Orbit Dirichlet series and multiset permutations

Angela Carnevale

Universität Bielefeld

(joint work with C. Voll)

Orbit Dirichlet series

Let *X* be a space and $T: X \to X$ a map. For $n \in \mathbb{N}$

$${x, T(x), T^2(x), \dots, T^n(x) = x} = \text{closed orbit of length } n$$

 $O_T(n)$ = number of closed orbits of length n under T.

The **orbit Dirichlet series** of *T* is the Dirichlet generating series

$$\mathsf{d}_T(s) = \sum_{n=1}^{\infty} \mathsf{O}_T(n) n^{-s},$$

where s is a complex variable.

- ▶ If $O_T(n) = 1$ for all $n \rightsquigarrow d_T(s) = \zeta(s)$
- ▶ For $r \in \mathbb{N}$, if $O_{T_r}(n) = a_n(\mathbb{Z}^r) = \text{number of index } n \text{ subgroups of } \mathbb{Z}^r$

$$\sim$$
 $\mathsf{d}_{T_r}(s) = \prod_{i=0}^{r-1} \zeta(s-i)$

Products and periodic points

 $n \mapsto O_T(n)$ is multiplicative \rightsquigarrow Orbit Dirichlet series satisfy an Euler product

$$\mathsf{d}_T(s) = \prod_{p \text{ prime}} \mathsf{d}_{T,p}(s) = \prod_{p \text{ prime}} \sum_{k=0}^{\infty} \mathsf{O}_T(p^k) p^{-ks}$$

To find the orbit series of a product of maps, we first look at another sequence:

$$F_T(n)$$
 = number of points of period $n = \sum_{d|n} dO_T(d)$

Möbius inversion gives

$$O_T(n) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) \mathsf{F}_T(d)$$

For any finite collection of maps T_1, \ldots, T_r

$$\mathsf{F}_{T_1 \times ... \times T_r}(n) = \mathsf{F}_{T_1}(n) \cdots \mathsf{F}_{T_r}(n)$$

Orbit series of products of maps

Goal. For a partition $\lambda = (\lambda_1, \dots, \lambda_m)$, compute

$$\mathsf{d}_{T_{\lambda}}(s) = \mathsf{d}_{T_{\lambda_{1}} \times \cdots \times T_{\lambda_{m}}}(s) = \prod_{\substack{n \text{ prime} \\ }} \mathsf{d}_{T_{\lambda},p}(s),$$

where $O_{T_{\lambda_i}}(n)$ =number of index n subgroups of \mathbb{Z}^{λ_i} .

For $i = 1, \ldots, m$

$$\begin{split} \mathsf{O}_{T_{\lambda_i}}(p^k) &= \binom{\lambda_i - 1 + k}{k}_p \quad \text{and} \quad \mathsf{F}_{T_{\lambda_i}}(p^k) = \binom{\lambda_i + k}{k}_p \\ &\leadsto \mathsf{d}_{T_{\lambda}}(s) = \prod_{k = 1}^\infty \sum_{k = 0}^\infty \left(\prod_{k = 1}^m \binom{\lambda_i + k}{k}_n\right) p^{-k - ks}. \end{split}$$

Multiset permutations

Let
$$\lambda = (\lambda_1, \dots, \lambda_m)$$
 be a partition of $N = \sum_{i=1}^{m} \lambda_i$.

$$S_{\lambda} = \text{ set of all multiset permutations on } \{\underbrace{\mathbf{1}, \dots, \mathbf{1}}_{\lambda_1}, \underbrace{\mathbf{2}, \dots, \mathbf{2}}_{\lambda_2}, \dots, \underbrace{\mathbf{m}, \dots, \mathbf{m}}_{\lambda_m} \}.$$

$$\lambda = (1, ..., 1) = (1^m) \rightsquigarrow S_m = \text{permutations of the set } \{1, 2, ..., m\},$$

$$\lambda = (2,1) \rightsquigarrow S_{\lambda} = \{112, 121, 211\}$$

For
$$w \in S_{\lambda}$$
, $w = w_1 \dots w_N$

$$Des(w) = \{i \in [N-1] \mid w_i > w_{i+1}\},$$
 descent set of w

$$des(w) = |Des(w)|$$
, number of descents

$$maj(w) = \sum_{i \in Des(w)} i$$
, major index

▶
$$\lambda = (3, 2, 1), w = 121231 \in S_{\lambda} \leadsto Des(w) = \{2, 5\}, des(w) = 2 \text{ and } maj(w) = 7.$$

Euler-Mahonian distribution and orbit series

Let $\lambda = (\lambda_1, \dots, \lambda_m)$ be a partition of $N = \sum \lambda_i$

$$C_{\lambda}(x,q) = \sum_{w \in S_{\lambda}} x^{\operatorname{des}(w)} q^{\operatorname{maj}(w)} \in \mathbb{Z}[x,q]$$

Theorem (MacMahon 1916)

$$\sum_{k=0}^{\infty} \left(\prod_{i=1}^m \binom{\lambda_i + k}{k}_q \right) x^k = \frac{C_{\lambda}(x, q)}{\prod_{i=0}^N (1 - xq^i)}.$$

Theorem (C.-Voll 2016)

$$\mathsf{d}_{T_{\lambda}}(s) = \prod_{p \, \mathrm{prime}} \frac{C_{\lambda}(p^{-1-s}, p)}{\prod_{i=1}^{N} (1-p^{i-1-s})} = \prod_{p \, \mathrm{prime}} \frac{\sum_{w \in S_{\lambda}} p^{(-1-s) \, \mathrm{des}(w) + \mathrm{maj}(w)}}{\prod_{i=1}^{N} (1-p^{i-1-s})}.$$

Example:
$$\lambda = (1^m)$$

$$S_{(1^m)} = S_m =$$
symmetric group on n letters,

$$C_{(1^m)}(x,q) = \text{Carlitz's } q\text{-Eulerian polynomial},$$

$$\begin{split} \mathsf{d}_{T_{(1^m)},p}(s) &= \frac{C_{(1^m)}(p^{-1-s},p)}{\prod_{i=1}^m (1-p^{i-1-s})} = \frac{\sum_{w \in S_m} \prod_{j \in \mathrm{Des}(w)} p^{j-1-s}}{\prod_{i=1}^m (1-p^{i-1-s})} \\ &= \frac{1}{1-p^{m-1-s}} \sum_{I \subseteq [m-1]} \binom{m}{I} \prod_{i \in I} \frac{p^{i-1-s}}{1-p^{i-1-s}}. \end{split}$$

Is an istance of an "Igusa function"

$$\sim \mathsf{d}_{T_{(1^m),p}}(s)|_{p o p^{-1}} = (-1)^m p^{m-1-s} \mathsf{d}_{T_{(1^m)},p}(s).$$

Local functional equations

$$\lambda = (\lambda_1, \dots, \lambda_m)$$
 is a **rectangle** if $\lambda_1 = \dots = \lambda_m$.

Theorem (C.-Voll)

1. Let *p* be a prime. For all $r, m \in \mathbb{N}$,

$$\mathsf{d}_{T_{(r^m),p}}(s)|_{p\to p^{-1}} = (-1)^{rm} p^{m\binom{r+1}{2}-r-rs} \mathsf{d}_{T_{(r^m),p}}(s).$$

2. If λ is not a rectangle, then $\mathsf{d}_{T_{\lambda,p}}(s)$ does not satisfy a functional equation of the form

$$\mathsf{d}_{T_{\lambda},p}(s)|_{p\to p^{-1}} = \pm p^{d_1-d_2s} \mathsf{d}_{T_{\lambda},p}(s)$$

for $d_1, d_2 \in \mathbb{N}_0$.

Proof

- **1.** Symmetry of $C_{(r^m)}(x,q)$ + involution on $S_{(r^m)}$
- **2.** $C_{\lambda}(x,1)$ has constant term 1. It is monic if and only if λ is a rectangle.

Abscissae of convergence and growth

Fact. For an Euler product

$$\prod_{p} W(p, p^{-s}) = \prod_{p} \sum_{(k,j) \in I} c_{kj} p^{k-js}, c_{kj} \neq 0$$

- $ightharpoonup \alpha = abscissa of convergence = max <math>\left\{ \frac{a+1}{b} \mid (a,b) \in I \right\}$
- ▶ Meromorphic continuation to $\{\text{Re}(s) > \beta\}$, $\beta = \max \left\{\frac{a}{b} \mid (a, b) \in I\right\}$

Theorem (C.-Voll)

$$\lambda = (\lambda_1, \ldots, \lambda_m), N = \sum_i \lambda_i$$

- **1.** $\alpha_{\lambda} = \text{ abs. of conv. of } d_{T_{\lambda}}(s) = N$, meromorphic continuation to $\{\text{Re}(s) > N 2\}$
- **2.** There exists a constant $K_{\lambda} \in \mathbb{R}_{>0}$ such that

$$\sum_{\mathbf{v} \leq n} \mathsf{O}_{T_{\lambda}}(\mathbf{v}) \sim K_{\lambda} n^{N} \quad \text{ as } n \to \infty.$$

Abscissae of convergence and growth

In our case

$$\prod_{p} C_{\lambda}(p^{-1-s}, p) = \prod_{p} \sum_{(k,j) \in I_{\lambda}} c_{kj} p^{k-js} = \prod_{p} \sum_{w \in S_{\lambda}} p^{\text{maj}(w) - (1+s) \operatorname{des}(w)}$$

- $ightharpoonup lpha = \max\left\{rac{\mathrm{maj}(w) \mathrm{des}(w) + 1}{\mathrm{des}(w)} \mid w \in S_{\lambda}
 ight\}$
- $\beta = \max \left\{ \frac{\operatorname{maj}(w) \operatorname{des}(w)}{\operatorname{des}(w)} \mid w \in S_{\lambda} \right\}$

Theorem (C.-Voll)

$$\lambda = (\lambda_1, \ldots, \lambda_m), N = \sum_i \lambda_i$$

- **1.** $\alpha_{\lambda} = \text{ abs. of conv. of } d_{T_{\lambda}}(s) = N$, meromorphic continuation to $\{\text{Re}(s) > N 2\}$
- **2.** There exists a constant $K_{\lambda} \in \mathbb{R}_{>0}$ such that

$$\sum_{\mathbf{v} \leq n} \mathsf{O}_{T_{\lambda}}(\mathbf{v}) \sim K_{\lambda} n^{N} \quad \text{ as } n \to \infty.$$

Abscissae of convergence and growth

In our case

$$\prod_{p} C_{\lambda}(p^{-1-s}, p) = \prod_{p} \sum_{(k,j) \in I_{\lambda}} c_{kj} p^{k-js} = \prod_{p} \sum_{w \in S_{\lambda}} p^{\operatorname{maj}(w) - (1+s) \operatorname{des}(w)}$$

- $\blacktriangleright \ \beta = \max \left\{ \frac{\operatorname{maj}(w) \operatorname{des}(w)}{\operatorname{des}(w)} \mid w \in S_{\lambda} \right\} = N 2$

Proof

$$\lambda = (\lambda_1, \ldots, \lambda_m), N = \sum_i \lambda_i$$

- 1. $\alpha_{\lambda} = \max \left\{ N 1$, abscissa of convergence of $\frac{1}{\prod_{i=1}^{N} (1 p^i 1 s)} \right\} = N$.
- **2.** There exists a constant $K_{\lambda} \in \mathbb{R}_{>0}$ such that

$$\sum_{\nu \le n} \mathsf{O}_{T_{\lambda}}(\nu) \sim K_{\lambda} n^N \quad \text{ as } n \to \infty \quad \text{(Tauberian theorem)}.$$

Natural boundaries: an example

$$\lambda = (2,1,1) \rightsquigarrow m = 3, N = 4, \beta = 2$$

$$C_{\lambda}(X,Y) = 1 + 2Y + 3XY + 2X^{2}Y + XY^{2} + 2X^{2}Y^{2} + X^{3}Y^{2}$$

Natural boundaries: an example

$$\lambda = (2,1,1) \rightsquigarrow m = 3, N = 4, \beta = 2$$

$$C_{\lambda}(X,Y) = 1 + 2Y + 3XY + 2X^{2}Y + XY^{2} + 2X^{2}Y^{2} + X^{3}Y^{2}$$

$$\widetilde{C_{\lambda}^{1}}(X,Y) = 1 + 2X^{2}Y$$
, not "cyclotomic" $\label{eq:condition}$

 $Re(s) = \beta$ is a natural boundary

Natural boundaries: an example

$$\lambda = (\lambda_1, \dots, \lambda_m) \rightsquigarrow N = \sum_i \lambda_i, \beta = N - 2$$

$$C_{\lambda}(X, Y) = \sum_{w \in S_{\lambda}} X^{\text{maj}(w) - \text{des}(w)} Y^{\text{des}(w)}$$

$$\widetilde{C_{\lambda}^{1}}(X,Y) = 1 + (m-1)X^{\beta}Y$$

$$\label{eq:constraint} \diamondsuit$$

 $Re(s) = \beta$ is a natural boundary

Natural boundaries

Theorem (C.-Voll)

Assume that m > 2. Then the orbit Dirichlet series $d_{T_{\lambda}}(s)$ has a natural boundary at

$$\{\operatorname{Re}(s)=N-2\}.$$

For m = 2 and $\lambda \neq (1, 1)$ we conjecture that the same holds. We prove it subject to:

Conjecture 1 For $\lambda_1 > \lambda_2$

$$C_{(\lambda_1,\lambda_2)}(-1,1) = \sum_{i=0}^{\lambda_2} (-1)^i {\lambda_1 \choose i} {\lambda_2 \choose i} \neq 0$$

Conjecture 2 For $\lambda = (\lambda_1, \lambda_1), \lambda_1 \equiv 1 \pmod{2}$

$$C_{\lambda}(x,q) = (1 + xq^{\lambda_1})C_{\lambda}'(x,q),$$

where $C'_{\lambda}(-1,1) \neq 0$.