}} \operatorname{det}(w) e^{2 \pi i w b(t)}}{\sum_{w \in W_{G}} \operatorname{det}(w) e^{2 \pi i w \rho_{G}(t)}} .
$$

This extends to all of G by setting χ_{b} to be invariant under the adjoint action. Let V be an irreducible K-representation with highest weight Λ and let $E:=(G \times V) / K$ denote the associated G-invariant holomorphic vector bundle on G / K. The metric $\langle\cdot, \cdot\rangle_{\diamond}$ on \mathfrak{g} induces a hermitian metric on E. Using similar methods as in [8], one may reduce the problem of determining $Z_{g}(s)$ to a problem in finite-dimensional representation theory. This way one gets our key result

Theorem 2 The zeta function Z associated to the vector bundle E over G / K is given by

$$
Z(s)=-2^{s} \sum_{\substack{\alpha \in \mathbb{W} \\ k>0}}\left\langle k \alpha, k \alpha+2 \rho_{G}+2 \Lambda\right\rangle_{\diamond}^{-s} \chi_{\rho_{G}+\Lambda+k \alpha} .
$$

Let for $\phi \in \mathbf{R}$ and $s>2$

$$
\zeta_{L}(s, \phi)=\sum_{k>0} \frac{e^{i k \phi}}{k^{s}}
$$

denote the Lerch zeta function. Let $P: \mathbf{Z} \rightarrow \mathbf{C}$ be a function of the form

$$
P(k)=\sum_{j=0}^{m} c_{j} k^{n_{j}} e^{i k \phi_{j}}
$$

with $m \in \mathbf{N}_{0}, n_{j} \in \mathbf{N}_{0}, c_{j} \in \mathbf{C}, \phi_{j} \in \mathbf{R}$ for all j. Set $P^{\text {odd }}(k):=(P(k)-P(-k)) / 2$. We define analogously to [6, 2.3.4]

$$
\begin{array}{rlrl}
\boldsymbol{\zeta} P & :=\sum_{j=0}^{m} c_{j} \zeta_{L}\left(-n_{j}, \phi_{j}\right), & \zeta^{\prime} P:=\sum_{j=0}^{m} c_{j} \zeta_{L}^{\prime}\left(-n_{j}, \phi_{j}\right) \\
\overline{\boldsymbol{\zeta}} P & :=\sum_{j=0}^{m} c_{j} \zeta_{L}\left(-n_{j}, \phi_{j}\right) \sum_{\ell=1}^{n_{j}} \frac{1}{\ell} \quad \text { and } \quad P^{*}(p):=-\sum_{\substack{j=0 \\
\phi_{j}=0 \bmod 2 \pi}}^{m} c_{j} \frac{p^{n_{j}+1}}{4\left(n_{j}+1\right)} \sum_{\ell=1}^{n_{j}} \frac{1}{\ell} .
\end{array}
$$

Then theorem 2 implies by some calculus on zeta functions
Theorem 3 The logarithm of the equivariant torsion of E on G / K is given by

$$
\begin{aligned}
& -\frac{1}{2} Z^{\prime}(0)=\zeta^{\prime} \sum_{\alpha \in \Psi} \chi_{\rho_{G}+\Lambda+k \alpha}^{\mathrm{odd}}-\sum_{\alpha \in \Psi} \chi_{\rho_{G}+\Lambda-k \alpha}^{*}\left(\left(\alpha, \rho_{G}+\Lambda\right)\right) \\
& \quad+\frac{1}{2} \sum_{\alpha \in \Psi} \sum_{k=1}^{\left(\alpha, \rho_{G}+\Lambda\right)} \chi_{\rho_{G}+\Lambda-k \alpha} \log k+\frac{1}{2} \sum_{\alpha \in \Psi}\left(\frac{1}{2}-\boldsymbol{\zeta} \chi_{\rho_{G}+\Lambda+k \alpha}^{\mathrm{odd}}\right) \log \frac{\|\alpha\|_{\odot}^{2}}{2} .
\end{aligned}
$$

One can show that the polynomial degree in k of $\sum_{\Psi} \chi_{\rho_{G}+\Lambda+k \alpha}(g)$ for any $g \in G$ is at most the dimension of the fixed point set of the action of g on G / K. In particular, it is less or equal $\# \Psi$. The torsion behaves additively under direct sum of vector bundles, thus this result gives the torsion for any homogeneous vector bundle.
Remark: If the decomposition of the space G / K in its irreducible components does not contain one of the spaces $\mathbf{S O}(p+2) / \mathbf{S O}(p) \times \mathbf{S O}(2)(p \geq 3)$ or $\mathbf{S p}(n) / \mathbf{U}(n)(n \geq 2)$, one may choose the metric $\langle\cdot, \cdot\rangle_{\diamond}$ in such a way that $\log \|\alpha\|_{\diamond}^{2} / 2=0$ for all $\alpha \in \Psi$. Thus the corresponding term in theorem 3 vanishes.

We shall now compare the result with Bismut's conjecture of an equivariant RiemannRoch formula. Consider again a compact Kähler manifold M and a vector bundle E acted on by g and let M_{g} denote the fixed point set. Let N be the normal bundle of the imbedding $M_{g} \hookrightarrow M$. Let $\gamma_{\mid x}^{N}$ (resp. $\gamma_{\mid x}^{E}$) denote the infinitesimal action of g at $x \in M_{g}$. Let $\Omega^{T M_{g}}, \Omega^{N}$ and Ω^{E} denote the curvatures of the corresponding bundles with respect to the hermitian holomorphic connection. Define the function Td on square matrices A as $\operatorname{Td}(\mathrm{A}):=\operatorname{det} \mathrm{A} /(1-\exp (-\mathrm{A}))$.
Definition 1 Let $\operatorname{Td}_{g}(T M)$ and $\operatorname{ch}_{g}(T M)$ denote the following differential forms on M_{g} :

$$
\operatorname{Td}_{g}(T M):=\operatorname{Td}\left(\frac{-\Omega^{T M_{g}}}{2 \pi i}\right) \operatorname{det}\left(1-\left(\gamma^{N}\right)^{-1} \exp \frac{\Omega^{N}}{2 \pi i}\right)^{-1}
$$

and

$$
\operatorname{ch}_{g}(T M):=\operatorname{Tr} \gamma^{E} \exp \frac{-\Omega_{\mid M_{g}}^{E}}{2 \pi i}
$$

Assume now for simplicity that E is the trivial line bundle. In [2], Bismut introduced the equivariant R-genus $R_{g}(T M)$. Using this genus we may reformulate theorem 3 as follows:

Theorem 4 The logarithm of the torsion is given by the equation

$$
\begin{aligned}
& 2 \log \tau_{g}(G / K)-\log \operatorname{vol}_{\diamond}(\mathrm{G} / \mathrm{K})+\sum_{\Psi}\left(\frac{1}{2}+\zeta \chi_{\rho_{\mathrm{G}}+\mathrm{k} \alpha}^{\mathrm{odd}}(\mathrm{~g})\right) \log \frac{\|\alpha\|_{\diamond}^{2}}{2} \\
& =\int_{(G / K)_{g}} \operatorname{Td}_{g}(T(G / K)) R_{g}(T(G / K))-\bar{\zeta} \sum_{\Psi} \chi_{\rho_{G}+k \alpha}^{\mathrm{odd}}(g)-2 \sum_{\Psi} \chi_{\rho_{G}-k \alpha}(g)^{*}\left(\left(\alpha, \rho_{G}\right)\right) .
\end{aligned}
$$

Using the R-genus, Bismut formulated a conjectural equivariant arithmetic Grothendieck-Riemann-Roch theorem [2]. Suppose that M is given by $\mathcal{M} \otimes \mathbf{C}$ for a flat regular scheme $\pi: \mathcal{M} \rightarrow \operatorname{Spec} \mathbf{Z}$ and that E stems from an algebraic vector bundle \mathcal{E} over \mathcal{M}. Let $\sum(-1)^{q} R^{q} \pi_{*} \mathcal{E}$ denote the direct image of \mathcal{E} under π. We equip the associated complex vector space with a hermitian metric via Hodge theory. Bismut's conjecture implies that the equivariant torsion verifies the equation

$$
\begin{align*}
& 2 \log \tau_{g}(M, E)+\hat{c}_{g}^{1}\left(\sum_{q \geq 0}(-1)^{q} R^{q} \pi_{*} \mathcal{E}\right)=\pi_{*}\left(\widehat{\operatorname{Td}}_{g}(T \mathcal{M}) \widehat{\operatorname{ch}}_{g}(\mathcal{E})\right)^{(1)} \\
&+\int_{(G / K)_{g}} \operatorname{Td}_{g}(T(G / K)) R_{g}(T(G / K)) \operatorname{ch}_{g}(E) \tag{1}
\end{align*}
$$

(We identify the first arithmetic Chow group $\widehat{\mathrm{CH}}^{1}(\operatorname{Spec} \mathbf{Z})$ with \mathbf{R}). Here $\hat{c}_{g}^{1}, \widehat{\mathrm{Td}}_{g}$ and $\widehat{c h}_{g}$ denote certain equivariant arithmetic characteristic classes which are only defined in a non-equivariant situation up to now (see [11]). Bismut [1] has proven that this formula is compatible with the behaviour of the equivariant torsion under immersions and changes of the occuring metrics. In the non-equivariant case, equation (1) has been proven by Gillet, Soulé, Bismut and Lebeau [7]. In our case, the \hat{c}_{g}^{1} term in (1) should be independent of g. By the definition of \hat{c}^{1}, it should equal minus the logarithm of the norm of the element $1 \in H^{0}(G / K)$, thus $-\log \operatorname{vol}_{\diamond}(G / K)$. Hence, theorem 4 fits very well with Bismut's conjecture.

We consider now the case $g=I d$. For this action, the equivariant torsion equals the original Ray-Singer torsion. The values of the characters $\chi_{\rho_{G}+k \alpha}$ at zero are given by the Weyl dimension formula

$$
\chi_{\rho_{G}+k \alpha}(0)=\operatorname{dim} V_{\rho_{G}+k \alpha}=\prod_{\beta \in \Delta^{+}}\left(1+k \frac{\langle\beta, \alpha\rangle}{\left\langle\beta, \rho_{G}\right\rangle}\right) .
$$

In particular, the first term in theorem 3 is given by $\boldsymbol{\zeta}^{\prime}$ applied to the odd part of the polynomial

$$
\sum_{\alpha \in \Psi} \chi_{\rho_{G}+k \alpha}(0)=\sum_{\alpha \in \Psi} \prod_{\beta \in \Delta^{+}}\left(1+k \frac{\langle\beta, \alpha\rangle}{\left\langle\beta, \rho_{G}\right\rangle}\right) .
$$

At a first sight, this looks like a polynomial of degree $\# \Delta^{+}$, but it has in fact degree $\leq \# \Psi$, thus all higher degree terms cancel. By combining theorem 4 with the arithmetic Riemann-Roch theorem, we get the following formula:

Theorem 5 The direct image of the arithmetic Todd class is given by

$$
\begin{aligned}
\left(\pi_{*} \widehat{\operatorname{Td}}(T \mathcal{M})\right)^{(1)} & =\sum_{\Psi}\left(\frac{1}{2}+\boldsymbol{\zeta}\left(\operatorname{dim} V_{\rho_{G}+k \alpha}\right)^{\text {odd }}\right) \log \frac{\|\alpha\|_{\diamond}^{2}}{2} \\
& +\bar{\zeta} \sum_{\Psi}\left(\operatorname{dim} V_{\rho_{G}+k \alpha}\right)^{\text {odd }}+2 \sum_{\Psi}\left(\operatorname{dim} V_{\rho_{G}+k \alpha}\right)^{*}\left(\left(\alpha, \rho_{G}\right)\right) .
\end{aligned}
$$

References

[1] J.-M. Bismut. Equivariant immersions and Quillen metrics. preprint 56, Orsay, 1993.
[2] J.-M. Bismut. Equivariant short exact sequences of vector bundles and their analytic torsion forms. Comp. Math., 93:291-354, 1994.
[3] J.-M. Bismut and K. Köhler. Higher analytic torsion forms for direct images and anomaly formulas. J. alg. geom., 1:647-684, 1992.
[4] A. Borel and F. Hirzebruch. Characteristic classes and homogeneous spaces, I. Am. J. Math., 80:458-538, 1958.
[5] G. Faltings. Lectures on the arithmetic Riemann-Roch theorem. Princeton university press, 1992.
[6] H. Gillet and C. Soulé. Analytic torsion and the arithmetic Todd genus. Topology, 30:21-54, 1991. With an Appendix by D. Zagier.
[7] H. Gillet and C. Soulé. An arithmetic Riemann-Roch theorem. Invent. math., 110:473-543, 1992.
[8] K. Köhler. Equivariant analytic torsion on \mathbf{P}^{n} C. Math. Ann., 297:553-565, 1993.
[9] K. Köhler. Holomorphic torsion on Hermitian symmetric spaces. preprint 1, MPI, 1994,to appear in J. Reine Angew. Math.
[10] D. B. Ray and I. M. Singer. Analytic torsion for complex manifolds. Ann. Math., 98:154-177, 1973.
[11] C. Soulé, D. Abramovich, J.-F. Burnol, and J. Kramer. Lectures on Arakelov Geometry. Cambridge University Press, 1992.
[12] C. Wirsching. Eigenwerte des Laplace-Operators für Graßmann-Varietäten. PhD thesis, Universität München, 1992.

