In dem Seminar werden begleitend zu der 2-stündigen
Vorlesung Polyzyklische Gruppen ausgewählte Themen aus der Theorie der polyzyklischen Gruppen behandelt. Vorausgesetzt werden Grundkenntnisse und -fertigkeiten, die im Regelfall in der Vorlesung "Algebra" sowie der Vorlesung "Einführung in die Gruppentheorie" oder einer vergleichbaren weiterführenden Vorlesung im Bereich Algebra erworben wurden. Zusätzliche Kenntnisse aus Master-Vorlesungen im Bereich Gruppentheorie sind vorteilhaft.
(Die nebenstehende Graphik hat keine tiefere Verbindung zu polyzyklischen Gruppen; sie stammt von Daviv Eppstein's
Geometry Junkyard.)
Als Textgrundlagen verwenden wir einzelne Zeitschriftenartikel. Das unten genannte Fachbuch von D. Segal dient als Hintergrunds- bzw. Zusatzliteratur.
Die Vorträge werden so ausgewählt, dass sich bei entsprechendem Interesse jeweils Möglichkeiten zur weiteren Vertiefung im Rahmen einer Master-Arbeit anbieten.
Vorbesprechung:
findet in der ersten Sitzung, am Donnerstag, dem 20.10.2016, um 14:30 Uhr in Raum 25.22.03.73 statt; Teilnehmer(innen) können bereits vorab ihr Interesse bekunden und Vortragsthemen vereinbaren
Beginn:
Donnerstag, der 20.10.2016
Zeit/Ort:
wöchentlich; Do. 14:30-16:00 Uhr in 25.22.03.73
Inhalt:
Spezielle und ergänzende Themen aus der Theorie der polyzyklischen Gruppen
Selbständiges Erarbeiten von mathematischen Texten und Präsentation des Gelernten.
Voraussetzungen:
Vorlesung "Algebra", Vorlesung "Einführung in die Gruppentheorie" oder themenverwandte Lehrveranstaltungen; ggf. vertiefende Vorlesungen zur Gruppentheorie
Leistungsnachweis:
aktive Teilnahme, 90-minütiger Vortrag.
Veranstalter:
Gebäude 25.22, Raum 03.50
Sprechstunden: nach Vereinbarung
Die folgenden Bücher dienen als eine erste Textgrundlage:
- D.J.S. Robinson A Course in the Theory of Groups, Springer, 1996
- D. Segal, Polycyclic Groups, CUP, 1983
Die Teilnehmer(innen) besprechen frühzeitig einen ersten Plan für ihren Vortrag und stellen dann, mindestens eine Woche im voraus, anhand von detaillierten Notizen einen genauen Plan für ihren Vortrag vor.
Terminplan
Do. 20.10.2016 |
B. Klopsch |
Vorbesprechung und Verteilung der Vorträge |
Do. 27.10.2016 |
B. Klopsch |
Schranken für das Untergruppenwachstum polyzyklischer Gruppen |
Do. 03.11.2016 |
M. Zormpa |
Cluster Algebras: Classification of finite mutation type (Master-Arbeit) |
|
|
ausnahmsweise um 12.30 Uhr in 25.13.U1.30 |
Do. 24.11.2016 |
M. Bresgen |
Kommensurabilität und elementare Äquivalenz von polyzyklischen Gruppen |
Do. 08.12.2016 |
J. Boschheidgen |
Minimale Erzeugendenzahlen für polyzyklische Gruppen |
Do. 15.12.2016 |
L. Dörflinger |
Die äußere Automorphismengruppe einer polyzyklischen Gruppe |
Do. 22.12.2016 |
N. Steinert |
Ein Zerfällungssatz für lineare polyzyklische Gruppen |
Do. 12.01.2017 |
Y.-F. Puang |
Virtuell polyzyklische Gruppen besitzen eine NIL-affine krystallographische Wirkung |
Do. 19.01.2017 |
M. Littmann |
Wann ist die Automorphismengruppe einer virtuell polyzyklischen Gruppe virtuell polyzyklisch? |
Do. 26.01.2017 |
H. Sasse |
Uniformes Wortwachstum für polyzyklische Gruppen |
Do. 02.02.2017 |
F. Stuhlpfarrer |
Konjugationsklassenwachstum in polyzyklischen Gruppen |
Do. 09.02.2017 |
D. Bradley-Williams |
Polyzyklische Gruppen, analytische Gruppen und algebraische Gruppen |