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Introduction

The analytic torsion was constructed by Ray and Singer [RS] as an

analytic analogue to the Reidemeister torsion. Bismut, Gillet and Soulé

[BGS] proved as an extension of a result of Quillen important properties

of the torsion in connection with vector bundles on fibrations:

Let π : M → B be a proper holomorphic map of compact complex

manifolds and let ξ be a hermitian holomorphic vector bundle on M . Let

Rπ∗ξ be the right-derived direct image of ξ . Then the analytic torsion

of the fibres of π induces a metric on the Knudsen-Mumford determinant

λKM := (detRπ∗ξ)
−1 which is a holomorphic line bundle on B . The

curvature of this Quillen metric as well as its behaviour under changes of

the metrics on M and ξ was expressed in [BGS] explicitly by means of

secondary Bott-Chern classes. In particular this gives a refinement of the

Riemann-Roch theorem for families.

On the other hand let i : Y ↪→ X be an embedding of compact

complex manifolds. Let η be a hermitian holomorphic vector bundle on

Y and let ξ be a resolution of η by a complex of vector bundles on

X . Bismut and Lebeau [BL] calculated the relation between the Quillen

metrics of η and ξ . With the help of this result, Gillet and Soulé [GS2]

were able to prove a Riemann-Roch theorem in Arakelov geometry for the

first Chern class of the direct image (see [S] for the theorem and some

background information). This theorem was later proved by Faltings [F]

for higher degrees.

The proof of the Riemann-Roch theorem uses a calculation of Gillet,

Soulé and Zagier [GS1] of the torsion for the trivial line bundle on the

complex projective spaces PnC . This led Gillet and Soulé to conjecture

this theorem, which was the initial motivation for [BL]. In particular this

rather difficult calculation gives in particular the Gillet-Soulé R -genus,

which appears explicitly in the theorem. This is the additive genus asso-

ciated to the series
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R(x) =
∑

`≥1
odd

(
2ζ ′(−`) + ζ(−`)

∑̀

j=1

1

j

)x`
`!
,

where ζ is the Riemann zeta function. To obtain this series, one has to

caculate the torsion of PnC for every n .

Let us consider now a holomorphic isometry g of a hermitian vector

bundle E over a compact Kähler manifold M . One can define in a na-

tural way an equivariant version of the torsion. This equivariant torsion

appeared already in Ray’s [R] calculation of the real analytic torsion for

lens spaces.

In this paper we present the calculation of the equivariant analytic

torsion for all holomorphic bundles on P1C and for the trivial line bundle

on PnC , where the projective spaces are equipped with the Fubini-Study

metric. We consider only rotations with isolated fixpoints. For a rotation

by angles ∈ π . Q , we obtain a closed expression involving the gamma

function. For arbitrary angles a function R rot , which is similar to the

Gillet-Soulé R -function, appears as an infinite series. This is relatively

easy to calculate because the defining ζ -function Z has no singularities

in contrast to the situation in [GS1].

The similarity of R rot and R might help to find an equivariant

Riemann-Roch formula in Arakelov geometry, where the two functions

correspond to the extremal cases: isolated fixed points or identity map. In

fact, Bismut [B3] found further evidence for such a formula: He construc-

ted analytic torsion forms associated to a short exact sequence of hermitian

holomorphic vector bundles equipped with a holomorphic unitary endo-

morphism g . In his result, a series R(ϕ, x) appears with the properties

R(0, x) = R(x), R(ϕ, 0) = R rot(ϕ) .

As the appearance of the R -genus in [B2] gave evidence for the exis-

tence of the Riemann-Roch theorem, he now conjectures an equivariant

Riemann-Roch formula.

The function R rot can be obtained as follows: Let for 0 < ϕ < 2π

and s > 0 , ζ rot(ϕ, s) be the Dirichlet series
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ζ rot(ϕ, s) :=
∑

k≥1

sin kϕ

ks
.

Then ζ rot can be seen as the imaginary part of a Lerch zeta function.

We set R rot(ϕ) := ∂
∂s
ζ rot(ϕ, 0) . The following is obtained by classical

results:

Proposition 1. R rot is equal to

R rot(ϕ) =
C + log ϕ

ϕ
−
∑

`≥1
` odd

ζ ′(−`)(−1)
`+1

2
ϕ`

`!
.

If ϕ = 2π p
q
with p, q ∈ N , 0 < p < q , then

R rot(ϕ) = − 12 log q . cot
ϕ

2
+

q−1∑

`=1

log Γ
( j
q

)
. sin jϕ .

In the last chapter we give some other functional properties of R rot .

Let E := O(k1) ⊕ . . . ⊕ O(kn) be a holomorphic vector bundle on P1C ,

equipped with the standard metric (i.e. the curvature of O(1) is the

Fubini-Study Kähler form). By a theorem of Grothendieck, each holo-

morphic vector bundle on P1C is of this form. Then we find

Theorem 2. The equivariant analytic torsion τ(E,ϕ) with respect to

a rotation by an angle ϕ ∈]0, 2π[ is given by

−2 log τ(E,ϕ) =
2R rot(ϕ)

sin ϕ
2

.
n∑

j=1

cos(kj+1)
ϕ

2
+

n∑

j=1

|kj+1|∑

m=1

sin(2m− |kj + 1|)ϕ2
sin ϕ

2

log j .

We see in particular that the equivariant torsion τ gives already for

the trivial line bundle O on P1C the function

log τ(O, ϕ) = cot
ϕ

2
.
(
i
∑

`≥1
odd

ζ ′(−`) (iϕ)`

`!
− C + log ϕ

ϕ

)
.

Let now Φ :=

( iϕ1 0

. . .
0 iϕn+1

)
be an element of the (canonical) maximal

Cartan subalgebras of su(n+1) , hence an infinitesimal rotation on PnC ∼=
SU(n + 1)

/
S(U(1) × U(n)) . Assume that all the ϕj are distinct. Then

we have
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Theorem 3. The equivariant torsion τ(O, eΦ) for the trivial line

bundle O on PnC is given by

−2 log τ(O, eΦ) = (−1)n
n+1∑

j,k=1
j 6=k

2iR rot(ϕj−ϕk)
n+1∏

`=1
6̀=k

(ei(ϕk−ϕ`)−1)−1− log n! .

I) Definition of the torsion

Let M be a Kähler manifold of complex dimension n with holo-

morphic tangent bundle TM and Kähler form ωM , ξ a hermitian vec-

tor bundle on M and ∂ the Dolbeault operator acting on sections of

ΛqT ∗(0,1)M ⊗ ξ . We define a hermitian product on the vector space of

smooth sections of ΛqT ∗(0,1)M ⊗ ξ by

(η, η′) :=

∫

M

(η(x), η′(x))
ωn

(2π)nn!

as in [GS1]. Consider the adjoint operator ∂
∗

relative to this product

and the Kodaira-Laplace operator

¤q := (∂ + ∂
∗
)2 : Γ(ΛqT ∗(0,1)M ⊗ ξ)→ Γ(ΛqT ∗(0,1)M ⊗ ξ) .

Let g be a holomorphic isometry of M . Assume that the bundle and its

hermitian metric are holomorphically invariant under the induced action of

g . Let Eigλ(¤q) be the eigenspace of ¤q corresponding to the eigenvalue

λ and g∗ the of g induced action on Γ(ΛqT ∗(0,1)M ⊗ ξ) .

Consider the ζ -function

Z(g, s) :=
∑

q>O
λ∈Specutq

λ6=0

(−1)q+1qλ−sTrg∗| Eigλ(¤q)

for s À 0 . The equivariant torsion of M relative to the action of g is

then defined as an exponential of the derivative at zero Z ′(g, 0) of the

holomorphic continuation of Z(g, .) ,

τ(g) := e−
1
2Z

′(g,0) .

The eigenvalues and eigenspaces for the Kodaira Laplacian for the trivial

line bundle on PnC were determined explicitly by Ikeda and Taniguchi

[IT]. If one regards PnC as SU(n+ 1)/S(U(1)× U(n)) , the eigenspaces
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can be described by sums of irreducible representations of SU(n+1) . We

are using their method and results in our proof; see also Malliavin and

Malliavin [MM].

II) The Laplacian on O(k) -bundles over P1C

Let P1C be the one-dimensional complex projective space equipped

with the usual Fubini-Study metric. That means, P1C is isometric to the

2-sphere with radius 1/2 . Take G := SU(2) and K := S(U(1) × U(1))

with the corresponding Lie algebras g and k . We equip G with the metric

g2 → R

(X,Y ) 7→ −2trXY ,

which is minus one half of the Killing form. Then we may represent P1C

as the homogeneous space G/K with the induced metric.

Let Λ be the weight of g which acts on the Cartan subalgebras k by

diag(iϕ,−iϕ) 7→ ϕ
2π and let

ρKk : k→ C
(
iϕ 0
0 −iϕ

)
7→ eikϕ

be the of kΛ, k ∈ Z , induced representation of K . This gives an action

of K on the right of G× C as follows:

(g, x) . h = (gh, ρKk (h−1)x)

for g ∈ G, x ∈ C and h ∈ K . Then the holomorphic line bundle O(k) is

the homogeneous vector bundle

O(k) = G ×
ρK
−k

C := (G× C)/K .

It is well known that O(2) ∼= TP1C ∼= T ∗(0,1)P1C . By a theorem of

Grothendieck [G], each holomorphic vector bundle E on P1C is a direct

sum

E = O(k1)⊕ . . . ⊕O(kn) ,

k1, . . . , kn ∈ Z , so it suffices to calculate the torsion for O(k) . Obviously,

Z ′(., 0) behaves additively under direct sum of vector bundles.

7



We equip O(k) with the induced metric. If ∇ is the unique ho-

lomorphic hermitian connection on the bundle of forms with coefficients

in O(k) , ΛT ∗(0,1)P1C ⊗ O(k) , and (e1, e2) a real orthonormal frame in

the real tangent bundle TRP1C , we define the horizontal (or Bochner)

Laplacian as

∆ :=
2∑

1

(∇en)2 −
2∑

1

∇∇enen .

We know that the curvature tensor of O(1) is simply −2i times the Kähler

form of P1C . By applying Licherowicz’s formula (cf. Bismut [B1, Prop.

1.2]), we find that the Kodaira Laplacian acting on T ∗(0,1)P1C⊗O(k) is

given by

¤
0,1 = − 12∆ +

k

2
+ 1 .

To find a better expression for ∆, we consider the Casimir Operators of

G and K . For a given compact Lie algebra with Killing form B and

orthonormal basis {X1, . . . , Xn} with respect to B , its Casimir operator

is defined as

Cas := −
∑

i

Xi .Xi .

Cas is independent of the choice of the basis. Let CasG be the Casimir

operator of G , acting on C∞(G) by derivation, and CasK the Casimir

operator of K , acting on C via the representation ρK−k−2 . Then it is

easily verified (cf. for example [BGV , Prop. 5.6]) that

2∆ = CasG + CasK

on sections of T ∗(0,1)P1C ⊗ O(k) ∼= G ×
ρK
−k−2

C . The factor 2 appears

because we take half of the negative Killing form as metric on G . For

X ∈ k we have ρK−k−2(X) = −i(k + 2) , so

ρK−k−2(CasK) = (k + 2)2 ,

hence

Lemma 4.

¤
0,1 = − 14 CasG −

k

2
(
k

2
+ 1) .
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III) Construction of the defining ζ -function

Let (ρG` , E
G
` ) be the irreducible representation G→ End(EG

` ) with

highest weight `Λ, ` ∈ N . Then we have ρG` (CasG) = −`(`+ 2) . IdEG
`

.

To determine the eigenspaces of ¤0,1 , we use as Ikeda and Taniguchi

the following Frobenius law of Bott [Bo]:

Proposition 5. For finite dimensional representations (ρK , EK) and

(ρG, EG) of K and G , we have the canonical isomorphism of vector

spaces

HomG(EG,Γ(G ×
ρK

EK)) ∼= HomK(EG, EK) .

Now we know that the characters χG` of ρG` and χKk of ρKk are given

by

χG`

(
eiϕ 0
0 e−iϕ

)
=

sin(`+ 1)ϕ

sinϕ

(cf. Bröcker, tom Dieck [BD, Ch. 5, p. 267]), and

χKk

(
eiϕ 0
0 e−iϕ

)
= eikϕ ,

hence we find the decomposition

χG` =





∑

|n|≤`
n even

χKn when ` even

∑

|n|≤`
n odd

χKn when ` odd .

Now we can see by Proposition 5 that (ρG` , E
G
` ) occurs as irreducible

subspace of Γ(G ×
ρKn

C) iff |n| ≤ ` and n ≡ `(mod 2) :

Lemma 6. Γ(T ∗(0,1)P1C⊗O(k)) contains the L2 -dense subspace

⊕

`≥0

EG
|k+2|+2` .

The density of this subspace follows from the Peter-Weyl theorem (cf.

[Bo]). By Lemma 4, the eigenvalues of ¤0,1 for O(k) are given by
{
`(`+ k + 1) on EG

k+2` for ` ≥ 1 when k ≥ −1

`(`− k − 1) on EG
−k−2+2` for ` ≥ 0 when k < −1 .

So we finally obtain the
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Lemma 7. Let g :=
(

eiϕ 0

0 e−iϕ

)
∈ G , ϕ ∈]0, π[ , be an element of the

maximal torus K (which corresponds to the rotation of S2 by the angle

2ϕ). Then the ζ -function Zk(g, .) of the O(k) -bundle on P1C is for

s > 1
2 given by

Zk(g, s) =
∑

`≥0

EG|k+2|+2` 6⊂ker¤
0,1

χG|k+2|+2` .
(
¤
0,1
∣∣
EG
|k+2|+2`

)−s

=
∑

`≥1

sin(2`+ |k + 1|)ϕ
sinϕ

. `−s(`+ |k + 1|)−s .

In particular, Zk(g, s) = Z−k−2(g, s) . This is in fact an immediate

consequence of the Poincaré duality.

IV) The derivative at zero of the Lerch zeta function

Define for 0 < ϕ < 2π, Re s > 0 the zeta function ζ rot(ϕ, s) by

ζ rot(ϕ, s) :=
∞∑

`=1

sin `ϕ

`s
.

ζ rot continuous holomorphically to the whole complex plane. Let ϕ =

2π p
q
, p, q ∈ N , 0 < p < q be a rational angle and ζ(., .) the Hurwitz zeta

function. We obtain

ζ rot(ϕ, s) =

q∑

j=1

∞∑

`=0

sin(`q + j)ϕ

(`q + j)s
=

q∑

j=1

sin jϕ

qs

∞∑

`=0

(
`+

j

q

)−s

=

q∑

j=1

sin jϕ

qs
ζ(s,

j

q
) .

By using the equations (see for example [WW, Chap. XIII])

ζ(0, x) = 1
2 − x and

∂

∂s | s=0
ζ(s, x) = log

Γ(x)√
2π

we find

∂

∂s
ζ rot(ϕ, 0) =

q∑

j=1

sin jϕ .
(

log
Γ( j

q
)

√
2π
− log q .

(
1
2 −

j

q

))
.

Because of

q∑

j=1

sin jϕ = 0 and

q∑

j=1

j

q
sin jϕ = − 12 cot

ϕ

2
this is equal to

∂

∂s
ζ rot(ϕ, 0) = − 12 log q . cot

ϕ

2
+

q∑

j=1

sin jϕ . log Γ(
j

q
) .
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V) The derivative at zero for arbitrary angles

We are using Kummer’s Fourier series for the logarithm of the Γ-

function

log Γ(x) = 1
2 log 2π+

∑

n≥1

(cos 2πnx

2n
+
C + log 2πn

nπ
sin 2πnx

)
(0 < x < 1) .

With the orthogonal relations
q∑

j=1

sin
2πjp

q
cos

2πjn

q
= 0 ,

q∑

j=1

sin
2πjp

q
sin

2πjn

q
=
q

2
.
(
δp≡n(mod q) − δp≡−n(mod q)

)

and the Fourier series of the identity function

x log q =
log q

2
−
∑

n≥1

log q

nπ
sin 2πnx (0 < x < 1) ,

it follows that

∂

∂s
ζ rot(ϕ, 0) =

q

2
.

[
C + log 2π p

q

pπ
+
∑

n≥1

(
C + log (2π nq+p

q
)

(nq + p)π
−
C + log (2π nq−p

q
)

(nq − p)π

)]

=
C + log ϕ

ϕ
+
∑

n≥1

(
C + log(2πn+ ϕ)

2πn+ ϕ
− C + log(2πn− ϕ)

2πn− ϕ

)
.

We have the identities (see [WW] or Bismut and Soulé [B2, Appendix])
∑

n≥1

( 1

n+ x
− 1

n− x
)

= π cotπx− 1

x
= −2

∑

`≥1
odd

ζ(`+ 1)x` ,

∑

n≥1

( log n

n+ x
− log n

n− x
)

= 2x
∑

n≥1

− log n

n2

∑

`≥0

(x
n

)2`
= 2

∑

`≥1
odd

ζ ′(`+ 1)x`

and
∑

n≥1

( log(1 + x
n
)

n+ x
− log(1− x

n
)

n− x
)

=
∑

n≥1

2

n

∑

`≥1
odd

x

n

` ∑̀

j=1

1

j

= 2
∑

`≥1
odd

ζ(`+ 1)
∑̀

j=1

1

j
. x` ,

so we obtain

∂

∂s
ζ rot(ϕ, 0) =

C + log ϕ

ϕ
+

1

π

∑

`≥1
odd

(ζ ′(`+ 1)

ζ(`+ 1)
+
∑̀

j=1

1

j
− C − log 2π

)
. ζ(`+ 1) .

( ϕ
2π

)`

=
C + log ϕ

ϕ
−
∑

`≥1
odd

ζ ′(−`)(−1)
`+1

2
ϕ`

`!
.
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This gives the Proposition 1 by continuity.

VI) The torsion on P1C

Recall now the zeta function Zk of Lemma 7 with ϕ 6=0. By a Taylor

expansion of the denominator with respect to |k+1|
`

, we find for s↘ 0

∂

∂s
Zk(g, s) = −

∑

`≥1

sin(2`+ |k + 1|)ϕ
sinϕ

.
( log `

`s(`+ |k + 1|)s +
log(`+ |k + 1|)
`s(`+ |k + 1|)s

)

= −
∑

`≥1

sin(2`+ |k + 1|)ϕ
sinϕ

.
log `

`2s
.
(
1 +
|k + 1|
`

)−s

−
∑

`>|k+1|

sin(2`− |k + 1|)ϕ
sinϕ

.
log `

`2s
.
(
1− |k + 1|

`

)−s

= −
∑

`≥1

2 cos |k + 1|ϕ sin 2`ϕ

sinϕ
.

log `

`2s
+

|k+1|∑

`=1

sin(2`− |k + 1|)ϕ
sinϕ

.
log `

`2s
+O(s)

=
2 cos |k + 1|ϕ

sinϕ

∂

∂s
ζ rot(2ϕ, 2s) +

|k+1|∑

`=1

sin(2`− |k + 1|)ϕ
sinϕ

.
log `

`2s
+O(s) ,

hence for s = 0

∂

∂s
Zk(g, 0) =

2 cos |k + 1|ϕ
sinϕ

R rot(2ϕ) +

|k+1|∑

`=1

sin(2`− |k + 1|)ϕ
sinϕ

log ` .

Remark that this computation breaks down for ϕ = 0 because of the

singularity of the Riemann ζ -function. The isomorphism g corresponds

to a rotation of the sphere by an angle 2ϕ , so we obtain Theorem 2.

VII) The zeta function on PnC

Now we regard as in [IT] the complex projective space PnC as the

homogeneous space SU(n+ 1)/S(U(1)× U(n)) . Let

h :=

{( iϕ1 0

. . .
0 iϕn+1

)∣∣∣∣∣

n+1∑

1

ϕj = 0

}

be the canonical maximal Cartan subalgebra of the Lie algebra su(n+1) .

Let Λj , 1 ≤ j ≤ n , be the fundamental weight

Λj : diag(iϕ1, . . . , iϕn+1) 7→
j∑

1

ϕk
2π

.

12



In the following, Λ(k, 0, q) denotes the irreducible SU(n+1) -representation

with highest weight given by (k−q)Λ1+Λq+kΛn for all k ≥ q , n ≥ q ≥ 0 .

Ikeda and Taniguchi found that the spaces
⊕

k≥0

Λ(k, 0, 0) (q = 0)

⊕

k≥q

Λ(k, 0, q)⊕
⊕

k≥q+1

Λ(k, 0, q + 1) (0 < q < n)

⊕

k≥n

Λ(k, 0, n) (q = n)

can be regarded as L2 -dense subspaces of Γ(ΛqT ∗(0,1)PnC) , where the

Laplacian acts on Λ(k, 0, q) by multiplication with k(k + n+ 1− q) . We

denote by χ(k, 0, q) the character to the representation Λ(k, 0, q) . Hence

we find for our zeta function

Z(., s) =

n−1∑

q=1

(−1)q+1q

(∑

k≥q

χ(k, 0, q)

ks(k + n+ 1− q)s +
∑

k≥q+1

χ(k, 0, q + 1)

ks(k + n− q)s
)

+(−1)n+1n
∑

k≥n

χ(k, 0, n)

ks(k + 1)s

=
n∑

q=1

(−1)q+1
∑

k≥q

χ(k, 0, q)

ks(k + n+ 1− q)s .

The “telescope” effect in the summation is not caused by accident, but

by the natural splitting of each eigenspace Eigλ(¤) into Eigλ(¤)∩ ker ∂

and Eigλ(¤) ∩ ker ∂
∗
, which are isomorphic. The character χΛ of an

irreducible SU(n+ 1)-module with highest weight Λ = m1Λ1 +m2(Λ2 −
Λ1) + . . . +mn(Λn−Λn−1) , m1 ≥ . . . ≥ mn ≥ mn+1 = 0, can classically

be calculated by Weyl’s character formula. One finds with ej := eiϕj

χΛ

( iϕ1 0

. . .
0 iϕn+1

)
=

det(em`+n+1−`
j )n+1j,`=1

det(en+1−`j )n+1j,`=1

.

In our case one gets after a rotation of the first q rows

χ(k, 0, q) =
exceptional →
q -th row

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

en1 . . . enn+1
...

...
e
n+1−(q−1)
1 e

n+1−(q−1)
n+1

en+1−q+k1 en+1−q+kn+1

e
n+1−(q+1)
1 e

n+1−(q+1)
n1+

...
...

e1 en+1
e−k1 . . . e−kn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

en1 . . . enn+1

...
...

1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.(−1)q+1 .
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We see immediately

χ(k − (n+ 1− q), 0, q) = −χ(−k, 0, q)

and χ(k, 0, q) = 0 for k ∈ {−n, . . . , q − 1} \ {0, q − n− 1} .

VIII) The torsion on PnC

Remark that χ(k, 0, q) as a function in k can be regarded as a linear

combination of exponentials exp ik(ϕj − ϕ`) with 1 ≤ j, ` ≤ n + 1. So

the function

∑

k≥1

log k

k2s
χ(k, 0, q)

is a linear combination of Lerch ζ -functions. Hence it follows, if all

the ϕj are distinct, for s↘ 0

Z ′(., s) =

n∑

q=1

(−1)q+1

(
∑

k≥q

χ(k, 0, q) logk

ks(k + n+ 1− q)s −
∑

k≥n+1

χ(−k, 0, q) log k

ks(k − n− 1 + q)s

)

=
n∑

q=1

(−1)q+1

(
∑

k≥1

(
χ(k, 0, q)− χ(−k, 0, q)

) log k

k2s

+
log(n+ 1− q)
(n+ 1− q)2s χ(q − n− 1, 0, q)

)
+O(s)

=
n∑

q=1

(−1)q+1
∑

k≥1

(
χ(k, 0, q)− χ(−k, 0, q)

) log k

k2s
− log n! +O(s) ,

because of χ(q−n− 1, 0, q) = (−1)q . The Laplace expansion theorem for

determinants shows

n∑

q=1

(−1)q+1χ(k, 0, q)= 1−
n+1∑

j=1

ekj

∣∣∣∣∣∣∣∣∣

en1 . . . enn+1
...

...
e1 . . . en+1
e−k1 . . . e−kn+1

∣∣∣∣∣∣∣∣∣
:

∣∣∣∣∣∣∣

en1 . . . enn+1
...

...
1 . . . 1

∣∣∣∣∣∣∣
.

Hence we obtain some Vandermonde determinants:
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∑

q

(−1)q+1
(
χ(k, 0, q)− χ(−k, 0, q)

)
=

−
n+1∑

j,`=1
j 6=`

((ej
e`

)k
−
(e`
ej

)k
)

(−1)n+`

∣∣∣∣∣∣∣

en1 . . . ên` . . . enn+1
...

...
e1 . . . ê` . . . en+1

∣∣∣∣∣∣∣
:

∣∣∣∣∣∣∣

en1 . . . enn+1
...

...
1 . . . 1

∣∣∣∣∣∣∣

= (−1)n
n+1∑

j,`=1

((ej
e`

)k
−
(e`
ej

)k
)

n+1∏

k=1
k 6=`

( e`
ek
− 1
)−1

(the ̂ indicates that the ` -th column is missing). By using

(ej
e`

)k
−
(e`
ej

)k
= 2i sin k(ϕj − ϕ`)

and the definition of R rot(ϕ) , we find Theorem 3.

IX) Remarks about the function R rot

The function R rot has a rather simple definition and hence a lot of

special properties. Here we only give a few of them.

Theorem 8. The following identities hold

R rot(ϕ) = −R rot(2π − ϕ) (0 < ϕ < 2π ) ,(1)

2R rot(2ϕ) = R rot(ϕ) +R rot(π + ϕ) + log 2 . cot ϕ (0 < ϕ < π ) ,(2)

3R rot(3ϕ) = R rot(ϕ) +R rot
(2π

3
+ ϕ

)
(3)

−R rot
(2π

3
− ϕ

)
+

3

2
log 3 . cot

3ϕ

2
(0 < ϕ <

2π

3
) ,

R rot(π + ϕ) =

∫ ∞

0

log x
sinh ϕx

sinh πx
dx (−π < ϕ < π ) .(4)

Proof: 1) is trivial by the definition of R rot . 2) follows from

21−sζ rot(2ϕ, s) = ζ rot(ϕ, s) + ζ rot(π + ϕ, s) .

We see by the formulas of § IV that ζ rot(ϕ, 0) = 1
2 cot ϕ

2 . The result

follows then by derivation. In the same way, one gets 3) from

31−sζ rot(3ϕ, s) = ζ rot(ϕ, s) + ζ rot
(2π

3
+ ϕ

)
− ζ rot

(2π

3
− ϕ

)
.

To see the integral formula 4) we are using the Fourier series

−π
2

sinh ϕx

sinh πx
=

∞∑

1

(−1)``

x2 + `2
sin `ϕ (|ϕ| < π)

15



and the definite integral
∫ ∞

0

x−sdx

x2 + `2
=

π

2`1+s cos sπ
2

(|s| < 1) .

We have for |s| < 1 .

ζ rot(π + ϕ, s) =

∞∑

1

(−1)` sin `ϕ

`s
=

2

π
cos

πs

2

∞∑

1

∫ ∞

0

(−1)``x−sdx

x2 + `2
sin `ϕ

= − cos
πs

2

∫ ∞

0

x−s
sinh ϕx

sinh πx
dx .

The desired result follows. ¤
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