Equivariant analytic torsion on $\mathbb{P}^{n} \mathbb{C}$

Kai KÖHLER

Université de Paris-Sud
BÂt. 425
91405 ORSAY

Abstract for the Zentralblatt der Mathematik: The subject of the paper is to calculate an equivariant version of the complex Ray-Singer torsion for all bundles on the $\mathbb{P}^{1} \mathbb{C}$ and for the trivial line bundle on $\mathbb{P}^{n} \mathbb{C}$, for isometries which have isolated fixed points. The result can for all n be expressed with a special function, which is very similar to the series defining the Gillet-Soul R-genus.

1991 Mathematics Subject Classification: 58G26, 14J20, 53C30.

Equivariant analytic torsion on $\mathbb{P}^{n} \mathbb{C}$

Kai KÖHLER

Abstract

We calculate an equivariant version of the complex Ray-Singer torsion for all bundles on the $\mathbb{P}^{1} \mathbb{C}$ and for the trivial line bundle on $\mathbb{P}^{n} \mathbb{C}$, for isometries with isolated fixed points. The result gives for all n a part of the Gillet-Soul R-function.

Keywords: Determinants and determinant line bundles, Arakelov geometry, Homogeneous manifolds.

1990 AMS-Subject classification: 58G26, 14J20, 53C30.

Running title: Equivariant analytic torsion on $\mathbb{P}^{n} \mathbb{C}$
Adress:
Kai Khler
Mathmatiques
Bt. 425
F-91405 ORSAY
France
e-mail: Koehler@matups.matups.fr

Introduction

The analytic torsion was constructed by Ray and Singer [RS] as an analytic analogue to the Reidemeister torsion. Bismut, Gillet and Soul [BGS] proved as an extension of a result of Quillen important properties of the torsion in connection with vector bundles on fibrations:

Let $\pi: M \rightarrow B$ be a proper holomorphic map of compact complex manifolds and let ξ be a hermitian holomorphic vector bundle on M. Let $R \pi_{*} \xi$ be the right-derived direct image of ξ. Then the analytic torsion of the fibres of π induces a metric on the Knudsen-Mumford determinant $\lambda^{K M}:=\left(\operatorname{det} R \pi_{*} \xi\right)^{-1}$ which is a holomorphic line bundle on B. The curvature of this Quillen metric as well as its behaviour under changes of the metrics on M and ξ was expressed in [BGS] explicitly by means of secondary Bott-Chern classes. In particular this gives a refinement of the Riemann-Roch theorem for families.

On the other hand let $i: Y \hookrightarrow X$ be an embedding of compact complex manifolds. Let η be a hermitian holomorphic vector bundle on Y and let ξ be a resolution of η by a complex of vector bundles on X. Bismut and Lebeau [BL] calculated the relation between the Quillen metrics of η and ξ. With the help of this result, Gillet and Soul [GS2] were able to prove a Riemann-Roch theorem in Arakelov geometry for the first Chern class of the direct image (see [S] for the theorem and some background information). This theorem was later proved by Faltings [F] for higher degrees.

The proof of the Riemann-Roch theorem uses a calculation of Gillet, Soul and Zagier [GS1] of the torsion for the trivial line bundle on the complex projective spaces $\mathbb{P}^{n} \mathbb{C}$. This led Gillet and Soul to conjecture this theorem, which was the initial motivation for [BL]. In particular this rather difficult calculation gives in particular the Gillet-Soul R-genus, which appears explicitly in the theorem. This is the additive genus associated to the series

$$
R(x)=\sum_{\substack{\ell \geq 1 \\ \text { odd }}}\left(2 \zeta^{\prime}(-\ell)+\zeta(-\ell) \sum_{j=1}^{\ell} \frac{1}{j}\right) \frac{x^{\ell}}{\ell!}
$$

where ζ is the Riemann zeta function. To obtain this series, one has to caculate the torsion of $\mathbb{P}^{n} \mathbb{C}$ for every n.

Let us consider now a holomorphic isometry g of a hermitian vector bundle E over a compact Khler manifold M. One can define in a natural way an equivariant version of the torsion. This equivariant torsion appeared already in Ray's [R] calculation of the real analytic torsion for lens spaces.

In this paper we present the calculation of the equivariant analytic torsion for all holomorphic bundles on $\mathbb{P}^{1} \mathbb{C}$ and for the trivial line bundle on $\mathbb{P}^{n} \mathbb{C}$, where the projective spaces are equipped with the Fubini-Study metric. We consider only rotations with isolated fixpoints. For a rotation by angles $\in \pi \cdot \mathbb{Q}$, we obtain a closed expression involving the gamma function. For arbitrary angles a function $R^{\text {rot }}$, which is similar to the Gillet-Soul R-function, appears as an infinite series. This is relatively easy to calculate because the defining ζ-function Z has no singularities in contrast to the situation in [GS1].

The similarity of $R^{\text {rot }}$ and R might help to find an equivariant Riemann-Roch formula in Arakelov geometry, where the two functions correspond to the extremal cases: isolated fixed points or identity map. In fact, Bismut [B3] found further evidence for such a formula: He constructed analytic torsion forms associated to a short exact sequence of hermitian holomorphic vector bundles equipped with a holomorphic unitary endomorphism g. In his result, a series $R(\varphi, x)$ appears with the properties

$$
R(0, x)=R(x), \quad R(\varphi, 0)=R^{\mathrm{rot}}(\varphi) .
$$

As the appearance of the R-genus in [B2] gave evidence for the existence of the Riemann-Roch theorem, he now conjectures an equivariant Riemann-Roch formula.

The function $R^{\text {rot }}$ can be obtained as follows: Let for $0<\varphi<2 \pi$ and $s>0, \zeta^{\text {rot }}(\varphi, s)$ be the Dirichlet series

$$
\zeta^{\mathrm{rot}}(\varphi, s):=\sum_{k \geq 1} \frac{\sin k \varphi}{k^{s}}
$$

Then $\zeta^{\text {rot }}$ can be seen as the imaginary part of a Lerch zeta function. We set $R^{\mathrm{rot}}(\varphi):=\frac{\partial}{\partial s} \zeta^{\mathrm{rot}}(\varphi, 0)$. The following is obtained by classical results:

Proposition 1. $R^{\text {rot }}$ is equal to

$$
R^{\mathrm{rot}}(\varphi)=\frac{C+\log \varphi}{\varphi}-\sum_{\substack{\ell \geq 1 \\ \ell \text { odd }}} \zeta^{\prime}(-\ell)(-1)^{\frac{\ell+1}{2}} \frac{\varphi^{\ell}}{\ell!}
$$

If $\varphi=2 \pi \frac{p}{q}$ with $p, q \in \mathbb{N}, 0<p<q$, then

$$
R^{\mathrm{rot}}(\varphi)=-\frac{1}{2} \log q \cdot \cot \frac{\varphi}{2}+\sum_{\ell=1}^{q-1} \log \Gamma\left(\frac{j}{q}\right) \cdot \sin j \varphi
$$

In the last chapter we give some other functional properties of R^{rot}. Let $E:=\mathcal{O}\left(k_{1}\right) \oplus \ldots \oplus \mathcal{O}\left(k_{n}\right)$ be a holomorphic vector bundle on $\mathbb{P}^{1} \mathbb{C}$, equipped with the standard metric (i.e. the curvature of $\mathcal{O}(1)$ is the Fubini-Study Khler form). By a theorem of Grothendieck, each holomorphic vector bundle on $\mathbb{P}^{1} \mathbb{C}$ is of this form. Then we find

Theorem 2. The equivariant analytic torsion $\tau(E, \varphi)$ with respect to a rotation by an angle $\varphi \in] 0,2 \pi[$ is given by
$-2 \log \tau(E, \varphi)=\frac{2 R^{\mathrm{rot}}(\varphi)}{\sin \frac{\varphi}{2}} \cdot \sum_{j=1}^{n} \cos \left(k_{j}+1\right) \frac{\varphi}{2}+\sum_{j=1}^{n} \sum_{m=1}^{\left|k_{j}+1\right|} \frac{\sin \left(2 m-\left|k_{j}+1\right|\right) \frac{\varphi}{2}}{\sin \frac{\varphi}{2}} \log j$.
We see in particular that the equivariant torsion τ gives already for the trivial line bundle \mathcal{O} on $\mathbb{P}^{1} \mathbb{C}$ the function

$$
\log \tau(\mathcal{O}, \varphi)=\cot \frac{\varphi}{2} \cdot\left(i \sum_{\substack{\ell \geq 1 \\ \text { odd }}} \zeta^{\prime}(-\ell) \frac{(i \varphi)^{\ell}}{\ell!}-\frac{C+\log \varphi}{\varphi}\right)
$$

Let now $\Phi:=\left(\begin{array}{ccc}i \varphi_{1} & & 0 \\ & \ddots & \\ & 0 & \\ i \varphi_{n+1}\end{array}\right)$ be an element of the (canonical) maximal Cartan subalgebras of $\mathfrak{s u}(n+1)$, hence an infinitesimal rotation on $\mathbb{P}^{n} \mathbb{C} \cong$ $S U(n+1) / S(U(1) \times U(n))$. Assume that all the φ_{j} are distinct. Then we have

Theorem 3. The equivariant torsion $\tau\left(\mathcal{O}, e^{\Phi}\right)$ for the trivial line bundle \mathcal{O} on $\mathbb{P}^{n} \mathbb{C}$ is given by
$-2 \log \tau\left(\mathcal{O}, e^{\Phi}\right)=(-1)^{n} \sum_{\substack{j, k=1 \\ j \neq k}}^{n+1} 2 i R^{\mathrm{rot}}\left(\varphi_{j}-\varphi_{k}\right) \prod_{\substack{\ell=1 \\ \ell \neq k}}^{n+1}\left(e^{i\left(\varphi_{k}-\varphi_{\ell}\right)}-1\right)^{-1}-\log n!$.

I) Definition of the torsion

Let M be a Khler manifold of complex dimension n with holomorphic tangent bundle $T M$ and Khler form ω_{M}, ξ a hermitian vector bundle on M and $\bar{\partial}$ the Dolbeault operator acting on sections of $\Lambda^{q} T^{*(0,1)} M \otimes \xi$. We define a hermitian product on the vector space of smooth sections of $\Lambda^{q} T^{*(0,1)} M \otimes \xi$ by

$$
\left(\eta, \eta^{\prime}\right):=\int_{M}\left(\eta(x), \eta^{\prime}(x)\right) \frac{\omega^{n}}{(2 \pi)^{n} n!}
$$

as in [GS1]. Consider the adjoint operator $\bar{\partial}^{*}$ relative to this product and the Kodaira-Laplace operator

$$
\square_{q}:=\left(\bar{\partial}+\bar{\partial}^{*}\right)^{2}: \Gamma\left(\Lambda^{q} T^{*(0,1)} M \otimes \xi\right) \rightarrow \Gamma\left(\Lambda^{q} T^{*(0,1)} M \otimes \xi\right)
$$

Let g be a holomorphic isometry of M. Assume that the bundle and its hermitian metric are holomorphically invariant under the induced action of g. Let $\operatorname{Eig}_{\lambda}\left(\square_{q}\right)$ be the eigenspace of \square_{q} corresponding to the eigenvalue λ and g^{*} the of g induced action on $\Gamma\left(\Lambda^{q} T^{*(0,1)} M \otimes \xi\right)$.

Consider the ζ-function

$$
Z(g, s):=\sum_{\substack{q>O \\ \lambda \in \operatorname{Spec} \square_{q} \\ \lambda \neq 0}}(-1)^{q+1} q \lambda^{-s} \operatorname{Tr}^{\prime} g_{\mid \operatorname{Eig}_{\lambda}\left(\square_{q}\right)}
$$

for $s \gg 0$. The equivariant torsion of M relative to the action of g is then defined as an exponential of the derivative at zero $Z^{\prime}(g, 0)$ of the holomorphic continuation of $Z(g, \cdot)$,

$$
\tau(g):=e^{-\frac{1}{2} Z^{\prime}(g, 0)}
$$

The eigenvalues and eigenspaces for the Kodaira Laplacian for the trivial line bundle on $\mathbb{P}^{n} \mathbb{C}$ were determined explicitly by Ikeda and Taniguchi [IT]. If one regards $\mathbb{P}^{n} \mathbb{C}$ as $S U(n+1) / S(U(1) \times U(n))$, the eigenspaces
can be described by sums of irreducible representations of $S U(n+1)$. We are using their method and results in our proof; see also Malliavin and Malliavin [MM].

II) The Laplacian on $\mathcal{O}(k)$-bundles over $\mathbb{P}^{1} \mathbb{C}$

Let $\mathbb{P}^{1} \mathbb{C}$ be the one-dimensional complex projective space equipped with the usual Fubini-Study metric. That means, $\mathbb{P}^{1} \mathbb{C}$ is isometric to the 2-sphere with radius $1 / 2$. Take $G:=S U(2)$ and $K:=S(U(1) \times U(1))$ with the corresponding Lie algebras \mathfrak{g} and \mathfrak{k}. We equip G with the metric

$$
\begin{aligned}
\mathfrak{g}^{2} & \rightarrow \mathbb{R} \\
(X, Y) & \mapsto-2 \operatorname{tr} X Y,
\end{aligned}
$$

which is minus one half of the Killing form. Then we may represent $\mathbb{P}^{1} \mathbb{C}$ as the homogeneous space G / K with the induced metric.

Let Λ be the weight of \mathfrak{g} which acts on the Cartan subalgebras \mathfrak{k} by $\operatorname{diag}(i \varphi,-i \varphi) \mapsto \frac{\varphi}{2 \pi}$ and let

$$
\begin{aligned}
\rho_{k}^{K}: \mathfrak{k} & \rightarrow \mathbb{C} \\
\left(\begin{array}{cc}
i \varphi & 0 \\
0 & -i \varphi
\end{array}\right) & \mapsto e^{i k \varphi}
\end{aligned}
$$

be the of $k \Lambda, k \in \mathbb{Z}$, induced representation of K. This gives an action of K on the right of $G \times \mathbb{C}$ as follows:

$$
(g, x) \cdot h=\left(g h, \rho_{k}^{K}\left(h^{-1}\right) x\right)
$$

for $g \in G, x \in \mathbb{C}$ and $h \in K$. Then the holomorphic line bundle $\mathcal{O}(k)$ is the homogeneous vector bundle

$$
\mathcal{O}(k)=G \underset{\rho_{-k}^{K}}{\times} \mathbb{C}:=(G \times \mathbb{C}) / K
$$

It is well known that $\mathcal{O}(2) \cong T \mathbb{P}^{1} \mathbb{C} \cong T^{*(0,1)} \mathbb{P}^{1} \mathbb{C}$. By a theorem of Grothendieck [G], each holomorphic vector bundle E on $\mathbb{P}^{1} \mathbb{C}$ is a direct sum

$$
E=\mathcal{O}\left(k_{1}\right) \oplus \ldots \oplus \mathcal{O}\left(k_{n}\right)
$$

$k_{1}, \ldots, k_{n} \in \mathbb{Z}$, so it suffices to calculate the torsion for $\mathcal{O}(k)$. Obviously, $Z^{\prime}(\cdot, 0)$ behaves additively under direct sum of vector bundles.

We equip $\mathcal{O}(k)$ with the induced metric. If ∇ is the unique holomorphic hermitian connection on the bundle of forms with coefficients in $\mathcal{O}(k), \Lambda T^{*(0,1)} \mathbb{P}^{1} \mathbb{C} \otimes \mathcal{O}(k)$, and $\left(e_{1}, e_{2}\right)$ a real orthonormal frame in the real tangent bundle $T_{\mathbb{R}} \mathbb{P}^{1} \mathbb{C}$, we define the horizontal (or Bochner) Laplacian as

$$
\Delta:=\sum_{1}^{2}\left(\nabla_{e_{n}}\right)^{2}-\sum_{1}^{2} \nabla_{\nabla_{e_{n} e_{n}}}
$$

We know that the curvature tensor of $\mathcal{O}(1)$ is simply $-2 i$ times the Khler form of $\mathbb{P}^{1} \mathbb{C}$. By applying Licherowicz's formula (cf. Bismut [B1, Prop. 1.2]), we find that the Kodaira Laplacian acting on $T^{*(0,1)} \mathbb{P}^{1} \mathbb{C} \otimes \mathcal{O}(k)$ is given by

$$
\bar{\square}^{0,1}=-\frac{1}{2} \Delta+\frac{k}{2}+1 .
$$

To find a better expression for Δ, we consider the Casimir Operators of G and K. For a given compact Lie algebra with Killing form B and orthonormal basis $\left\{X_{1}, \ldots, X_{n}\right\}$ with respect to B, its Casimir operator is defined as

$$
\text { Cas }:=-\sum_{i} X_{i} \cdot X_{i} .
$$

Cas is independent of the choice of the basis. Let Cas_{G} be the Casimir operator of G, acting on $C^{\infty}(G)$ by derivation, and Cas_{K} the Casimir operator of K, acting on \mathbb{C} via the representation ρ_{-k-2}^{K}. Then it is easily verified (cf. for example [BGV, Prop. 5.6]) that

$$
2 \Delta=\operatorname{Cas}_{G}+\mathrm{Cas}_{K}
$$

on sections of $T^{*(0,1)} \mathbb{P}^{1} \mathbb{C} \otimes \mathcal{O}(k) \cong G \underset{\rho_{-k-2}^{K}}{\times} \mathbb{C}$. The factor 2 appears because we take half of the negative Killing form as metric on G. For $X \in \mathfrak{k}$ we have $\rho_{-k-2}^{K}(X)=-i(k+2)$, so

$$
\rho_{-k-2}^{K}\left(\operatorname{Cas}_{K}\right)=(k+2)^{2},
$$

hence

Lemma 4.

$$
\bar{\square}^{0,1}=-\frac{1}{4} \operatorname{Cas}_{G}-\frac{k}{2}\left(\frac{k}{2}+1\right) .
$$

III) Construction of the defining ζ-function

Let $\left(\rho_{\ell}^{G}, E_{\ell}^{G}\right)$ be the irreducible representation $G \rightarrow \operatorname{End}\left(E_{\ell}^{G}\right)$ with highest weight $\ell \Lambda, \ell \in \mathbb{N}$. Then we have $\rho_{\ell}^{G}\left(\operatorname{Cas}_{G}\right)=-\ell(\ell+2) \cdot \operatorname{Id}_{E_{\ell}^{G}}$.

To determine the eigenspaces of $\bar{\square}^{0,1}$, we use as Ikeda and Taniguchi the following Frobenius law of Bott [Bo]:

Proposition 5. For finite dimensional representations (ρ^{K}, E^{K}) and $\left(\rho^{G}, E^{G}\right)$ of K and G, we have the canonical isomorphism of vector spaces

$$
\operatorname{Hom}_{G}\left(E^{G}, \Gamma\left(G \underset{\rho^{K}}{\times} E^{K}\right)\right) \cong \operatorname{Hom}_{K}\left(E^{G}, E^{K}\right)
$$

Now we know that the characters χ_{ℓ}^{G} of ρ_{ℓ}^{G} and χ_{k}^{K} of ρ_{k}^{K} are given by

$$
\chi_{\ell}^{G}\left(\begin{array}{cc}
e^{i \varphi} & 0 \\
0 & e^{-i \varphi}
\end{array}\right)=\frac{\sin (\ell+1) \varphi}{\sin \varphi}
$$

(cf. Brcker, tom Dieck [BD, Ch. 5, p. 267]), and

$$
\chi_{k}^{K}\left(\begin{array}{cc}
e^{i \varphi} & 0 \\
0 & e^{-i \varphi}
\end{array}\right)=e^{i k \varphi},
$$

hence we find the decomposition

$$
\chi_{\ell}^{G}=\left\{\begin{array}{l}
\sum_{\substack{|n| \leq \ell \\
n \text { even }}} \chi_{n}^{K} \quad \text { when } \ell \text { even } \\
\sum_{\substack{|n| \leq \ell \\
n \text { odd }}} \chi_{n}^{K} \quad \text { when } \ell \text { odd } .
\end{array}\right.
$$

Now we can see by Proposition 5 that ($\rho_{\ell}^{G}, E_{\ell}^{G}$) occurs as irreducible subspace of $\Gamma\left(\underset{\rho_{n}^{K}}{\times \mathbb{C}}\right)$ iff $|n| \leq \ell$ and $n \equiv \ell(\bmod 2)$:

Lemma 6. $\quad \Gamma\left(T^{*(0,1)} \mathbb{P}^{1} \mathbb{C} \otimes \mathcal{O}(k)\right)$ contains the L^{2}-dense subspace

$$
\bigoplus_{\ell \geq 0} E_{|k+2|+2 \ell}^{G}
$$

The density of this subspace follows from the Peter-Weyl theorem (cf. [Bo]). By Lemma 4, the eigenvalues of $\square^{0,1}$ for $\mathcal{O}(k)$ are given by

$$
\left\{\begin{array}{lll}
\ell(\ell+k+1) \text { on } E_{k+2 \ell}^{G} \text { for } \ell \geq 1 & \text { when } k \geq-1 \\
\ell(\ell-k-1) \text { on } E_{-k-2+2 \ell}^{G} \text { for } \ell \geq 0 & \text { when } k<-1
\end{array}\right.
$$

So we finally obtain the

Lemma 7. Let $\left.g:=\left(\begin{array}{cc}e^{i \varphi} & 0 \\ 0 & e^{-i \varphi}\end{array}\right) \in G, \varphi \in\right] 0, \pi[$, be an element of the maximal torus K (which corresponds to the rotation of S^{2} by the angle $2 \varphi)$. Then the ζ-function $Z_{k}(g, \cdot)$ of the $\mathcal{O}(k)$-bundle on $\mathbb{P}^{1} \mathbb{C}$ is for $s>\frac{1}{2}$ given by

$$
\begin{aligned}
Z_{k}(g, s)= & \sum_{\ell \geq 0} \chi_{|k+2|+2 \ell}^{G} \cdot\left(\left.\bar{\square}^{0,1}\right|_{E_{|k+2|+2 \ell}^{G}}\right)^{-s} \\
= & \sum_{\ell \geq 1}^{E_{|k+2|+2 \ell} \not \subset \operatorname{ker} \bar{\square}^{0,1}} \frac{\sin (2 \ell+|k+1|) \varphi}{\sin \varphi} \cdot \ell^{-s}(\ell+|k+1|)^{-s} .
\end{aligned}
$$

In particular, $Z_{k}(g, s)=Z_{-k-2}(g, s)$. This is in fact an immediate consequence of the Poincar duality.

IV) The derivative at zero of the Lerch zeta function

Define for $0<\varphi<2 \pi$, Re $s>0$ the zeta function $\zeta^{\text {rot }}(\varphi, s)$ by

$$
\zeta^{\mathrm{rot}}(\varphi, s):=\sum_{\ell=1}^{\infty} \frac{\sin \ell \varphi}{\ell^{s}}
$$

$\zeta^{\text {rot }}$ continuous holomorphically to the whole complex plane. Let $\varphi=$ $2 \pi \frac{p}{q}, p, q \in \mathbb{N}, 0<p<q$ be a rational angle and $\zeta(\cdot, \cdot)$ the Hurwitz zeta function. We obtain

$$
\begin{aligned}
\zeta^{\mathrm{rot}}(\varphi, s) & =\sum_{j=1}^{q} \sum_{\ell=0}^{\infty} \frac{\sin (\ell q+j) \varphi}{(\ell q+j)^{s}}=\sum_{j=1}^{q} \frac{\sin j \varphi}{q^{s}} \sum_{\ell=0}^{\infty}\left(\ell+\frac{j}{q}\right)^{-s} \\
& =\sum_{j=1}^{q} \frac{\sin j \varphi}{q^{s}} \zeta\left(s, \frac{j}{q}\right) .
\end{aligned}
$$

By using the equations (see for example [WW, Chap. XIII])

$$
\zeta(0, x)=\frac{1}{2}-x \text { and } \left.\frac{\partial}{\partial s} \right\rvert\, s=0 \text {. } \zeta(s, x)=\log \frac{\Gamma(x)}{\sqrt{2 \pi}}
$$

we find

$$
\frac{\partial}{\partial s} \zeta^{\mathrm{rot}}(\varphi, 0)=\sum_{j=1}^{q} \sin j \varphi \cdot\left(\log \frac{\Gamma\left(\frac{j}{q}\right)}{\sqrt{2 \pi}}-\log q \cdot\left(\frac{1}{2}-\frac{j}{q}\right)\right)
$$

Because of $\sum_{j=1}^{q} \sin j \varphi=0$ and $\sum_{j=1}^{q} \frac{j}{q} \sin j \varphi=-\frac{1}{2} \cot \frac{\varphi}{2}$ this is equal to

$$
\frac{\partial}{\partial s} \zeta^{\mathrm{rot}}(\varphi, 0)=-\frac{1}{2} \log q \cdot \cot \frac{\varphi}{2}+\sum_{j=1}^{q} \sin j \varphi \cdot \log \Gamma\left(\frac{j}{q}\right)
$$

V) The derivative at zero for arbitrary angles

We are using Kummer's Fourier series for the logarithm of the Γ function
$\log \Gamma(x)=\frac{1}{2} \log 2 \pi+\sum_{n \geq 1}\left(\frac{\cos 2 \pi n x}{2 n}+\frac{C+\log 2 \pi n}{n \pi} \sin 2 \pi n x\right)(0<x<1)$.
With the orthogonal relations

$$
\begin{aligned}
& \sum_{j=1}^{q} \sin \frac{2 \pi j p}{q} \cos \frac{2 \pi j n}{q}=0 \\
& \sum_{j=1}^{q} \sin \frac{2 \pi j p}{q} \sin \frac{2 \pi j n}{q}=\frac{q}{2} \cdot\left(\delta_{p \equiv n(\bmod q)}-\delta_{p \equiv-n(\bmod q)}\right)
\end{aligned}
$$

and the Fourier series of the identity function

$$
x \log q=\frac{\log q}{2}-\sum_{n \geq 1} \frac{\log q}{n \pi} \sin 2 \pi n x(0<x<1),
$$

it follows that

$$
\begin{aligned}
\frac{\partial}{\partial s} \zeta^{\mathrm{rot}}(\varphi, 0) & =\frac{q}{2} \cdot\left[\frac{C+\log 2 \pi \frac{p}{q}}{p \pi}+\sum_{n \geq 1}\left(\frac{C+\log \left(2 \pi \frac{n q+p}{q}\right)}{(n q+p) \pi}-\frac{C+\log \left(2 \pi \frac{n q-p}{q}\right)}{(n q-p) \pi}\right)\right] \\
& =\frac{C+\log \varphi}{\varphi}+\sum_{n \geq 1}\left(\frac{C+\log (2 \pi n+\varphi)}{2 \pi n+\varphi}-\frac{C+\log (2 \pi n-\varphi)}{2 \pi n-\varphi}\right)
\end{aligned}
$$

We have the identities (see [WW] or Bismut and Soul [B2, Appendix])

$$
\begin{aligned}
& \sum_{n \geq 1}\left(\frac{1}{n+x}-\frac{1}{n-x}\right)=\pi \cot \pi x-\frac{1}{x}=-2 \sum_{\substack{\ell \geq 1 \\
\text { odd }}} \zeta(\ell+1) x^{\ell} \\
& \sum_{n \geq 1}\left(\frac{\log n}{n+x}-\frac{\log n}{n-x}\right)=2 x \sum_{n \geq 1} \frac{-\log n}{n^{2}} \sum_{\ell \geq 0}\left(\frac{x}{n}\right)^{2 \ell}=2 \sum_{\substack{\ell \geq 1 \\
\text { odd }}} \zeta^{\prime}(\ell+1) x^{\ell}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{n \geq 1}\left(\frac{\log \left(1+\frac{x}{n}\right)}{n+x}-\frac{\log \left(1-\frac{x}{n}\right)}{n-x}\right) & =\sum_{n \geq 1} \frac{2}{n} \sum_{\substack{\ell \geq 1 \\
\text { odd }}} \frac{x^{\ell}}{n} \sum_{j=1}^{\ell} \frac{1}{j} \\
& =2 \sum_{\substack{\ell \geq 1 \\
\text { odd }}} \zeta(\ell+1) \sum_{j=1}^{\ell} \frac{1}{j} \cdot x^{\ell}
\end{aligned}
$$

so we obtain

$$
\begin{aligned}
\frac{\partial}{\partial s} \zeta^{\mathrm{rot}}(\varphi, 0) & =\frac{C+\log \varphi}{\varphi}+\frac{1}{\pi} \sum_{\substack{\ell \geq 1 \\
\text { odd }}}\left(\frac{\zeta^{\prime}(\ell+1)}{\zeta(\ell+1)}+\sum_{j=1}^{\ell} \frac{1}{j}-C-\log 2 \pi\right) \cdot \zeta(\ell+1) \cdot\left(\frac{\varphi}{2 \pi}\right)^{\ell} \\
& =\frac{C+\log \varphi}{\varphi}-\sum_{\substack{\ell \geq 1 \\
\text { odd }}} \zeta^{\prime}(-\ell)(-1)^{\frac{\ell+1}{2}} \frac{\varphi^{\ell}}{\ell!}
\end{aligned}
$$

This gives the Proposition 1 by continuity.

VI) The torsion on $\mathbb{P}^{1} \mathbb{C}$

Recall now the zeta function Z_{k} of Lemma 7 with $\varphi \neq 0$. By a Taylor expansion of the denominator with respect to $\frac{|k+1|}{\ell}$, we find for $s \searrow 0$

$$
\begin{aligned}
\frac{\partial}{\partial s} Z_{k}(g, s) & =-\sum_{\ell \geq 1} \frac{\sin (2 \ell+|k+1|) \varphi}{\sin \varphi} \cdot\left(\frac{\log \ell}{\ell^{s}(\ell+|k+1|)^{s}}+\frac{\log (\ell+|k+1|)}{\ell^{s}(\ell+\mid k+1)^{s}}\right) \\
& =-\sum_{\ell \geq 1} \frac{\sin (2 \ell+|k+1|) \varphi}{\sin \varphi} \cdot \frac{\log \ell}{\ell^{2 s}} \cdot\left(1+\frac{|k+1|}{\ell}\right)^{-s} \\
& -\sum_{\ell>|k+1|} \frac{\sin (2 \ell-|k+1|) \varphi}{\sin \varphi} \cdot \frac{\log \ell}{\ell^{2 s}} \cdot\left(1-\frac{|k+1|}{\ell}\right)^{-s} \\
& =-\sum_{\ell \geq 1} \frac{2 \cos |k+1| \varphi \sin 2 \ell \varphi}{\sin \varphi} \cdot \frac{\log \ell}{\ell^{2 s}}+\sum_{\ell=1}^{|k+1|} \frac{\sin (2 \ell-|k+1|) \varphi}{\sin \varphi} \cdot \frac{\log \ell}{\ell^{2 s}}+\mathcal{O}(s) \\
& =\frac{2 \cos |k+1| \varphi}{\sin \varphi} \frac{\partial}{\partial s} \zeta^{\mathrm{rot}}(2 \varphi, 2 s)+\sum_{\ell=1}^{|k+1|} \frac{\sin (2 \ell-|k+1|) \varphi}{\sin \varphi} \cdot \frac{\log \ell}{\ell^{2 s}}+\mathcal{O}(s)
\end{aligned}
$$

hence for $s=0$

$$
\frac{\partial}{\partial s} Z_{k}(g, 0)=\frac{2 \cos |k+1| \varphi}{\sin \varphi} R^{\mathrm{rot}}(2 \varphi)+\sum_{\ell=1}^{|k+1|} \frac{\sin (2 \ell-|k+1|) \varphi}{\sin \varphi} \log \ell
$$

Remark that this computation breaks down for $\varphi=0$ because of the singularity of the Riemann ζ-function. The isomorphism g corresponds to a rotation of the sphere by an angle 2φ, so we obtain Theorem 2 .

VII) The zeta function on $\mathbb{P}^{n} \mathbb{C}$

Now we regard as in [IT] the complex projective space $\mathbb{P}^{n} \mathbb{C}$ as the homogeneous space $S U(n+1) / S(U(1) \times U(n))$. Let

$$
\mathfrak{h}:=\left\{\left.\left(\begin{array}{ccc}
i \varphi_{1} & & 0 \\
& \ddots & \\
& \ddots & \\
0 & & i \varphi_{n+1}
\end{array}\right) \right\rvert\, \sum_{1}^{n+1} \varphi_{j}=0\right\}
$$

be the canonical maximal Cartan subalgebra of the Lie algebra $\mathfrak{s u}(n+1)$.
Let $\Lambda_{j}, 1 \leq j \leq n$, be the fundamental weight

$$
\Lambda_{j}: \operatorname{diag}\left(i \varphi_{1}, \ldots, i \varphi_{n+1}\right) \mapsto \sum_{1}^{j} \frac{\varphi_{k}}{2 \pi}
$$

In the following, $\Lambda(k, 0, q)$ denotes the irreducible $S U(n+1)$-representation with highest weight given by $(k-q) \Lambda_{1}+\Lambda_{q}+k \Lambda_{n}$ for all $k \geq q, n \geq q \geq 0$. Ikeda and Taniguchi found that the spaces

$$
\begin{array}{cl}
\bigoplus_{k \geq 0} \Lambda(k, 0,0) & (q=0) \\
\bigoplus_{k \geq q} \Lambda(k, 0, q) \oplus \bigoplus_{k \geq q+1} \Lambda(k, 0, q+1) & (0<q<n) \\
\bigoplus_{k \geq n} \Lambda(k, 0, n) & (q=n)
\end{array}
$$

can be regarded as L^{2}-dense subspaces of $\Gamma\left(\Lambda^{q} T^{*(0,1)} \mathbb{P}^{n} \mathbb{C}\right)$, where the Laplacian acts on $\Lambda(k, 0, q)$ by multiplication with $k(k+n+1-q)$. We denote by $\chi(k, 0, q)$ the character to the representation $\Lambda(k, 0, q)$. Hence we find for our zeta function

$$
\begin{gathered}
Z(\cdot, s)=\sum_{q=1}^{n-1}(-1)^{q+1} q\left(\sum_{k \geq q} \frac{\chi(k, 0, q)}{k^{s}(k+n+1-q)^{s}}+\sum_{k \geq q+1} \frac{\chi(k, 0, q+1)}{k^{s}(k+n-q)^{s}}\right) \\
+(-1)^{n+1} n \sum_{k \geq n} \frac{\chi(k, 0, n)}{k^{s}(k+1)^{s}} \\
=\sum_{q=1}^{n}(-1)^{q+1} \sum_{k \geq q} \frac{\chi(k, 0, q)}{k^{s}(k+n+1-q)^{s}} .
\end{gathered}
$$

The "telescope" effect in the summation is not caused by accident, but by the natural splitting of each eigenspace $\operatorname{Eig}_{\lambda}(\square)$ into $\operatorname{Eig}_{\lambda}(\square) \cap \operatorname{ker} \bar{\partial}$ and $\operatorname{Eig}_{\lambda}(\square) \cap \operatorname{ker} \bar{\partial}^{*}$, which are isomorphic. The character χ_{Λ} of an irreducible $S U(n+1)$-module with highest weight $\Lambda=m_{1} \Lambda_{1}+m_{2}\left(\Lambda_{2}-\right.$ $\left.\Lambda_{1}\right)+\ldots+m_{n}\left(\Lambda_{n}-\Lambda_{n-1}\right), m_{1} \geq \ldots \geq m_{n} \geq m_{n+1}=0$, can classically be calculated by Weyl's character formula. One finds with $e_{j}:=e^{i \varphi_{j}}$

$$
\chi_{\Lambda}\left(\begin{array}{ccc}
i \varphi_{1} & & 0 \\
& \ddots & \\
& & \\
0 & & i \varphi_{n+1}
\end{array}\right)=\frac{\operatorname{det}\left(e_{j}^{m_{\ell}+n+1-\ell}\right)_{j, \ell=1}^{n+1}}{\operatorname{det}\left(e_{j}^{n+1-\ell}\right)_{j, \ell=1}^{n+1}} .
$$

In our case one gets after a rotation of the first q rows

$$
\chi(k, 0, q)=\begin{gathered}
\text { exceptional } \\
q \text {-th row }
\end{gathered}\left|\begin{array}{ccc}
e_{1}^{n} & \ldots & e_{n+1}^{n} \\
\vdots & & \vdots \\
e_{1}^{n+1-(q-1)} & & e_{n+1}^{n+1}(q-1) \\
e_{1}^{n+1-q+k} & & e_{n+1-q+k}^{n+1-1} \\
e_{1}^{n+1-(q+1)} & & e_{n 1+}^{n+1-(q+1)} \\
\vdots & & \vdots \\
e_{1} & & e_{n+1} \\
e_{1}^{-k} & \ldots & e_{n+1}^{-k}
\end{array}\right|:\left|\begin{array}{ccc}
e_{1}^{n} & \ldots & e_{n+1}^{n} \\
& & \\
\vdots & & \vdots \\
1 & \ldots & 1
\end{array}\right| \cdot(-1)^{q+1} .
$$

We see immediately

$$
\chi(k-(n+1-q), 0, q)=-\chi(-k, 0, q)
$$

and $\chi(k, 0, q)=0$ for $k \in\{-n, \ldots, q-1\} \backslash\{0, q-n-1\}$.

VIII) The torsion on $\mathbb{P}^{n} \mathbb{C}$

Remark that $\chi(k, 0, q)$ as a function in k can be regarded as a linear combination of exponentials $\exp i k\left(\varphi_{j}-\varphi_{\ell}\right)$ with $1 \leq j, \ell \leq n+1$. So the function

$$
\sum_{k \geq 1} \frac{\log k}{k^{2 s}} \chi(k, 0, q)
$$

is a linear combination of Lerch ζ-functions. Hence it follows, if all the φ_{j} are distinct, for $s \searrow 0$

$$
\begin{aligned}
Z^{\prime}(\cdot, s)= & \sum_{q=1}^{n}(-1)^{q+1}\left(\sum_{k \geq q} \frac{\chi(k, 0, q) \log k}{k^{s}(k+n+1-q)^{s}}-\sum_{k \geq n+1} \frac{\chi(-k, 0, q) \log k}{k^{s}(k-n-1+q)^{s}}\right) \\
= & \sum_{q=1}^{n}(-1)^{q+1}\left(\sum_{k \geq 1}(\chi(k, 0, q)-\chi(-k, 0, q)) \frac{\log k}{k^{2 s}}\right. \\
& \left.\quad+\frac{\log (n+1-q)}{(n+1-q)^{2 s}} \chi(q-n-1,0, q)\right)+\mathcal{O}(s) \\
= & \sum_{q=1}^{n}(-1)^{q+1} \sum_{k \geq 1}(\chi(k, 0, q)-\chi(-k, 0, q)) \frac{\log k}{k^{2 s}}-\log n!+\mathcal{O}(s),
\end{aligned}
$$

because of $\chi(q-n-1,0, q)=(-1)^{q}$. The Laplace expansion theorem for determinants shows

$$
\sum_{q=1}^{n}(-1)^{q+1} \chi(k, 0, q)=1-\sum_{j=1}^{n+1} e_{j}^{k}\left|\begin{array}{ccc}
e_{1}^{n} & \ldots & e_{n+1}^{n} \\
\vdots & & \vdots \\
e_{1} & \ldots & e_{n+1} \\
e_{1}^{-k} & \ldots & e_{n+1}^{-k}
\end{array}\right|:\left|\begin{array}{ccc}
e_{1}^{n} & \ldots & e_{n+1}^{n} \\
\vdots & & \vdots \\
1 & \ldots & 1
\end{array}\right| .
$$

Hence we obtain some Vandermonde determinants:

$$
\begin{aligned}
& \sum_{q}(-1)^{q+1}(\chi(k, 0, q)-\chi(-k, 0, q))= \\
& \quad-\sum_{\substack{j, \ell=1 \\
j \neq \ell}}^{n+1}\left(\left(\frac{e_{j}}{e_{\ell}}\right)^{k}-\left(\frac{e_{\ell}}{e_{j}}\right)^{k}\right)(-1)^{n+\ell}\left|\begin{array}{ccccc}
e_{1}^{n} & \ldots & e_{\ell}^{\widehat{n}} & \ldots & e_{n+1}^{n} \\
\vdots & & & & \vdots \\
e_{1} & \ldots & \widehat{e_{\ell}} & \ldots & e_{n+1}
\end{array}\right|:\left|\begin{array}{ccc}
e_{1}^{n} & \ldots & e_{n+1}^{n} \\
\vdots & & \vdots \\
1 & \ldots & 1
\end{array}\right| \\
& \quad=(-1)^{n} \sum_{j, \ell=1}^{n+1}\left(\left(\frac{e_{j}}{e_{\ell}}\right)^{k}-\left(\frac{e_{\ell}}{e_{j}}\right)^{k}\right) \prod_{\substack{k=1 \\
k \neq \ell}}^{n+1}\left(\frac{e_{\ell}}{e_{k}}-1\right)^{-1}
\end{aligned}
$$

(the \wedge indicates that the ℓ-th column is missing). By using

$$
\left(\frac{e_{j}}{e_{\ell}}\right)^{k}-\left(\frac{e_{\ell}}{e_{j}}\right)^{k}=2 i \sin k\left(\varphi_{j}-\varphi_{\ell}\right)
$$

and the definition of $R^{\mathrm{rot}}(\varphi)$, we find Theorem 3 .

IX) Remarks about the function $R^{\text {rot }}$

The function $R^{\text {rot }}$ has a rather simple definition and hence a lot of special properties. Here we only give a few of them.

Theorem 8. The following identities hold
(1) $R^{\mathrm{rot}}(\varphi)=-R^{\mathrm{rot}}(2 \pi-\varphi) \quad(0<\varphi<2 \pi)$,
(2) $2 R^{\mathrm{rot}}(2 \varphi)=R^{\mathrm{rot}}(\varphi)+R^{\mathrm{rot}}(\pi+\varphi)+\log 2 \cdot \cot \varphi \quad(0<\varphi<\pi)$,
(3) $3 R^{\mathrm{rot}}(3 \varphi)=R^{\mathrm{rot}}(\varphi)+R^{\mathrm{rot}}\left(\frac{2 \pi}{3}+\varphi\right)$

$$
-R^{\mathrm{rot}}\left(\frac{2 \pi}{3}-\varphi\right)+\frac{3}{2} \log 3 \cdot \cot \frac{3 \varphi}{2} \quad\left(0<\varphi<\frac{2 \pi}{3}\right)
$$

(4) $R^{\mathrm{rot}}(\pi+\varphi)=\int_{0}^{\infty} \log x \frac{\sinh \varphi x}{\sinh \pi x} d x \quad(-\pi<\varphi<\pi)$.

Proof: 1) is trivial by the definition of $R^{\text {rot }} .2$) follows from

$$
2^{1-s} \zeta^{\mathrm{rot}}(2 \varphi, s)=\zeta^{\mathrm{rot}}(\varphi, s)+\zeta^{\mathrm{rot}}(\pi+\varphi, s)
$$

We see by the formulas of \S IV that $\zeta^{\text {rot }}(\varphi, 0)=\frac{1}{2} \cot \frac{\varphi}{2}$. The result follows then by derivation. In the same way, one gets 3) from

$$
3^{1-s} \zeta^{\mathrm{rot}}(3 \varphi, s)=\zeta^{\mathrm{rot}}(\varphi, s)+\zeta^{\mathrm{rot}}\left(\frac{2 \pi}{3}+\varphi\right)-\zeta^{\mathrm{rot}}\left(\frac{2 \pi}{3}-\varphi\right)
$$

To see the integral formula 4) we are using the Fourier series

$$
-\frac{\pi}{2} \frac{\sinh \varphi x}{\sinh \pi x}=\sum_{1}^{\infty} \frac{(-1)^{\ell} \ell}{x^{2}+\ell^{2}} \sin \ell \varphi \quad(|\varphi|<\pi)
$$

and the definite integral

$$
\int_{0}^{\infty} \frac{x^{-s} d x}{x^{2}+\ell^{2}}=\frac{\pi}{2 \ell^{1+s} \cos \frac{s \pi}{2}} \quad(|s|<1)
$$

We have for $|s|<1$.

$$
\begin{aligned}
\zeta^{\mathrm{rot}}(\pi+\varphi, s) & =\sum_{1}^{\infty} \frac{(-1)^{\ell} \sin \ell \varphi}{\ell^{s}}=\frac{2}{\pi} \cos \frac{\pi s}{2} \sum_{1}^{\infty} \int_{0}^{\infty} \frac{(-1)^{\ell} \ell x^{-s} d x}{x^{2}+\ell^{2}} \sin \ell \varphi \\
& =-\cos \frac{\pi s}{2} \int_{0}^{\infty} x^{-s} \frac{\sinh \varphi x}{\sinh \pi x} d x
\end{aligned}
$$

The desired result follows.
Acknowledgement: I would like to thank Prof. J.-M. Bismut for sharing the idea of this problem. Also I would like to thank Prof. C. Deninger for helpful comments. This article is a part of the author's thesis.

References

[B1] J.-M. Bismut: Demailly's asymptotic Morse inequalities: a heat equation proof, J. Funct. Anal. 72(1987), 263-278.
[B2] J.-M. Bismut: Koszul complexes, harmonic oscillators and the Todd class, with an appendix by J.-M. Bismut and C. Soul, J.A.M.S. 3 (1990), 159-256.
[B3] J.-M. Bismut: Equivariant short exact sequences of vector bundles and their analytic torsion forms, to appear.
[BD] T. Brcker, T. tom Dieck: Representations of Compact Lie Groups, Graduate Texts Math. 98 (1985), Springer-Verlag.
[BGS] J.-M. Bismut, H. Gillet, C. Soul: Analytic torsion and holomorphic determinant bundles I, II, III, Comm. in Math. Physics 115 (1988), 49-78, 79-126, 301-351.
[BGV] N. Berline, E. Getzler, M. Vergne: Heat Kernels and Dirac Operators, Grundlehren math. Wiss. 298 (1992), Springer-Verlag.
[BL] J.-M. Bismut, G. Lebeau: Complex immersions and Quillen metrics, to appear in Publ. Math. IHES.
[Bo] R. Bott: The index theorem for homogeneous differential operators, Differential and Combinatorial Topology, Princeton University Press 1965, 167-187.
[F] G. Faltings: Lectures on the arithmetic Riemann-Roch theorem, Princeton University Press 1992.
[G] A Grothendieck: Sur la classification des fibrs holomorphes sur la sphre de Riemann, Amer. J. Math. 79 (1956), 121-138.
[GS1] H. Gillet, C. Soul: Analytic torsion and the arithmetic Todd genus, with an appendix by D. Zagier, Topology 30 (1991), 21-54.
[GS2] H. Gillet, C. Soul: An arithmetic Riemann-Roch theorem, Preprint IHES/M/91/50.
[IT] A. Ikeda, Y. Taniguchi: Spectra and Eigenforms of the Laplacian on S^{n} and $\mathbb{P}^{n} \mathbb{C}$, Osaka J. Math. 15 (1978), 515-546.
[MM] M.-P. Malliavin, P. Malliavin: Diagonalisation du systme de de RhamHodge au-dessus d'un espace riemannien homogne, Lect. Notes Math. 466 (1975), 135-146, Springer-Verlag.
[R] D.B. Ray: Reidemeister torsion and the Laplacian on lens spaces, Adv. in Math. 4 (1970), 109-126.
[RS] D.B. Ray, I.M. Singer: Analytic torsion for complex manifolds, Ann. Math. 98 (1973), 154-177.
[S] C. Soul, D. Abramovich, J.-F. Burnol, J. Kramer: Lectures on Arakelov Geometry, Cambridge studies in advanced math. 33, Cambridge University Press 1992.
[WW] E. T. Whittaker, G. N. Watson: Modern Analysis, 4th edition, Cambridge University Press 1927.

