On the behavior of pro-isomorphic zeta functions under base extension

Michael M. Schein

Bar-Ilan University

Zeta functions and motivic integration Düsseldorf, July 2016

Subgroup growth

This talk will discuss joint work with Mark Berman.

Subgroup growth

This talk will discuss joint work with Mark Berman.

Let G be a finitely generated group. For any $n \geq 1$ it has finitely many subgroups of index n.

Subgroup growth

This talk will discuss joint work with Mark Berman.

Let G be a finitely generated group. For any $n \geq 1$ it has finitely many subgroups of index n.

Let $a_{n}^{\leq}=|\{H \leq G:[G: H]=n\}|$.

Subgroup growth

This talk will discuss joint work with Mark Berman.

Let G be a finitely generated group. For any $n \geq 1$ it has finitely many subgroups of index n.

Let $a_{n}^{\leq}=|\{H \leq G:[G: H]=n\}|$. Can consider variations of this sequence:

$$
\begin{aligned}
a_{n}^{\triangleleft} & =|\{H \unlhd G:[G: H]=n\}| \\
a_{n}^{\wedge} & =|\{\widehat{H} \simeq \widehat{G}:[G: H]=n\}|,
\end{aligned}
$$

where \widehat{G} is the profinite completion of G.

Dirichlet series

Theorem (Lubotzky-Mann-Segal)

Let G be a finitely generated residually finite group. Then there exists C such that $a_{n} \leq n^{C}$ for all n if and only if G is virtually solvable of finite rank.

Dirichlet series

Theorem (Lubotzky-Mann-Segal)

Let G be a finitely generated residually finite group. Then there exists C such that $a_{n} \leq n^{C}$ for all n if and only if G is virtually solvable of finite rank.

To study the sequences $a_{n}^{*}(* \in\{\leq, \triangleleft, \wedge\})$, make a Dirichlet series:

$$
\zeta_{G}^{*}(s)=\sum_{n=1}^{\infty} a_{n}^{*} n^{-s}
$$

Dirichlet series

Theorem (Lubotzky-Mann-Segal)

Let G be a finitely generated residually finite group. Then there exists C such that $a_{n} \leq n^{C}$ for all n if and only if G is virtually solvable of finite rank.

To study the sequences $a_{n}^{*}(* \in\{\leq, \triangleleft, \wedge\})$, make a Dirichlet series:

$$
\zeta_{G}^{*}(s)=\sum_{n=1}^{\infty} a_{n}^{*} n^{-s}
$$

Example

Let $G=\mathbb{Z}$. Then

$$
\zeta_{G}^{<}(s)=\zeta_{G}^{\triangleleft}(s)=\zeta_{G}^{\wedge}(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p} \frac{1}{1-p^{-s}}
$$

is the Riemann zeta function.

Linearization

If G is a torsion-free finitely generated group, there is a Lie ring L (a finite-rank free \mathbb{Z}-module with Lie bracket) with an index-preserving correspondence:

Linearization

If G is a torsion-free finitely generated group, there is a Lie ring L (a finite-rank free \mathbb{Z}-module with Lie bracket) with an index-preserving correspondence:

$$
\begin{aligned}
\text { subgroups } & \longleftrightarrow \text { subrings } \\
\text { normal subgroups } & \longleftrightarrow \text { ideals } \\
H \leq G: \widehat{H} \simeq \widehat{G} & \longleftrightarrow M \leq L: M \simeq L
\end{aligned}
$$

Linearization

If G is a torsion-free finitely generated group, there is a Lie ring L (a finite-rank free \mathbb{Z}-module with Lie bracket) with an index-preserving correspondence:

$$
\begin{aligned}
\text { subgroups } & \longleftrightarrow \text { subrings } \\
\text { normal subgroups } & \longleftrightarrow \text { ideals } \\
H \leq G: \widehat{H} \simeq \widehat{G} & \longleftrightarrow M \leq L: M \simeq L
\end{aligned}
$$

In this talk we concentrate on pro-isomorphic zeta functions.
Note that the condition $M \simeq L$ does not correspond to closure under the action of some subalgebra of $\operatorname{End}_{\mathbb{Z}}(L)$, so pro-isomorphic zeta functions do not in general fit into Roßmann's framework of subalgebra zeta functions.

Euler decomposition

Theorem (Grunewald-Segal-Smith, 1988)

Let G be a finitely generated torsion-free nilpotent group. Then

$$
\zeta_{G}^{*}(s)=\prod_{p} \zeta_{G, p}^{*}(s)
$$

for any $* \in\{\leq, \triangleleft, \wedge\}$, where

$$
\zeta_{G, p}^{*}(s)=\sum_{k=0}^{\infty} a_{p^{k}}^{*} p^{-k s}
$$

Euler decomposition

Theorem (Grunewald-Segal-Smith, 1988)

Let G be a finitely generated torsion-free nilpotent group. Then

$$
\zeta_{G}^{*}(s)=\prod_{p} \zeta_{G, p}^{*}(s)
$$

for any $* \in\{\leq, \triangleleft, \wedge\}$, where

$$
\zeta_{G, p}^{*}(s)=\sum_{k=0}^{\infty} a_{p^{k}}^{*} p^{-k s}
$$

Similarly in the linear setting, $\zeta_{L}^{*}(s)=\prod_{p} \zeta_{L \otimes_{\mathbb{Z}} \mathbb{Z}_{p}}^{*}(s)$.

Euler decomposition

Theorem (Grunewald-Segal-Smith, 1988)

Let G be a finitely generated torsion-free nilpotent group. Then

$$
\zeta_{G}^{*}(s)=\prod_{p} \zeta_{G, p}^{*}(s)
$$

for any $* \in\{\leq, \triangleleft, \wedge\}$, where

$$
\zeta_{G, p}^{*}(s)=\sum_{k=0}^{\infty} a_{p^{k}}^{*} p^{-k s} .
$$

Similarly in the linear setting, $\zeta_{L}^{*}(s)=\prod_{p} \zeta_{L \otimes \mathbb{Z} \mathbb{Z}_{p}}^{*}(s)$.
We investigate the behavior of $\zeta_{L}^{\wedge}(s)$ under base extension.

Base extension

Our main question

Let Γ be a \mathbb{Z}-group scheme such that $\Gamma(\mathbb{Z})$ is finitely generated torsion-free nilpotent. How does $\zeta_{G\left(\mathcal{O}_{K}\right)}^{*}(s)$ behave as K varies over number fields?

Base extension

Our main question

Let Γ be a \mathbb{Z}-group scheme such that $\Gamma(\mathbb{Z})$ is finitely generated torsion-free nilpotent. How does $\zeta_{G\left(\mathcal{O}_{K}\right)}^{*}(s)$ behave as K varies over number fields?

Analogously, if L is a nilpotent \mathbb{Z}-Lie ring, how does $\zeta_{\mathcal{L} \otimes_{\mathbb{Z}} \mathcal{O}_{K}}^{\wedge}(s)$ behave?

Base extension

Our main question

Let Γ be a \mathbb{Z}-group scheme such that $\Gamma(\mathbb{Z})$ is finitely generated torsion-free nilpotent. How does $\zeta_{G\left(\mathcal{O}_{K}\right)}^{*}(s)$ behave as K varies over number fields?

Analogously, if L is a nilpotent \mathbb{Z}-Lie ring, how does $\zeta_{\mathcal{L} \otimes_{\mathbb{Z}} \mathcal{O}_{K}}^{\wedge}(s)$ behave? The simplest example is not encouraging.

Base extension

Our main question

Let Γ be a \mathbb{Z}-group scheme such that $\Gamma(\mathbb{Z})$ is finitely generated torsion-free nilpotent. How does $\zeta_{G\left(\mathcal{O}_{K}\right)}^{*}(s)$ behave as K varies over number fields?

Analogously, if L is a nilpotent \mathbb{Z}-Lie ring, how does $\zeta_{\mathcal{L} \otimes_{\mathbb{Z}} \mathcal{O}_{K}}^{\wedge}(s)$ behave? The simplest example is not encouraging. Let A be an abelian \mathbb{Z}-Lie ring of rank m. If $[K: \mathbb{Q}]=d$, then $A \otimes_{\mathbb{Z}} \mathcal{O}_{K}$ is simply an abelian \mathbb{Z}-Lie ring of rank $m d$.

Base extension

Our main question

Let Γ be a \mathbb{Z}-group scheme such that $\Gamma(\mathbb{Z})$ is finitely generated torsion-free nilpotent. How does $\zeta_{G\left(\mathcal{O}_{K}\right)}^{*}(s)$ behave as K varies over number fields?

Analogously, if L is a nilpotent \mathbb{Z}-Lie ring, how does $\zeta_{\mathcal{L}_{\otimes_{\mathbb{Z}}} \mathcal{O}_{K}}^{\wedge}(s)$ behave? The simplest example is not encouraging. Let A be an abelian \mathbb{Z}-Lie ring of rank m. If $[K: \mathbb{Q}]=d$, then $A \otimes_{\mathbb{Z}} \mathcal{O}_{K}$ is simply an abelian \mathbb{Z}-Lie ring of rank $m d$.

Exercise

If A is an abelian \mathbb{Z}-Lie ring of rank m, then

$$
\zeta_{\bar{A}, p}^{\leq}(s)=\zeta_{A, p}^{\triangleleft}(s)=\zeta_{A, p}^{\wedge}(s)=\frac{1}{\left(1-p^{-s}\right)\left(1-p^{1-s}\right) \cdots\left(1-p^{m-1-s}\right)}
$$

Base extension

Our main question

Let Γ be a \mathbb{Z}-group scheme such that $\Gamma(\mathbb{Z})$ is finitely generated torsion-free nilpotent. How does $\zeta_{G\left(\mathcal{O}_{K}\right)}^{*}(s)$ behave as K varies over number fields?

Analogously, if L is a nilpotent \mathbb{Z}-Lie ring, how does $\zeta_{\mathcal{L}_{\otimes_{\mathbb{Z}}} \mathcal{O}_{K}}^{\wedge}(s)$ behave? The simplest example is not encouraging. Let A be an abelian \mathbb{Z}-Lie ring of rank m. If $[K: \mathbb{Q}]=d$, then $A \otimes_{\mathbb{Z}} \mathcal{O}_{K}$ is simply an abelian \mathbb{Z}-Lie ring of rank $m d$.

Exercise

If A is an abelian \mathbb{Z}-Lie ring of rank m, then

$$
\zeta_{A, p}^{\leq}(s)=\zeta_{A, p}^{\triangleleft}(s)=\zeta_{A, p}^{\wedge}(s)=\frac{1}{\left(1-p^{-s}\right)\left(1-p^{1-s}\right) \cdots\left(1-p^{m-1-s}\right)}
$$

Five proofs of this in Lubotzky-Segal, e.g. count Smith normal forms.

What we want

To understand why we are unhappy with this very clean result, compare it with the following.

What we want

To understand why we are unhappy with this very clean result, compare it with the following. Let $H=\langle x, y, z \mid[x, y]=z\rangle$ be the Heisenberg Lie ring: the simplest non-abelian Lie ring.

What we want

To understand why we are unhappy with this very clean result, compare it with the following. Let $H=\langle x, y, z \mid[x, y]=z\rangle$ be the Heisenberg Lie ring: the simplest non-abelian Lie ring.

Theorem (Grunewald-Segal-Smith)

Let K be a number field and let $[K: \mathbb{Q}]=d$. Then

$$
\zeta_{H}(s)=\zeta(2 s-2) \zeta(2 s-3)
$$

What we want

To understand why we are unhappy with this very clean result, compare it with the following. Let $H=\langle x, y, z \mid[x, y]=z\rangle$ be the Heisenberg Lie ring: the simplest non-abelian Lie ring.

Theorem (Grunewald-Segal-Smith)

Let K be a number field and let $[K: \mathbb{Q}]=d$. Then

$$
\begin{aligned}
\zeta_{H}(s) & =\zeta(2 s-2) \zeta(2 s-3) \\
\zeta_{\hat{H} \otimes \mathcal{O}_{K}}(s) & =\prod_{\mathfrak{p}} \frac{1}{\left(1-(N \mathfrak{p})^{2 d-2 s}\right)\left(1-(N \mathfrak{p})^{2 d+1-2 s}\right)}
\end{aligned}
$$

What we want

To understand why we are unhappy with this very clean result, compare it with the following. Let $H=\langle x, y, z \mid[x, y]=z\rangle$ be the Heisenberg Lie ring: the simplest non-abelian Lie ring.

Theorem (Grunewald-Segal-Smith)

Let K be a number field and let $[K: \mathbb{Q}]=d$. Then

$$
\begin{aligned}
\zeta_{\hat{H}}^{\hat{(} s)}= & \zeta(2 s-2) \zeta(2 s-3) \\
\zeta_{\hat{H} \otimes \mathcal{O}_{K}}^{\hat{}(s)}= & \prod_{\mathfrak{p}} \frac{1}{\left(1-(N \mathfrak{p})^{2 d-2 s}\right)\left(1-(N \mathfrak{p})^{2 d+1-2 s}\right)} \\
& =\zeta_{K}(2 s-2 d) \zeta_{K}(2 s-2 d-1)
\end{aligned}
$$

What we want

To understand why we are unhappy with this very clean result, compare it with the following. Let $H=\langle x, y, z \mid[x, y]=z\rangle$ be the Heisenberg Lie ring: the simplest non-abelian Lie ring.

Theorem (Grunewald-Segal-Smith)

Let K be a number field and let $[K: \mathbb{Q}]=d$. Then

$$
\begin{aligned}
\zeta_{\hat{H}}^{\wedge}(s)= & \zeta(2 s-2) \zeta(2 s-3) \\
\zeta_{\hat{H} \otimes \mathcal{O}_{K}}^{\hat{}(s)}= & \prod_{\mathfrak{p}} \frac{1}{\left(1-(N \mathfrak{p})^{2 d-2 s}\right)\left(1-(N \mathfrak{p})^{2 d+1-2 s}\right)} \\
& =\zeta_{K}(2 s-2 d) \zeta_{K}(2 s-2 d-1)
\end{aligned}
$$

Here \mathfrak{p} runs over the primes of K.
$N \mathfrak{p}=\left|\mathcal{O}_{K} / \mathfrak{p}\right|$ is the norm of \mathfrak{p}.
$\zeta_{K}(s)=\prod_{\mathfrak{p}} \frac{1}{1-(N \mathfrak{p})^{-s}}$ is the Dedekind zeta function of K.

Pro-isomorphic zeta functions and p-adic integrals

Our aim: if we know $\zeta_{L}^{\wedge}(s)$, to predict the structure and properties of $\zeta_{\left\llcorner\otimes \mathcal{O}_{K}\right.}^{\wedge}(s)$. The Heisenberg example suggests that one should be able to do this in some cases; the abelian example suggests it won't be in all cases!

Pro-isomorphic zeta functions and p-adic integrals

Our aim: if we know $\zeta_{L}^{\wedge}(s)$, to predict the structure and properties of $\zeta_{L \otimes \mathcal{O}_{K}}^{\wedge}(s)$. The Heisenberg example suggests that one should be able to do this in some cases; the abelian example suggests it won't be in all cases!

Let L be a \mathbb{Z}-Lie ring, and let $\mathcal{G}=\mathfrak{A u t} L$ be its algebraic automorphism group:

$$
\mathcal{G}(K)=\operatorname{Aut}_{K}\left(L \otimes_{\mathbb{Z}} K\right)
$$

for all field extensions K / \mathbb{Q}.

Pro-isomorphic zeta functions and p-adic integrals

Our aim: if we know $\zeta_{L}^{\wedge}(s)$, to predict the structure and properties of $\zeta_{L \otimes \mathcal{O}_{K}}^{\wedge}(s)$. The Heisenberg example suggests that one should be able to do this in some cases; the abelian example suggests it won't be in all cases!

Let L be a \mathbb{Z}-Lie ring, and let $\mathcal{G}=\mathfrak{A u t} L$ be its algebraic automorphism group:

$$
\mathcal{G}(K)=\operatorname{Aut}_{K}\left(L \otimes_{\mathbb{Z}} K\right)
$$

for all field extensions K / \mathbb{Q}.

Theorem

Normalize the Haar measure on $\mathcal{G}\left(\mathbb{Q}_{p}\right)$ so that $\mu\left(\mathcal{G}\left(\mathbb{Z}_{p}\right)\right)=1$ and set $\mathcal{G}^{+}\left(\mathbb{Q}_{p}\right)=\mathcal{G}\left(\mathbb{Q}_{p}\right) \cap M\left(\mathbb{Z}_{p}\right)$. Then,

$$
\zeta_{L_{, p}}^{\wedge}(s)=\int_{\mathcal{G}^{+}\left(\mathbb{Q}_{p}\right)}|\operatorname{det} g|^{s} d \mu_{g} .
$$

Pro-isomorphic zeta functions and p-adic integrals

Our aim: if we know $\zeta_{L}^{\wedge}(s)$, to predict the structure and properties of $\zeta_{L \otimes \mathcal{O}_{K}}^{\wedge}(s)$. The Heisenberg example suggests that one should be able to do this in some cases; the abelian example suggests it won't be in all cases!

Let L be a \mathbb{Z}-Lie ring, and let $\mathcal{G}=\mathfrak{A u t} L$ be its algebraic automorphism group:

$$
\mathcal{G}(K)=\operatorname{Aut}_{K}\left(L \otimes_{\mathbb{Z}} K\right)
$$

for all field extensions K / \mathbb{Q}.

Theorem

Normalize the Haar measure on $\mathcal{G}\left(\mathbb{Q}_{p}\right)$ so that $\mu\left(\mathcal{G}\left(\mathbb{Z}_{p}\right)\right)=1$ and set $\mathcal{G}^{+}\left(\mathbb{Q}_{p}\right)=\mathcal{G}\left(\mathbb{Q}_{p}\right) \cap M\left(\mathbb{Z}_{p}\right)$. Then,

$$
\zeta_{\iota, p}^{\wedge}(s)=\int_{\mathcal{G}^{+}\left(\mathbb{Q}_{p}\right)}|\operatorname{det} g|^{s} d \mu_{g} .
$$

Such p-adic integrals are of independent interest and have been studied for decades (Satake, Tamagawa, Macdonald, etc.)

Algebraic automorphism groups of extensions: the bad ...

Question

Let \mathcal{L} be a \mathbb{Q}-Lie algebra $\left(\mathcal{L}=L \otimes_{\mathbb{Z}} \mathbb{Q}\right)$. Let $\mathfrak{A u t} \mathcal{L}$ be its algebraic automorphism group. View $\mathcal{L} \otimes_{\mathbb{Q}} K$ as a \mathbb{Q}-algebra. What can we say about the algebraic group $\mathfrak{A l t}\left(\mathcal{L} \otimes_{\mathbb{Q}} K\right)$ for a number field K ?

Algebraic automorphism groups of extensions: the bad ...

Question

Let \mathcal{L} be a \mathbb{Q}-Lie algebra $\left(\mathcal{L}=L \otimes_{\mathbb{Z}} \mathbb{Q}\right)$. Let $\mathfrak{A u t} \mathcal{L}$ be its algebraic automorphism group. View $\mathcal{L} \otimes_{\mathbb{Q}} K$ as a \mathbb{Q}-algebra. What can we say about the algebraic group $\mathfrak{A l t}\left(\mathcal{L} \otimes_{\mathbb{Q}} K\right)$ for a number field K ?

If A_{m} is an m-dimensional abelian \mathbb{Q}-Lie algebra, then $\mathfrak{A u t} A_{m} \simeq \mathrm{GL}_{m}$.

Algebraic automorphism groups of extensions: the bad ...

Question

Let \mathcal{L} be a \mathbb{Q}-Lie algebra $\left(\mathcal{L}=L \otimes_{\mathbb{Z}} \mathbb{Q}\right)$. Let $\mathfrak{A u t} \mathcal{L}$ be its algebraic automorphism group. View $\mathcal{L} \otimes_{\mathbb{Q}} K$ as a \mathbb{Q}-algebra. What can we say about the algebraic group $\mathfrak{A l u t}\left(\mathcal{L} \otimes_{\mathbb{Q}} K\right)$ for a number field K ?

If A_{m} is an m-dimensional abelian \mathbb{Q}-Lie algebra, then $\mathfrak{A u t} A_{m} \simeq \mathrm{GL}_{m}$. If $[K: \mathbb{Q}]=d$, then $A_{m} \otimes_{\mathbb{Q}} K \simeq A_{m d}$ as \mathbb{Q}-Lie algebras.

Algebraic automorphism groups of extensions: the bad ...

Question

Let \mathcal{L} be a \mathbb{Q}-Lie algebra $\left(\mathcal{L}=L \otimes_{\mathbb{Z}} \mathbb{Q}\right)$. Let $\mathfrak{A u t} \mathcal{L}$ be its algebraic automorphism group. View $\mathcal{L} \otimes_{\mathbb{Q}} K$ as a \mathbb{Q}-algebra. What can we say about the algebraic group $\mathfrak{A u t}\left(\mathcal{L} \otimes_{\mathbb{Q}} K\right)$ for a number field K ?

If A_{m} is an m-dimensional abelian \mathbb{Q}-Lie algebra, then $\mathfrak{A u t} A_{m} \simeq \mathrm{GL}_{m}$. If $[K: \mathbb{Q}]=d$, then $A_{m} \otimes_{\mathbb{Q}} K \simeq A_{m d}$ as \mathbb{Q}-Lie algebras.

Thus $\mathfrak{A l u t}\left(A_{m} \otimes_{\mathbb{Q}} K\right) \simeq \mathrm{GL}_{m d}$.

Algebraic automorphism groups of extensions: the bad ...

Question

Let \mathcal{L} be a \mathbb{Q}-Lie algebra $\left(\mathcal{L}=L \otimes_{\mathbb{Z}} \mathbb{Q}\right)$. Let $\mathfrak{A u t} \mathcal{L}$ be its algebraic automorphism group. View $\mathcal{L} \otimes_{\mathbb{Q}} K$ as a \mathbb{Q}-algebra. What can we say about the algebraic group $\mathfrak{A u t}\left(\mathcal{L} \otimes_{\mathbb{Q}} K\right)$ for a number field K ?

If A_{m} is an m-dimensional abelian \mathbb{Q}-Lie algebra, then $\mathfrak{A u t} A_{m} \simeq \mathrm{GL}_{m}$. If $[K: \mathbb{Q}]=d$, then $A_{m} \otimes_{\mathbb{Q}} K \simeq A_{m d}$ as \mathbb{Q}-Lie algebras.

Thus $\mathfrak{A l u t}\left(A_{m} \otimes_{\mathbb{Q}} K\right) \simeq \mathrm{GL}_{m d}$.
These two groups have essentially nothing to do with each other.

Algebraic automorphism groups of extensions: the bad ...

Question

Let \mathcal{L} be a \mathbb{Q}-Lie algebra $\left(\mathcal{L}=L \otimes_{\mathbb{Z}} \mathbb{Q}\right)$. Let $\mathfrak{A u t} \mathcal{L}$ be its algebraic automorphism group. View $\mathcal{L} \otimes_{\mathbb{Q}} K$ as a \mathbb{Q}-algebra. What can we say about the algebraic group $\mathfrak{A u t}\left(\mathcal{L} \otimes_{\mathbb{Q}} K\right)$ for a number field K ?

If A_{m} is an m-dimensional abelian \mathbb{Q}-Lie algebra, then $\mathfrak{A u t} A_{m} \simeq \mathrm{GL}_{m}$. If $[K: \mathbb{Q}]=d$, then $A_{m} \otimes_{\mathbb{Q}} K \simeq A_{m d}$ as \mathbb{Q}-Lie algebras.

Thus $\mathfrak{A l u t}\left(A_{m} \otimes_{\mathbb{Q}} K\right) \simeq \mathrm{GL}_{m d}$.
These two groups have essentially nothing to do with each other.
This essentially accounts for the bad behavior of $\zeta_{\hat{A}_{m}}^{\wedge}(s)$ under base extension.

... and the good

In contrast, if $H=\langle x, y, z:[x, y]=z\rangle$ is the Heisenberg algebra, then

and the good

In contrast, if $H=\langle x, y, z:[x, y]=z\rangle$ is the Heisenberg algebra, then

$$
\mathfrak{A u t} H \simeq\left\{\left(\begin{array}{cc}
B & * \\
0 & \operatorname{det} B
\end{array}\right): B \in \mathrm{GL}_{2}\right\}
$$

w.r.t. the basis (x, y, z).

and the good

In contrast, if $H=\langle x, y, z:[x, y]=z\rangle$ is the Heisenberg algebra, then

$$
\mathfrak{A u t} H \simeq\left\{\left(\begin{array}{cc}
B & * \\
0 & \operatorname{det} B
\end{array}\right): B \in \mathrm{GL}_{2}\right\}
$$

w.r.t. the basis (x, y, z). For any E / \mathbb{Q}, clearly

$$
\left(\mathfrak{A u t}\left(H \otimes_{\mathbb{Q}} K\right)\right)(E)=\operatorname{Aut}_{E}(H \otimes K \otimes E) \supset
$$

$$
\operatorname{Aut}_{K \otimes E}(H \otimes K \otimes E)=(\mathfrak{A u t} H)(K \otimes E)=\operatorname{Res}_{K / \mathbb{Q}}\left(\mathfrak{A l u t}^{\prime} H\right)(E)
$$

and the good

In contrast, if $H=\langle x, y, z:[x, y]=z\rangle$ is the Heisenberg algebra, then

$$
\mathfrak{A l u t} H \simeq\left\{\left(\begin{array}{cc}
B & * \\
0 & \operatorname{det} B
\end{array}\right): B \in \mathrm{GL}_{2}\right\}
$$

w.r.t. the basis (x, y, z). For any E / \mathbb{Q}, clearly

$$
\begin{aligned}
(\mathfrak{A u t}(H \otimes \mathbb{Q} K))(E) & =\operatorname{Aut}_{E}(H \otimes K \otimes E) \supset \\
\operatorname{Aut}_{K \otimes E}(H \otimes K \otimes E) & =\left(\mathfrak{A u t}^{H} H\right)(K \otimes E)=\operatorname{Res}_{K / \mathbb{Q}}(\mathfrak{A u t} H)(E) .
\end{aligned}
$$

Also, clearly $\left\{\left(\begin{array}{cc}\mathrm{Id} & * \\ 0 & \mathrm{Id}\end{array}\right)\right\} \subset \mathfrak{A} \mathfrak{u t}(H \otimes K)$.

and the good

In contrast, if $H=\langle x, y, z:[x, y]=z\rangle$ is the Heisenberg algebra, then

$$
\mathfrak{A l u t} H \simeq\left\{\left(\begin{array}{cc}
B & * \\
0 & \operatorname{det} B
\end{array}\right): B \in \mathrm{GL}_{2}\right\}
$$

w.r.t. the basis (x, y, z). For any E / \mathbb{Q}, clearly

$$
\begin{aligned}
\left(\mathfrak{A u t}\left(H \otimes_{\mathbb{Q}} K\right)\right)(E) & =\operatorname{Aut}_{E}(H \otimes K \otimes E) \supset \\
\operatorname{Aut}_{K \otimes E}(H \otimes K \otimes E) & =(\mathfrak{A u t} H)(K \otimes E)=\operatorname{Res}_{K / \mathbb{Q}}(\mathfrak{A u t} H)(E) .
\end{aligned}
$$

Also, clearly $\left\{\left(\begin{array}{cc}\mathrm{Id} & * \\ 0 & \mathrm{Id}\end{array}\right)\right\} \subset \mathfrak{A} \mathfrak{u t}(H \otimes K)$.
It turns out that $\mathfrak{A u t}(H \otimes K)$ contains essentially nothing else.

and the good

In contrast, if $H=\langle x, y, z:[x, y]=z\rangle$ is the Heisenberg algebra, then

$$
\mathfrak{A u t} H \simeq\left\{\left(\begin{array}{cc}
B & * \\
0 & \operatorname{det} B
\end{array}\right): B \in \mathrm{GL}_{2}\right\}
$$

w.r.t. the basis (x, y, z). For any E / \mathbb{Q}, clearly

$$
\begin{aligned}
\left(\mathfrak{A u t}\left(H \otimes_{\mathbb{Q}} K\right)\right)(E) & =\operatorname{Aut}_{E}(H \otimes K \otimes E) \supset \\
\operatorname{Aut}_{K \otimes E}(H \otimes K \otimes E) & =(\mathfrak{A u t} H)(K \otimes E)=\operatorname{Res}_{K / \mathbb{Q}}(\mathfrak{A u t} H)(E) .
\end{aligned}
$$

Also, clearly $\left\{\left(\begin{array}{cc}\mathrm{Id} & * \\ 0 & \mathrm{Id}\end{array}\right)\right\} \subset \mathfrak{A} \mathfrak{u t}(H \otimes K)$.
It turns out that $\mathfrak{A x t}(H \otimes K)$ contains essentially nothing else. We give this phenomenon a name.

Goodness

Definition

Let \mathcal{L} be a \mathbb{Q}-Lie algebra and Z a characteristic ideal. We say that \mathcal{L} is Z-good if for all finite extensions K / \mathbb{Q} :

$$
\mathfrak{A} \mathfrak{u t}\left(\mathcal{L} \otimes_{\mathbb{Q}} K\right)=\operatorname{Res}_{K / \mathbb{Q}}(\mathfrak{A} \mathfrak{u t}(\mathcal{L})) \cdot(\operatorname{ker}(\mathfrak{A} \mathfrak{u t} \mathcal{L} \rightarrow \mathfrak{A} \mathfrak{u t} \mathcal{L} / Z)) \rtimes(\text { finite })
$$

Goodness

Definition

Let \mathcal{L} be a \mathbb{Q}-Lie algebra and Z a characteristic ideal. We say that \mathcal{L} is Z-good if for all finite extensions K / \mathbb{Q} :

$$
\left.\mathfrak{A} \mathfrak{u t}\left(\mathcal{L} \otimes_{\mathbb{Q}} K\right)=\operatorname{Res}_{K / \mathbb{Q}}(\mathfrak{A} \mathfrak{u t}(\mathcal{L})) \cdot(\operatorname{ker}(\mathfrak{A} \mathfrak{u t} \mathcal{L} \rightarrow \mathfrak{A} \mathfrak{u t} \mathcal{L} / Z)) \rtimes \text { (finite }\right)
$$

Example: H is Z-good, for $Z=[H, H]=Z(H)$.

Goodness

Definition

Let \mathcal{L} be a \mathbb{Q}-Lie algebra and Z a characteristic ideal. We say that \mathcal{L} is Z-good if for all finite extensions K / \mathbb{Q} :

$$
\left.\mathfrak{A} \mathfrak{u t}\left(\mathcal{L} \otimes_{\mathbb{Q}} K\right)=\operatorname{Res}_{K / \mathbb{Q}}(\mathfrak{A} \mathfrak{u t}(\mathcal{L})) \cdot(\operatorname{ker}(\mathfrak{A} \mathfrak{u t} \mathcal{L} \rightarrow \mathfrak{A} \mathfrak{u t} \mathcal{L} / Z)) \rtimes \text { (finite }\right) .
$$

Example: H is Z-good, for $Z=[H, H]=Z(H)$.

Proposition

Suppose that \mathcal{L} is Z-good for a central Z. Then for all number fields K there is a fine Euler decomposition

$$
\zeta_{\bar{L} \otimes_{\mathbb{Z}} \mathcal{O}_{K}}^{\wedge}(s)=\prod \zeta_{\mathcal{L}_{\mathbb{Z}} \mathcal{O}_{K}, \mathfrak{p}}^{\wedge}(s)
$$

where \mathfrak{p} runs over the primes of K and the local factor $\zeta_{\mathcal{L} \otimes_{\mathbb{Z}} \mathcal{O}_{K}, \mathfrak{p}}^{\wedge}(s)$ depends only on the isomorphism class of the local field K_{p}.

Segal's criterion

A criterion for goodness: for any ideal $I \leq \mathcal{L}$ and subset $S \subset \mathcal{L}$, set

$$
C_{\mathcal{L} / I}(S)=\{x \in \mathcal{L}:[s, x] \in I \text { for all } s \in S\}
$$

Segal's criterion

A criterion for goodness: for any ideal $I \leq \mathcal{L}$ and subset $S \subset \mathcal{L}$, set

$$
C_{\mathcal{L} / I}(S)=\{x \in \mathcal{L}:[s, x] \in I \text { for all } s \in S\}
$$

Theorem (Segal, 1989)

Let \mathcal{L} be a k-Lie algebra. Let $Z \subseteq M \subseteq[\mathcal{L}, \mathcal{L}]$ be characteristic ideals of \mathcal{L} such that $\operatorname{dim}(\mathcal{L} / M)>1$. Set

$$
\begin{aligned}
\mathcal{X}(M, Z) & =\left\{x \in \mathcal{L} \backslash M: C_{\mathcal{L} /[M, \mathcal{L}]}(x)=M+k x\right\} \\
\mathcal{Y}(M, Z) & =\left\{x \in \mathcal{L} \backslash M: C_{\mathcal{L} /[Z, \mathcal{L}]}\left(C_{\mathcal{L} /[Z, \mathcal{L}]}(x)\right)=Z+k x\right\}
\end{aligned}
$$

Segal's criterion

A criterion for goodness: for any ideal $I \leq \mathcal{L}$ and subset $S \subset \mathcal{L}$, set

$$
C_{\mathcal{L} / I}(S)=\{x \in \mathcal{L}:[s, x] \in I \text { for all } s \in S\} .
$$

Theorem (Segal, 1989)

Let \mathcal{L} be a k-Lie algebra. Let $Z \subseteq M \subseteq[\mathcal{L}, \mathcal{L}]$ be characteristic ideals of \mathcal{L} such that $\operatorname{dim}(\mathcal{L} / M)>1$. Set

$$
\begin{aligned}
\mathcal{X}(M, Z) & =\left\{x \in \mathcal{L} \backslash M: C_{\mathcal{L} /[M, \mathcal{L}]}(x)=M+k x\right\} \\
\mathcal{Y}(M, Z) & =\left\{x \in \mathcal{L} \backslash M: C_{\mathcal{L} /[Z, \mathcal{L}]}\left(C_{\mathcal{L} /[Z, \mathcal{L}]}(x)\right)=Z+k x\right\}
\end{aligned}
$$

$\mathcal{X}(M, Z)$ and $\mathcal{Y}(M, Z)$ each generate \mathcal{L} as Lie algebra $\Rightarrow \mathcal{L}$ is Z-good.

Segal's criterion

A criterion for goodness: for any ideal $I \leq \mathcal{L}$ and subset $S \subset \mathcal{L}$, set

$$
C_{\mathcal{L} / I}(S)=\{x \in \mathcal{L}:[s, x] \in I \text { for all } s \in S\} .
$$

Theorem (Segal, 1989)

Let \mathcal{L} be a k-Lie algebra. Let $Z \subseteq M \subseteq[\mathcal{L}, \mathcal{L}]$ be characteristic ideals of \mathcal{L} such that $\operatorname{dim}(\mathcal{L} / M)>1$. Set

$$
\begin{aligned}
\mathcal{X}(M, Z) & =\left\{x \in \mathcal{L} \backslash M: C_{\mathcal{L} /[M, \mathcal{L}]}(x)=M+k x\right\} \\
\mathcal{Y}(M, Z) & =\left\{x \in \mathcal{L} \backslash M: C_{\mathcal{L} /[Z, \mathcal{L}]}\left(C_{\mathcal{L} /[Z, \mathcal{L}]}(x)\right)=Z+k x\right\}
\end{aligned}
$$

$\mathcal{X}(M, Z)$ and $\mathcal{Y}(M, Z)$ each generate \mathcal{L} as Lie algebra $\Rightarrow \mathcal{L}$ is Z-good.
Moral: If \mathcal{L} has many elements whose centralizer is as small as possible, it is Z-good.

Segal's criterion

A criterion for goodness: for any ideal $I \leq \mathcal{L}$ and subset $S \subset \mathcal{L}$, set

$$
C_{\mathcal{L} / I}(S)=\{x \in \mathcal{L}:[s, x] \in I \text { for all } s \in S\} .
$$

Theorem (Segal, 1989)

Let \mathcal{L} be a k-Lie algebra. Let $Z \subseteq M \subseteq[\mathcal{L}, \mathcal{L}]$ be characteristic ideals of \mathcal{L} such that $\operatorname{dim}(\mathcal{L} / M)>1$. Set

$$
\begin{aligned}
& \mathcal{X}(M, Z)=\left\{x \in \mathcal{L} \backslash M: C_{\mathcal{L} /[M, \mathcal{L}]}(x)=M+k x\right\} \\
& \mathcal{Y}(M, Z)=\left\{x \in \mathcal{L} \backslash M: C_{\mathcal{L} /[Z, \mathcal{L}]}\left(C_{\mathcal{L} /[Z, \mathcal{L}]}(x)\right)=Z+k x\right\}
\end{aligned}
$$

$\mathcal{X}(M, Z)$ and $\mathcal{Y}(M, Z)$ each generate \mathcal{L} as Lie algebra $\Rightarrow \mathcal{L}$ is Z-good.
Moral: If \mathcal{L} has many elements whose centralizer is as small as possible, it is Z-good. Grunewald-Segal-Smith applied this result to free nilpotent Lie algebras (note Heisenberg is the free nilpotent algebra of class two on two generators).

Centrally amalgamated copies of Heisenberg I

Recall that

$$
\zeta_{\hat{H} \otimes \mathcal{O}_{K}}^{\wedge}(s)=\prod_{\mathfrak{p}} \frac{1}{\left(1-(N \mathfrak{p})^{2 d-2 s}\right)\left(1-(N \mathfrak{p})^{2 d+1-2 s}\right)}
$$

Centrally amalgamated copies of Heisenberg I

Recall that

$$
\zeta_{\hat{H} \otimes \mathcal{O}_{K}}^{\wedge}(s)=\prod_{\mathfrak{p}} \frac{1}{\left(1-(N \mathfrak{p})^{2 d-2 s}\right)\left(1-(N \mathfrak{p})^{2 d+1-2 s}\right)}
$$

Let H_{m} be the Lie ring obtained by taking m copies of H and identifying their centers. H_{m} is spanned by $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}, z$, where

$$
\left[x_{i}, y_{j}\right]= \begin{cases}z & : i=j \\ 0 & : i \neq j\end{cases}
$$

Centrally amalgamated copies of Heisenberg I

Recall that

$$
\zeta_{\hat{H} \otimes \mathcal{O}_{K}}^{\wedge}(s)=\prod_{\mathfrak{p}} \frac{1}{\left(1-(N \mathfrak{p})^{2 d-2 s}\right)\left(1-(N \mathfrak{p})^{2 d+1-2 s}\right)}
$$

Let H_{m} be the Lie ring obtained by taking m copies of H and identifying their centers. H_{m} is spanned by $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}, z$, where

$$
\left[x_{i}, y_{j}\right]= \begin{cases}z & : i=j \\ 0 & : i \neq j\end{cases}
$$

Lemma (du Sautoy and Lubotzky, 1996)

For all $m \geq 1$ we have $\mathfrak{A u t} H_{m} \simeq\left\{\left(\begin{array}{cc}A & * \\ 0 & \lambda\end{array}\right): A \Omega A^{T}=\lambda \Omega\right\}$, where $\Omega=\left(\begin{array}{cc}0 & I_{m} \\ -I_{m} & 0\end{array}\right)$. Note the reductive part is $\mathrm{GSp}_{2 m}$.

Centrally amalgamated copies of Heisenberg II

We would like to prove H_{m} is Z-good, for $Z=\left[H_{m}, H_{m}\right]=Z\left(H_{m}\right)$, and in fact this is true, but Segal's criterion won't do it:

Centrally amalgamated copies of Heisenberg II

We would like to prove H_{m} is Z-good, for $Z=\left[H_{m}, H_{m}\right]=Z\left(H_{m}\right)$, and in fact this is true, but Segal's criterion won't do it:

Lemma

For \mathcal{L} a nilpotent \mathbb{Q}-Lie algebra of class 2 , if $\operatorname{dim}_{\mathbb{Q}} \mathcal{L}>2 \operatorname{dim}_{\mathbb{Q}}[\mathcal{L}, \mathcal{L}]+1$, then \mathcal{L} fails Segal's criterion for all pairs (M, Z).

In particular, the lemma applies to H_{m} for all $m>1$.

Centrally amalgamated copies of Heisenberg II

We would like to prove H_{m} is Z-good, for $Z=\left[H_{m}, H_{m}\right]=Z\left(H_{m}\right)$, and in fact this is true, but Segal's criterion won't do it:

Lemma

For \mathcal{L} a nilpotent \mathbb{Q}-Lie algebra of class 2 , if $\operatorname{dim}_{\mathbb{Q}} \mathcal{L}>2 \operatorname{dim}_{\mathbb{Q}}[\mathcal{L}, \mathcal{L}]+1$, then \mathcal{L} fails Segal's criterion for all pairs (M, Z).

In particular, the lemma applies to H_{m} for all $m>1$. Noting that H_{m} is generated by elements with centralizer of codimension 1, we use a criterion orthogonal to Segal's.

Centrally amalgamated copies of Heisenberg II

We would like to prove H_{m} is Z-good, for $Z=\left[H_{m}, H_{m}\right]=Z\left(H_{m}\right)$, and in fact this is true, but Segal's criterion won't do it:

Lemma

For \mathcal{L} a nilpotent \mathbb{Q}-Lie algebra of class 2 , if $\operatorname{dim}_{\mathbb{Q}} \mathcal{L}>2 \operatorname{dim}_{\mathbb{Q}}[\mathcal{L}, \mathcal{L}]+1$, then \mathcal{L} fails Segal's criterion for all pairs (M, Z).

In particular, the lemma applies to H_{m} for all $m>1$. Noting that H_{m} is generated by elements with centralizer of codimension 1, we use a criterion orthogonal to Segal's.

Proposition

Suppose \mathcal{L} is nilpotent and $C_{\mathcal{L} /[Z, \mathcal{L}]}(\mathcal{L}) \subseteq[\mathcal{L}, \mathcal{L}]$. Suppose \mathcal{L} is generated as an algebra by $\mathcal{Y}(Z, Z)$ and also by a finite set \mathcal{S} of elements with centralizer of codimension 1 , such that the non-commutation graph of \mathcal{S} is connected (in particular, \mathcal{L} is indecomposable). Suppose a technical condition, that E-linear automorphisms of $\mathcal{L} \otimes K$ are not hopelessly far from being $E \otimes K$-linear. Then \mathcal{L} is Z-good.

Centrally amalgamated copies of Heisenberg III

One checks that H_{m} satisfies the conditions and is Z-good. One deduces that

Centrally amalgamated copies of Heisenberg III

One checks that H_{m} satisfies the conditions and is Z-good. One deduces that

$$
\zeta_{\hat{H}_{m} \otimes \mathcal{O}_{K}, \mathfrak{p}}=\int_{\operatorname{GSp}_{2 m}\left(K_{\mathfrak{p}}\right)^{+}}|\operatorname{det} A|_{K_{\mathfrak{p}}}^{(1+1 / m) s-2 d} d \mu(A)
$$

Centrally amalgamated copies of Heisenberg III

One checks that H_{m} satisfies the conditions and is Z-good. One deduces that

$$
\zeta_{\hat{H}_{m} \otimes \mathcal{O}_{K}, \mathfrak{p}}=\int_{\mathrm{GSp}_{2 m}\left(K_{\mathfrak{p}}\right)^{+}}|\operatorname{det} A|_{K_{\mathfrak{p}}}^{(1+1 / m) s-2 d} d \mu(A)
$$

Such integrals have been studied since Satake in the 1960's. It should follow from Igusa (1989) that this is an Igusa function

$$
\zeta_{\hat{H}_{m} \otimes \mathcal{O}_{K}, \mathfrak{p}}=\frac{1}{1-X_{0}} \sum_{I \subseteq[m-1]}\binom{m}{I}_{(N \mathfrak{p})^{-1}} \prod_{i \in I} \frac{X_{i}}{1-X_{i}}
$$

where $X_{i}=(N \mathfrak{p})^{\sum_{j=1}^{i}(m+1-j)+2 m d-(m+1) s}$ and $d=[K: \mathbb{Q}]$.

Centrally amalgamated copies of Heisenberg IV

Macdonald has formulas for these integrals:
$\sum_{k=0}^{m} \frac{1}{1-(N \mathfrak{p})^{(k+1)+\cdots+m-2 m d-(m+1) s}} \prod_{1 \leq i<j \leq m} \frac{1-q_{i k} q_{j k}(N \mathfrak{p})^{-1}}{1-q_{i k} q_{j k}} \prod_{i=1}^{m} \frac{1}{1-q_{i k}}$,
where $q_{i k}=\left\{\begin{array}{ll}(N \mathfrak{p})^{i} & : i \leq k \\ (N \mathfrak{p})^{-i} & : i>k .\end{array}\right.$.

Centrally amalgamated copies of Heisenberg IV

Macdonald has formulas for these integrals:
$\sum_{k=0}^{m} \frac{1}{1-(N \mathfrak{p})^{(k+1)+\cdots+m-2 m d-(m+1) s}} \prod_{1 \leq i<j \leq m} \frac{1-q_{i k} q_{j k}(N \mathfrak{p})^{-1}}{1-q_{i k} q_{j k}} \prod_{i=1}^{m} \frac{1}{1-q_{i k}}$,
where $q_{i k}=\left\{\begin{array}{ll}(N \mathfrak{p})^{i} & : i \leq k \\ (N \mathfrak{p})^{-i} & : i>k .\end{array}\right.$.
There is a functional equation:

Centrally amalgamated copies of Heisenberg IV

Macdonald has formulas for these integrals:
$\sum_{k=0}^{m} \frac{1}{1-(N \mathfrak{p})^{(k+1)+\cdots+m-2 m d-(m+1) s}} \prod_{1 \leq i<j \leq m} \frac{1-q_{i k} q_{j k}(N \mathfrak{p})^{-1}}{1-q_{i k} q_{j k}} \prod_{i=1}^{m} \frac{1}{1-q_{i k}}$,
where $q_{i k}=\left\{\begin{array}{ll}(N \mathfrak{p})^{i} & : i \leq k \\ (N \mathfrak{p})^{-i} & : i>k .\end{array}\right.$.
There is a functional equation:

$$
\left.\zeta_{\hat{H}_{m} \otimes \mathcal{O}_{K}, \mathfrak{p}}(s)\right|_{q \mapsto q^{-1}}=(-1)^{m+1}(N \mathfrak{p})^{m^{2}+4 m d-2(m+1) s} \zeta_{H_{m} \otimes \mathcal{O}_{K}, \mathfrak{p}}(s) .
$$

Centrally amalgamated copies of Heisenberg IV

Macdonald has formulas for these integrals:
$\sum_{k=0}^{m} \frac{1}{1-(N \mathfrak{p})^{(k+1)+\cdots+m-2 m d-(m+1) s}} \prod_{1 \leq i<j \leq m} \frac{1-q_{i k} q_{j k}(N \mathfrak{p})^{-1}}{1-q_{i k} q_{j k}} \prod_{i=1}^{m} \frac{1}{1-q_{i k}}$,
where $q_{i k}=\left\{\begin{array}{ll}(N \mathfrak{p})^{i} & : i \leq k \\ (N \mathfrak{p})^{-i} & : i>k .\end{array}\right.$.
There is a functional equation:

$$
\left.\zeta_{\boldsymbol{H}_{m} \otimes \mathcal{O}_{K}, \mathfrak{p}}^{\wedge}(s)\right|_{q \mapsto q^{-1}}=(-1)^{m+1}(N \mathfrak{p})^{m^{2}+4 m d-2(m+1) s} \zeta_{\hat{H}_{m} \otimes \mathcal{O}_{K}, \mathfrak{p}}(s) .
$$

Note that, by contrast, $\zeta_{H_{m} \otimes \mathcal{O}_{K}, p}^{\triangleleft}(s)$ has no fine Euler decomposition, but it does not increase in complexity (for fixed K) as m increases, only shifts the numerical data (MMS-Voll, Bauer).

Centrally amalgamated copies of Heisenberg IV

Macdonald has formulas for these integrals:
$\sum_{k=0}^{m} \frac{1}{1-(N \mathfrak{p})^{(k+1)+\cdots+m-2 m d-(m+1) s}} \prod_{1 \leq i<j \leq m} \frac{1-q_{i k} q_{j k}(N \mathfrak{p})^{-1}}{1-q_{i k} q_{j k}} \prod_{i=1}^{m} \frac{1}{1-q_{i k}}$,
where $q_{i k}=\left\{\begin{array}{ll}(N \mathfrak{p})^{i} & : i \leq k \\ (N \mathfrak{p})^{-i} & : i>k .\end{array}\right.$.
There is a functional equation:

$$
\left.\zeta_{\hat{H}_{m} \otimes \mathcal{O}_{K}, \mathfrak{p}}(s)\right|_{q \mapsto q^{-1}}=(-1)^{m+1}(N \mathfrak{p})^{m^{2}+4 m d-2(m+1) s} \zeta_{H_{m} \otimes \mathcal{O}_{K}, \mathfrak{p}}(s) .
$$

Note that, by contrast, $\zeta_{H_{m} \otimes \mathcal{O}_{K}, p}(s)$ has no fine Euler decomposition, but it does not increase in complexity (for fixed K) as m increases, only shifts the numerical data (MMS-Voll, Bauer).

Challenge

Does there exist a non-good Lie algebra that doesn't have an abelian direct summand?

D^{*}-Lie algebras

Grunewald and Segal classified finitely generated torsion-free nilpotent groups of class two with center of rank two. The classification includes the D^{*} groups, which come in two families.

D^{*}-Lie algebras

Grunewald and Segal classified finitely generated torsion-free nilpotent groups of class two with center of rank two. The classification includes the D^{*} groups, which come in two families. The associated Lie algebras, when odd-dimensional, are of the form

$$
\left\langle x_{1}, \ldots x_{m}, y_{1}, \ldots, y_{m+1}, e, f \mid\left[x_{i}, y_{i}\right]=e,\left[x_{i}, y_{i+1}\right]=f\right\rangle
$$

(Also have a family of even-dimensional algebras, parametrized by primitive polynomials.)

D^{*}-Lie algebras

Grunewald and Segal classified finitely generated torsion-free nilpotent groups of class two with center of rank two. The classification includes the D^{*} groups, which come in two families. The associated Lie algebras, when odd-dimensional, are of the form

$$
\left\langle x_{1}, \ldots x_{m}, y_{1}, \ldots, y_{m+1}, e, f \mid\left[x_{i}, y_{i}\right]=e,\left[x_{i}, y_{i+1}\right]=f\right\rangle
$$

(Also have a family of even-dimensional algebras, parametrized by primitive polynomials.)

The pro-isomorphic zeta functions of these Lie algebras were computed by Berman, Klopsch, and Onn. Knowing that these algebras are Z-good, where Z is the center, would enable us to compute the pro-isomorphic zeta functions of their base changes. The proposition above does not apply to these algebras, but a different one, weaker and more technical, does.

A family of maximal class Lie algebras

Let $c \geq 2$, and let $A_{c}=\left\langle z, x_{1}, \ldots, x_{m} \mid\left[z, x_{i}\right]=x_{i+1}, 1 \leq i \leq m-1\right\rangle$.

A family of maximal class Lie algebras

Let $c \geq 2$, and let $A_{c}=\left\langle z, x_{1}, \ldots, x_{m} \mid\left[z, x_{i}\right]=x_{i+1}, 1 \leq i \leq m-1\right\rangle$.

These algebras satisfy Segal's criterion with $M=\left[A_{c}, A_{c}\right]$ and $Z=Z\left(A_{c}\right)$.

A family of maximal class Lie algebras

Let $c \geq 2$, and let $A_{c}=\left\langle z, x_{1}, \ldots, x_{m} \mid\left[z, x_{i}\right]=x_{i+1}, 1 \leq i \leq m-1\right\rangle$.

These algebras satisfy Segal's criterion with $M=\left[A_{c}, A_{c}\right]$ and $Z=Z\left(A_{c}\right)$.

$$
\zeta_{A_{c} \otimes \mathcal{O}_{K}, \mathfrak{p}}(s)=\frac{1}{\left(1-(N \mathfrak{p})^{(c-1)(2 d+c-2)-\left(\binom{c}{2}+1\right) s}\right)\left(1-(N \mathfrak{p})^{2 d+2 c-3-c s}\right)}
$$

A family of maximal class Lie algebras

Let $c \geq 2$, and let $A_{c}=\left\langle z, x_{1}, \ldots, x_{m} \mid\left[z, x_{i}\right]=x_{i+1}, 1 \leq i \leq m-1\right\rangle$.

These algebras satisfy Segal's criterion with $M=\left[A_{c}, A_{c}\right]$ and $Z=Z\left(A_{c}\right)$.

$$
\zeta_{A_{c} \otimes \mathcal{O}_{K}, \mathfrak{p}}^{\wedge}(s)=\frac{1}{\left(1-(N \mathfrak{p})^{(c-1)(2 d+c-2)-\left(\binom{c}{2}+1\right) s}\right)\left(1-(N \mathfrak{p})^{2 d+2 c-3-c s}\right)}
$$

The functional equation has symmetry factor $(\mathrm{Np})^{\mathrm{c}^{2}+2 c d-c-1-\left(\binom{c+1}{2}+1\right) s}$.

A family with no functional equation

Recently Berman and Klopsch constructed a 25 -dimensional nilpotent \mathbb{Q}-Lie algebra \mathcal{L} whose local pro-isomorphic zeta functions have no functional equation. One checks that Segal's criterion is satisfied.

A family with no functional equation

Recently Berman and Klopsch constructed a 25 -dimensional nilpotent \mathbb{Q}-Lie algebra \mathcal{L} whose local pro-isomorphic zeta functions have no functional equation. One checks that Segal's criterion is satisfied.

$$
\zeta_{\mathcal{L} \otimes \mathcal{O}_{K}, \mathfrak{p}}^{\wedge}(s)=\frac{1+q^{84+201 d-102 s}+2 q^{85+201 d-102 s}+2 q^{170+402 d-204 s}}{\left(1-q^{171+402 d-204 s}\right)\left(1-q^{84+201 d-102 s}\right)}
$$

where $q=N \mathfrak{p}$.

A family with no functional equation

Recently Berman and Klopsch constructed a 25 -dimensional nilpotent \mathbb{Q}-Lie algebra \mathcal{L} whose local pro-isomorphic zeta functions have no functional equation. One checks that Segal's criterion is satisfied.

$$
\zeta_{\mathcal{L} \otimes \mathcal{O}_{K}, \mathfrak{p}}^{\wedge}(s)=\frac{1+q^{84+201 d-102 s}+2 q^{85+201 d-102 s}+2 q^{170+402 d-204 s}}{\left(1-q^{171+402 d-204 s}\right)\left(1-q^{84+201 d-102 s}\right)}
$$

where $q=N \mathfrak{p}$.

Thus we obtain an infinite family of Lie algebras with no functional equation.

Questions for the future

Questions for the future

- Characterize pairs (\mathcal{L}, Z), where \mathcal{L} is a Lie algebra, $Z \subseteq \mathcal{L}$ is a central ideal, and \mathcal{L} is Z-good.

Questions for the future

- Characterize pairs (\mathcal{L}, Z), where \mathcal{L} is a Lie algebra, $Z \subseteq \mathcal{L}$ is a central ideal, and \mathcal{L} is Z-good.
- If \mathcal{L} is Z-good, is it always the case that, for $\mathfrak{p} \mid p$, the local zeta function $\zeta_{\mathcal{\mathcal { L }} \otimes K, \mathfrak{p}}^{\wedge}(s)$ is obtained from $\zeta_{\mathcal{\mathcal { L } , p}}^{\wedge}(s)$ by replacing p by $N \mathfrak{p}$ and replacing s with a linear function $a s+b$, for suitable a, b depending linearly on $d=[K: \mathbb{Q}]$.
- What are a and b ? (even in nilpotency class two, we have no conjecture lacking counterexamples).

Questions for the future

- Characterize pairs (\mathcal{L}, Z), where \mathcal{L} is a Lie algebra, $Z \subseteq \mathcal{L}$ is a central ideal, and \mathcal{L} is Z-good.
- If \mathcal{L} is Z-good, is it always the case that, for $\mathfrak{p} \mid p$, the local zeta function $\zeta_{\mathcal{L} \otimes K, p}^{\wedge}(s)$ is obtained from $\zeta_{\mathcal{\mathcal { L }}, p}^{\wedge}(s)$ by replacing p by $N \mathfrak{p}$ and replacing s with a linear function $a s+b$, for suitable a, b depending linearly on $d=[K: \mathbb{Q}]$.
- What are a and b ? (even in nilpotency class two, we have no conjecture lacking counterexamples).
- What does one need to know to determine the abscissa of convergence of $\zeta_{\mathcal{\mathcal { L }} \otimes K}(s)$? Does it always vary linearly with d ?

Thank You!

