EXERCISE SHEET 1

ADVANCED SEMINAR ON GROUP THEORY SUMMER 2019

PROJECTIVE REPRESENTATION THEORY

All problems are taken out of Isaacs book [1]. If there is interest, we can meet to discuss the problems on Monday.

Problem 1: For a group G and a character χ of G define

$$Z(\chi) = \{ g \in G \mid |\chi(g)| = \chi(1) \}.$$

Using the fact that $\chi(1)|[G:\mathbb{Z}(\chi)]$, proof the last theorem of Tuesdays talk: (6.15, Ito) Let $A \leq G$ be an abelian normal subgroup. Then $\chi(1)|[G:A]$.

Problem 2: Let $N \leq G$ and $\varphi, \theta \in \operatorname{Irr}(N)$ be invariant under G and such that $\varphi\theta$ is again irreducible. Assume that θ extends to $\chi \in \operatorname{Irr}(G)$, i.e. $(\chi)_N = \theta$. Define

$$\mathcal{S} = \{\beta \in \operatorname{Irr}(G) \mid [\varphi^G, \beta] \neq 0\} \text{ and } \mathcal{T} = \{\psi \in \operatorname{Irr}(G) \mid [(\varphi\theta)^G, \psi] \neq 0\}.$$

Show that $\beta \mapsto \beta \chi$ defines a bijection $\mathcal{S} \to \mathcal{T}$.

Problem 3: Let $N \leq G$ such that G/N is abelian. Let C be the group of linear characters of G/N, acting on Irr(G). Let $\theta \in Irr(N)$. Show that:

$$\theta^G = f \sum_{i=1}^s \chi_i$$

where f, s are integers and the set of the $\chi_i \in \operatorname{Irr}(G)$ is an orbit under C.

Problem 4: Let $N \leq G$ be such that G/N is cyclic. Let $\theta \in Irr(G)$ be invariant under G and $\theta(1)$ be coprime to [G:N]. Show that θ extends to G.

References

 I. M. Isaacs, *Character theory of finite groups*. Pure and Applied Mathematics, No. 69. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976.