Orbit Dirichlet series and multiset permutations

Angela Carnevale

Universität Bielefeld
(joint work with C. Voll)

Orbit Dirichlet series

Let X be a space and $T: X \rightarrow X$ a map. For $n \in \mathbb{N}$
$\left\{x, T(x), T^{2}(x), \ldots, T^{n}(x)=x\right\}=$ closed orbit of length n
$\mathrm{O}_{T}(n)=$ number of closed orbits of length n under T.
The orbit Dirichlet series of T is the Dirichlet generating series

$$
\mathbf{d}_{T}(s)=\sum_{n=1}^{\infty} \mathbf{O}_{T}(n) n^{-s},
$$

where s is a complex variable.

- If $\mathrm{O}_{T}(n)=1$ for all $n \leadsto \mathbf{d}_{T}(s)=\zeta(s)$
- For $r \in \mathbb{N}$, if $\mathrm{O}_{T_{r}}(n)=a_{n}\left(\mathbb{Z}^{r}\right)=$ number of index n subgroups of \mathbb{Z}^{r}
$\leadsto \mathrm{d}_{T_{r}}(s)=\prod_{i=0}^{r-1} \zeta(s-i)$

Products and periodic points

$n \mapsto \mathrm{O}_{T}(n)$ is multiplicative \leadsto Orbit Dirichlet series satisfy an Euler product

$$
\mathrm{d}_{T}(s)=\prod_{p \text { prime }} \mathrm{d}_{T, p}(s)=\prod_{p \text { prime }} \sum_{k=0}^{\infty} \mathrm{O}_{T}\left(p^{k}\right) p^{-k s}
$$

To find the orbit series of a product of maps, we first look at another sequence:

$$
\mathrm{F}_{T}(n)=\text { number of points of period } n=\sum_{d \mid n} d \mathrm{O}_{T}(d)
$$

Möbius inversion gives

$$
\mathrm{O}_{T}(n)=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \mathrm{F}_{T}(d)
$$

For any finite collection of maps T_{1}, \ldots, T_{r}

$$
\mathrm{F}_{T_{1} \times \ldots \times T_{r}}(n)=\mathrm{F}_{T_{1}}(n) \cdots \mathrm{F}_{T_{r}}(n)
$$

Orbit series of products of maps

Goal. For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$, compute

$$
\mathbf{d}_{T_{\lambda}}(s)=\mathbf{d}_{T_{\lambda_{1}} \times \cdots \times T_{\lambda_{m}}}(s)=\prod_{p \text { prime }} \mathbf{d}_{T_{\lambda}, p}(s),
$$

where $\mathrm{O}_{T_{\lambda_{i}}}(n)=$ number of index n subgroups of $\mathbb{Z}^{\lambda_{i}}$.
For $i=1, \ldots, m$

$$
\begin{aligned}
& \mathrm{O}_{T_{\lambda_{i}}}\left(p^{k}\right)=\binom{\lambda_{i}-1+k}{k}_{p} \text { and } \mathrm{F}_{T_{\lambda_{i}}}\left(p^{k}\right)=\binom{\lambda_{i}+k}{k}_{p} \\
& \leadsto \mathrm{~d}_{T_{\lambda}}(s)=\prod_{p} \sum_{k=0}^{\infty}\left(\prod_{i=1}^{m}\binom{\lambda_{i}+k}{k}_{p}\right) p^{-k-k s} .
\end{aligned}
$$

Multiset permutations

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ be a partition of $N=\sum_{i=1}^{m} \lambda_{i}$.
$S_{\lambda}=$ set of all multiset permutations on $\{\underbrace{\mathbf{1}, \ldots, \mathbf{1}}_{\lambda_{1}}, \underbrace{\mathbf{2}, \ldots, \mathbf{2}}_{\lambda_{2}}, \ldots, \underbrace{\mathbf{m}, \ldots, \mathbf{m}}_{\lambda_{m}}\}$.

- $\lambda=(1, \ldots, 1)=\left(1^{m}\right) \leadsto S_{m}=$ permutations of the set $\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{m}\}$,
- $\lambda=(2,1) \leadsto S_{\lambda}=\{\mathbf{1 1 2}, \mathbf{1 2 1}, \mathbf{2 1 1}\}$

For $w \in S_{\lambda}, w=w_{1} \ldots w_{N}$

$$
\begin{aligned}
& \operatorname{Des}(w)=\left\{i \in[N-1] \mid w_{i}>w_{i+1}\right\}, \quad \text { descent set of } w \\
& \operatorname{des}(w)=|\operatorname{Des}(w)|, \quad \text { number of descents } \\
& \operatorname{maj}(w)=\sum_{i \in \operatorname{Des}(w)} i, \quad \text { major index }
\end{aligned}
$$

- $\lambda=(3,2,1), w=121231 \in S_{\lambda} \leadsto \operatorname{Des}(w)=\{2,5\}, \operatorname{des}(w)=2$ and $\operatorname{maj}(w)=7$.

Euler-Mahonian distribution and orbit series

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ be a partition of $N=\sum \lambda_{i}$

$$
C_{\lambda}(x, q)=\sum_{w \in S_{\lambda}} x^{\operatorname{des}(w)} q^{\operatorname{maj}(w)} \in \mathbb{Z}[x, q]
$$

Theorem (MacMahon 1916)

$$
\sum_{k=0}^{\infty}\left(\prod_{i=1}^{m}\binom{\lambda_{i}+k}{k}_{q}\right) x^{k}=\frac{C_{\lambda}(x, q)}{\prod_{i=0}^{N}\left(1-x q^{i}\right)} .
$$

Theorem (C.-Voll 2016)

$$
\mathrm{d}_{T_{\lambda}}(s)=\prod_{p \text { prime }} \frac{C_{\lambda}\left(p^{-1-s}, p\right)}{\prod_{i=1}^{N}\left(1-p^{i-1-s}\right)}=\prod_{p \text { prime }} \frac{\sum_{w \in S_{\lambda}} p^{(-1-s) \operatorname{des}(w)+\operatorname{maj}(w)}}{\prod_{i=1}^{N}\left(1-p^{i-1-s}\right)} .
$$

Example: $\lambda=\left(1^{m}\right)$

$S_{\left(1^{m}\right)}=S_{m}=$ symmetric group on n letters,
$C_{\left(1^{m}\right)}(x, q)=$ Carlitz's q-Eulerian polynomial,

$$
\begin{aligned}
\mathrm{d}_{T_{\left(1^{m}\right), p}(s)} & =\frac{C_{\left(1^{m}\right)}\left(p^{-1-s}, p\right)}{\prod_{i=1}^{m}\left(1-p^{i-1-s}\right)}=\frac{\sum_{w \in S_{m}} \prod_{j \in \operatorname{Des}(w)} p^{j-1-s}}{\prod_{i=1}^{m}\left(1-p^{i-1-s}\right)} \\
& =\frac{1}{1-p^{m-1-s}} \sum_{I \subseteq[m-1]}\binom{m}{I} \prod_{i \in I} \frac{p^{i-1-s}}{1-p^{i-1-s}} .
\end{aligned}
$$

Is an istance of an "Igusa function"

$$
\left.\leadsto \mathbf{d}_{T_{\left(1^{m}\right), p}}(s)\right|_{p \rightarrow p^{-1}}=(-1)^{m} p^{m-1-s} \mathbf{d}_{T_{\left(1^{m}\right), p}}(s) .
$$

Local functional equations

$\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is a rectangle if $\lambda_{1}=\cdots=\lambda_{m}$.

Theorem (C.-Voll)

1. Let p be a prime. For all $r, m \in \mathbb{N}$,

$$
\left.\mathbf{d}_{T_{\left(r^{m}\right), p}}(s)\right|_{p \rightarrow p^{-1}}=(-1)^{r m} p^{m}(\stackrel{r}{2}+1)-r-r s^{\mathbf{d}_{T_{\left(r^{m}\right), p}}}(s) .
$$

2. If λ is not a rectangle, then $\mathrm{d}_{T_{\lambda}, p}(s)$ does not satisfy a functional equation of the form

$$
\left.\mathrm{d}_{T_{\lambda, p}}(s)\right|_{p \rightarrow p^{-1}}= \pm p^{d_{1}-d_{2} s} \mathbf{d}_{T_{\lambda}, p}(s)
$$

for $d_{1}, d_{2} \in \mathbb{N}_{0}$.

Proof

1. Symmetry of $C_{\left(r^{m}\right)}(x, q)+$ involution on $S_{\left(r^{m}\right)}$
2. $C_{\lambda}(x, 1)$ has constant term 1 . It is monic if and only if λ is a rectangle.

Abscissae of convergence and growth

Fact. For an Euler product

$$
\prod_{p} W\left(p, p^{-s}\right)=\prod_{p} \sum_{(k, j) \in I} c_{k j} p^{k-j s}, c_{k j} \neq 0
$$

- $\alpha=$ abscissa of convergence $=\max \left\{\left.\frac{a+1}{b} \right\rvert\,(a, b) \in I\right\}$
- Meromorphic continuation to $\{\operatorname{Re}(s)>\beta\}, \beta=\max \left\{\left.\frac{a}{b} \right\rvert\,(a, b) \in I\right\}$

Theorem (C.-Voll)

$\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right), N=\sum_{i} \lambda_{i}$

1. $\alpha_{\lambda}=$ abs. of conv. of $d_{T_{\lambda}}(s)=N$, meromorphic continuation to $\{\operatorname{Re}(s)>N-2\}$
2. There exists a constant $K_{\lambda} \in \mathbb{R}_{>0}$ such that

$$
\sum_{v \leqslant n} \mathrm{O}_{T_{\lambda}}(v) \sim K_{\lambda} n^{N} \quad \text { as } n \rightarrow \infty
$$

Abscissae of convergence and growth

In our case

$$
\prod_{p} C_{\lambda}\left(p^{-1-s}, p\right)=\prod_{p} \sum_{(k, j) \in I_{\lambda}} c_{k j} p^{k-j s}=\prod_{p} \sum_{w \in S_{\lambda}} p^{\operatorname{maj}(w)-(1+s) \operatorname{des}(w)}
$$

- $\alpha=\max \left\{\left.\frac{\operatorname{maj}(w)-\operatorname{des}(w)+1}{\operatorname{des}(w)} \right\rvert\, w \in S_{\lambda}\right\}$
- $\beta=\max \left\{\left.\frac{\operatorname{maj}(w)-\operatorname{des}(w)}{\operatorname{des}(w)} \right\rvert\, w \in S_{\lambda}\right\}$

Theorem (C.-Voll)

$\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right), N=\sum_{i} \lambda_{i}$

1. $\alpha_{\lambda}=$ abs. of conv. of $d_{T_{\lambda}}(s)=N$, meromorphic continuation to $\{\operatorname{Re}(s)>N-2\}$
2. There exists a constant $K_{\lambda} \in \mathbb{R}_{>0}$ such that

$$
\sum_{v \leqslant n} \mathrm{O}_{T_{\lambda}}(v) \sim K_{\lambda} n^{N} \quad \text { as } n \rightarrow \infty
$$

Abscissae of convergence and growth

In our case

$$
\prod_{p} C_{\lambda}\left(p^{-1-s}, p\right)=\prod_{p} \sum_{(k, j) \in I_{\lambda}} c_{k j} p^{k-j s}=\prod_{p} \sum_{w \in S_{\lambda}} p^{\mathrm{maj}(w)-(1+s) \operatorname{des}(w)}
$$

- $\alpha=\max \left\{\left.\frac{\operatorname{maj}(w)-\operatorname{des}(w)+1}{\operatorname{des}(w)} \right\rvert\, w \in S_{\lambda}\right\}=N-1$
- $\beta=\max \left\{\left.\frac{\operatorname{maj}(w)-\operatorname{des}(w)}{\operatorname{des}(w)} \right\rvert\, w \in S_{\lambda}\right\}=N-2$

Proof

$\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right), N=\sum_{i} \lambda_{i}$

1. $\alpha_{\lambda}=\max \left\{N-1\right.$, abscissa of convergence of $\left.\frac{1}{\prod_{i=1}^{N}\left(1-p^{i-1-s}\right)}\right\}=N$.
2. There exists a constant $K_{\lambda} \in \mathbb{R}_{>0}$ such that

$$
\sum_{v \leqslant n} \mathrm{O}_{T_{\lambda}}(v) \sim K_{\lambda} n^{N} \quad \text { as } n \rightarrow \infty \quad \text { (Tauberian theorem). }
$$

Natural boundaries: an example

$$
\begin{gathered}
\lambda=(2,1,1) \leadsto m=3, N=4, \beta=2 \\
C_{\lambda}(X, Y)=1+2 Y+3 X Y+2 X^{2} Y+X Y^{2}+2 X^{2} Y^{2}+X^{3} Y^{2} \\
(a, b) \in I_{\lambda} \Leftrightarrow \exists w \in S_{\lambda} \mid \operatorname{des}(w)=b \text { and } \operatorname{maj}(w)=a+b
\end{gathered}
$$

$\bullet=I_{\lambda}$

Natural boundaries: an example

$$
\begin{gathered}
\lambda=(2,1,1) \leadsto m=3, N=4, \beta=2 \\
C_{\lambda}(X, Y)=1+2 Y+3 X Y+2 X^{2} Y+X Y^{2}+2 X^{2} Y^{2}+X^{3} Y^{2} \\
(a, b) \in I_{\lambda} \Leftrightarrow \exists w \in S_{\lambda} \mid \operatorname{des}(w)=b \text { and } \operatorname{maj}(w)=a+b
\end{gathered}
$$

$$
\widetilde{C_{\lambda}^{1}}(X, Y)=1+2 X^{2} Y, \text { not "cyclotomic" }
$$

$$
\Downarrow
$$

$\operatorname{Re}(s)=\beta$ is a natural boundary

$$
\bullet=I_{\lambda}
$$

Natural boundaries: an example

$$
\begin{gathered}
\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \leadsto N=\sum_{i} \lambda_{i}, \beta=N-2 \\
C_{\lambda}(X, Y)=\sum_{w \in S_{\lambda}} X^{\operatorname{maj}(w)-\operatorname{des}(w)} Y^{\operatorname{des}(w)}
\end{gathered}
$$

$$
(a, b) \in I_{\lambda} \Leftrightarrow \exists w \in S_{\lambda} \mid \operatorname{des}(w)=b \text { and } \operatorname{maj}(w)=a+b
$$

$$
\begin{gathered}
\widetilde{C_{\lambda}^{1}}(X, Y)=1+(\mathbf{m}-\mathbf{1}) X^{\beta} Y \\
\end{gathered}
$$

$\operatorname{Re}(s)=\beta$ is a natural boundary
$\bullet=I_{\lambda}$

Natural boundaries

Theorem (C.-Voll)

Assume that $m>2$. Then the orbit Dirichlet series $\mathbf{d}_{T_{\lambda}}(s)$ has a natural boundary at

$$
\{\operatorname{Re}(s)=N-2\} .
$$

For $m=2$ and $\lambda \neq(1,1)$ we conjecture that the same holds. We prove it subject to:

Conjecture 1 For $\lambda_{1}>\lambda_{2}$

$$
C_{\left(\lambda_{1}, \lambda_{2}\right)}(-1,1)=\sum_{i=0}^{\lambda_{2}}(-1)^{i}\binom{\lambda_{1}}{i}\binom{\lambda_{2}}{i} \neq 0
$$

Conjecture 2 For $\lambda=\left(\lambda_{1}, \lambda_{1}\right), \lambda_{1} \equiv 1(\bmod 2)$

$$
C_{\lambda}(x, q)=\left(1+x q^{\lambda_{1}}\right) C_{\lambda}^{\prime}(x, q),
$$

where $C_{\lambda}^{\prime}(-1,1) \neq 0$.

