Kurzskript Modelltheorie II

Immi Halupczok

16. Mai 2024

Inhaltsverzeichnis

Modelltheorie II			
1	Bewertete Körper		
	1.1	Beträge	2
	1.2	Vervollständigung	3
	1.3	Bewertete Körper	4
	1.4	Bewertungsringe	5
	1.5	Fortsetzung von Bewertungen	6
	1.6	Newton-Polygone	6
	1.7	Henselsche Körper	7
	1.8	Anwendung auf diophantische Gleichungen	8
2	Quantorenelimination in bewerteten Körpern		
	2.1	Leitterme	9
	2.2	Quantorenelimination: Die Aussagen	10

Modelltheorie II

1 Bewertete Körper

1.1 Beträge

Definition 1.1.1 Sei K ein Körper. Ein **Betrag** auf K ist eine Abbildung $|\cdot|: K \to \mathbb{R}_{>0}$ mit:

- (a) $|a| = 0 \iff a = 0$
- (b) $|ab| = |a| \cdot |b|$
- (c) $|a+b| \leq |a| + |b|$ (Dreiecksungleichung).

(Manchmal nennt man das auch eine **Norm** auf K; es gibt aber auch etwas anderes, was man einen Norm auf einem Körper nennt.)

Beispiel 1.1.2 Auf $K \subseteq \mathbb{R}$: der normale Absolutbetrag: $|a|_{\mathbb{R}} = a$ falls $a \ge 0$ und $|a|_{\mathbb{R}} = -a$ falls $a \ge 0$.

Beispiel 1.1.3 Auf $K \subseteq \mathbb{C}$: der komplexe Betrag: $|a+ib|_{\mathbb{C}} = \sqrt{a^2 + b^2}$ für $a, b \in \mathbb{R}$.

Beispiel 1.1.4 Der triviale Betrag auf einem beliebigen Körper $K: |0|_0 = 0$, $|a|_0 = 1$ für $a \in K^{\times}$.

Bemerkung 1.1.5 Es gilt: |1|=1; |a|=|-a|; $|\frac{1}{a}|=\frac{1}{|a|}$ für $a\in K^{\times}$.

Definition 1.1.6 Ein Betrag $|\cdot|$ heißt nicht-archimedisch, wenn die ultrametrische Dreiecksungleichung gilt:

$$|a+b| \le \max\{|a|, |b|\}$$

Sonst heißt $|\cdot|$ archimedisch.

Beispiel 1.1.7 Sei R ein faktorieller Ring, K = Frac <math>R, und sei $p \in R$ ein irreduzibles Element. Dann lässt sich jedes Element $a \in K^{\times}$ schreiben in der $Form \ a = p^r \cdot \frac{m}{n}$, mit $m, n \in R$ nicht durch p teilbar und $r \in \mathbb{Z}$ beliebig. Sei außerdem s eine beliebige relle Zahl größer als 1. Dann wird durch $|a|_p := s^{-r}$ (und $|0|_p := 0$) ein (nicht-archimedischer) Betrag auf K definiert. Man nennt dies den p-adischen Betrag (oder die p-adische Norm).

Bemerkung 1.1.8 Ist $R = \mathbb{Z}$ und p eine Primzahl, so ist es üblich, s = p zu wählen, d. h. der p-adische Betrag auf \mathbb{Q} ist $|a|_p := p^{-r}$.

Satz 1.1.9 (Satz von Ostrowski) Die einzigen Beträge auf \mathbb{Q} sind der triviale, $x \mapsto |x|_{\mathbb{R}}^{\lambda}$ für $\lambda \in (0,1]$, und $x \mapsto |x|_{p}^{\lambda}$ für $\lambda \in (0,\infty)$ und p prim.

Lemma 1.1.10 Sei K ein Körper mit einem Betrag $|\cdot|$, und sei $A := \{|n \cdot 1| \mid n \in \mathbb{Z}\}$. Ist $|\cdot|$ archimedisch, so ist A unbeschränkt. (Inbesondere hat K Charakteristik 0.) Ist $|\cdot|$ nicht-archimedisch, so ist $A \subseteq [0,1]$.

Beispiel 1.1.11 Ist k ein beliebiger Körper, R = k[t], $a \in k$ und f = t - a, so gilt für $q \in k(t) = \operatorname{Frac} R$: Ist $|q|_f = 2^r$, so hat q eine r-fache Nullstelle bei a, wobei Polstellen als negative Nullstellen angesehen werden.

1.2 Vervollständigung

Lemma 1.2.1 Sei K ein Körper und $|\cdot|$ ein Betrag auf K. Dann ist d(a,b) := |a-b| eine Metrik auf K. Addition, Multiplikation, $x \mapsto -x$ und $x \mapsto \frac{1}{x}$ (für $x \neq 0$) sind stetig bezüglich der von dieser Metrik induzierten Topologie.

Satz 1.2.2 Sei K ein Körper mit einem Betrag $|\cdot|$, und sei \hat{K} die Vervollständigung von K bezüglich der von $|\cdot|$ induzierten Metrik. Dann lassen sich die Addition, die Multiplikation und der Betrag von K auf eindeutige Weise stetig auf \hat{K} fortsetzen, und \hat{K} wird auf diese Art auch ein Körper mit Betrag.

Beispiel 1.2.3 Die Vervollständigung von \mathbb{Q} bezüglich $|\cdot|_{\mathbb{R}}$ ist \mathbb{R} .

Definition 1.2.4 Sei p eine Primzahl. Der Körper \mathbb{Q}_p der p-adischen Zahlen ist die Vervollständigung von \mathbb{Q} bezüglich des p-adischen Betrags.

Korollar 1.2.5 (zum Satz von Ostrowski) Die Vervollständigungen von \mathbb{Q} bezüglich beliebigen Beträgen auf \mathbb{Q} sind: \mathbb{Q} selbst (wenn der Betrag trivial ist); \mathbb{R} ; und \mathbb{Q}_p für alle Primzahlen p.

Satz 1.2.6 Sei p eine Primzahl.

(a) Seien $r_i \in \{0, 1, ..., p-1\}$ für alle $i \geq \mathbb{Z}$. Wir nehmen an, dass ein $N \in \mathbb{Z}$ existiert, so dass $r_i = 0$ für alle i < N ist. Dann konvergiert die Folge

$$a_m := \sum_{i=N}^m r_i p^i$$

bezüglich der p-adischen Norm gegen ein Element

$$a := \sum_{i \in \mathbb{Z}} r_i p^i := \lim_{m \to \infty} a_m$$

aus \mathbb{Q}_p . Ist N minimal mit $r_N \neq 0$, so ist $|a|_p = p^{-N}$.

(b) Jedes Element $a \in \mathbb{Q}_p$ lässt sich auf eindeutige Weise als ein solcher Limes schreiben.

Definition 1.2.7 Die ganzen p-adischen Zahlen sind definiert als $\mathbb{Z}_p := \{a \in \mathbb{Q}_p \mid |a|_p \leq 1\}.$

Bemerkung 1.2.8 Es gilt $\mathbb{Z}_p = \{\sum_{i \geq 0} r_i p^i \mid r_i \in \{0, \dots, p-1\} \text{ für alle } i\},$ wobei der Grenzwert in \mathbb{Q}_p berechnet wird.

Bemerkung 1.2.9 \mathbb{Z}_p ist ein Unterring von \mathbb{Q}_p .

Satz 1.2.10 \mathbb{Z}_p ist der topologische Abschluss von \mathbb{Z} in \mathbb{Q}_p .

Definition 1.2.11 Sei k ein Körper. Die Menge der **formalen Laurent-Reihen** über k ist definiert als die Menge der formalen Summen der Form

$$k((t)) := \{ \sum_{i > N} r_i t^i \mid N \in \mathbb{Z}, \forall i \colon r_i \in k \}.$$

Die Summe und das Produkt von zwei solchen Reihen sind so definiert, wie man es bei Reihen erwartet. Der (t-adische) Betrag einer formalen Reihe $a = \sum_{i \geq N} r_i t^i \in k((t))$ mit $r_N \neq 0$ ist $|a|_t := 2^{-N}$. (Und: $|0|_t := 0$.) Die formalen Potenzreihen sind

$$k[[t]] := \{a \in k((t)) \mid |a|_t \le 1\} = \{\sum_{i \ge 0} r_i t^i \mid \forall i \colon r_i \in k\}.$$

Satz 1.2.12 k((t)) ist die Vervollständigung von k(t) bezüglich des t-adischen Betrags aus Beispiel 1.1.11; insbesondere ist k((t)) ein Körper. Die Teilmenge k[[t]] bildet einen Unterring, und sie ist der topologische Abschluss von k[t] in k((t)).

1.3 Bewertete Körper

Definition 1.3.1 Eine angeordnete abelsche Gruppe ist eine abelsche Gruppe Γ mit Ordnungsrelation <, so dass für alle $\alpha, \alpha', \beta \in \Gamma$ gilt: $\alpha < \alpha' \Rightarrow \alpha + \beta < \alpha' + \beta$.

Beispiel 1.3.2 (\mathbb{Z} , +), (\mathbb{Q} , +), (\mathbb{R} , +) (\mathbb{R} _{>0}, ·).

Bemerkung 1.3.3 Angeordnete abelsche Gruppen sind torsionsfrei.

Definition 1.3.4 Sei K ein Körper. Eine **Bewertung** auf K ist eine Abbildung $v: K \to \Gamma \cup \{\infty\}$, wobei Γ eine angeordnete abelsche Gruppe ist, so dass für alle $a, b \in K$ gilt:

- $v(a) = \infty \iff a = 0$
- v(ab) = v(a) + v(b)
- $v(a+b) \ge \min\{v(a), v(b)\}.$

Ein Körper mit Bewertung heißt bewerteter Körper. Γ heißt Wertegruppe.

Zwei Bewertungen $v: K \to \Gamma$, $v': K \to \Gamma'$ heißen **äquivalent**, wenn ein ordungserhaltender Gruppenisomorphismus $\alpha: \Gamma \to \Gamma'$ existiert mit $v' = \alpha \circ v$.

Bemerkung 1.3.5 Ist (K, v) ein bewerteter Körper mit Wertegruppe $\Gamma \subseteq (\mathbb{R}, +)$, so wird durch $|x| := 2^{-v(x)}$ ein nicht-archimedischer Betrag auf K definiert. Ist umgekehrt $|\cdot|$ ein nicht-archimedischer Betrag auf einem Körper K, so erhält man eine Bewertung $v(x) := -\log(|x|)$ auf K, deren Wertegruppe eine Untergruppe von $(\mathbb{R}, +)$ ist.

Beispiel 1.3.6 Den p-adischen Beträgen aus Beispiel 1.1.7 entsprechen jeweils p-adische Bewertungen (mit Wertegruppe \mathbb{Z}): Ist R ein faktorieller Ring, $K = \operatorname{Frac} R$ und $p \in R$ irreduzibel, so ist die p-adische Bewertung auf K definiert durch $v_p(p^r \cdot \frac{m}{n}) = r$, für $r \in \mathbb{Z}$ und $m, n \in R$ nicht durch p-teilbar.

Bemerkung 1.3.7 Sei (K, v) ein bewerteter Körper. Dann gilt für $a, b \in K$:

- (a) v(1) = 0; v(-a) = v(b); $v(\frac{1}{a}) = -v(a)$
- (b) Ist $v(a) \neq v(b)$, so ist $v(a+b) = \min\{v(a), v(b)\}$. (c) Sind $a_1, \ldots, a_n \in K$ mit $\sum_{i=1}^n a_i = 0$, so tauch die minimale Bewertung mehrfach auf, d. h. es existieren $j \neq j'$ mit $v(a_j) = v(a_{j'}) = \min\{v(a_1), \dots, v(a_n)\}.$

Definition 1.3.8 Sei (K, v) ein bewerteter Körper mit Wertegruppe Γ .

- (a) Ein offener Ball in K ist eine Teilmenge der Form $B_{>\gamma}(a) := \{x \in K \mid a \in K \mid$ $v(x-a) > \gamma$ für $a \in K$, $\gamma \in \Gamma$.
- (b) Ein abgeschlossener Ball in K ist eine Teilmenge der Form $B_{\geq \gamma}(a) :=$ $\{x \in K \mid v(x-a) \geq \gamma\} \text{ für } a \in K, \ \gamma \in \Gamma.$
- (c) Die **Bewertungs-Topologie** auf K ist die Topologie mit den offenen Bällen als Basis.
- Bemerkung 1.3.9 (a) "Jeder Punkt eines Balls ist Mittelpunkt des Balls": Für $b \in B_{>\gamma}(a)$ beliebig gilt $B_{>\gamma}(a) = B_{>\gamma}(b)$; und analog für abgeschlos-
 - (b) Sind $B_1, B_2 \subseteq K$ zwei Bälle, so ist entweder einer der Bälle im anderen enthalten oder $B_1 \cap B_2 = \emptyset$.

Bemerkung 1.3.10 Ist $B \subseteq K$ ein offener <u>oder</u> abgeschlossener Ball, so ist B topologisch offen <u>und</u> abgeschlossen.

1.4 Bewertungsringe

Lemma 1.4.1 Sei (K, v) ein bewerteter Körper. Dann gilt:

- (a) $\mathcal{O}_K := \{a \in K \mid v(a) \geq 0\}$ ist ein Unterring von K.
- (b) Die Einheiten dieses Rings sind $\mathcal{O}_K^{\times} = \{a \in K \mid v(a) = 0\}.$
- (c) $\mathcal{M}_K := \{a \in K \mid v(a) > 0\}$ ist das einzige maximale Ideal von \mathcal{O}_K .

Definition 1.4.2 Den Ring \mathcal{O}_K aus Lemma 1.4.1 nennt man den Bewertungsring von v. Den Quotient $\bar{K}:=\mathcal{O}_K/\mathcal{M}_K$ nennt man den Restklas $senk\"{o}rper$. Die Abbildung $\mathcal{O}_K o \bar{K}$ heißt Restklassenabbildung und wird mit res bezeichnet (und manchmal auch als $a \mapsto \bar{a}$ geschrieben).

Beispiel 1.4.3 (a) Ist K = k((t)), so ist $\mathcal{O}_K = k[[t]]$, $\mathcal{M}_K = tk[[t]]$, $\bar{K} = k$ und $\operatorname{res}(\sum_{i \in \mathbb{N}} r_i t^i) = r_0$. (b) Ist $L = \mathbb{Q}_p$, so ist $\mathcal{O}_K = \mathbb{Z}_p$, $\mathcal{M}_K = p\mathbb{Z}_p$, $\bar{K} = \mathbb{F}_p$ und $\operatorname{res}(\sum_{i \in \mathbb{N}} r_i p^i) = r_0$.

(b) Ist
$$L = \mathbb{Q}_p$$
, so ist $\mathcal{O}_K = \mathbb{Z}_p$, $\mathcal{M}_K = p\mathbb{Z}_p$, $\bar{K} = \mathbb{F}_p$ und $\operatorname{res}(\sum_{i \in \mathbb{N}} r_i p^i) = r_0$.

Bemerkung 1.4.4 Eine Bewertung auf einem Körper K ist (bis auf Äquivalenz) eindeutig durch den Bewertungsring \mathcal{O}_K festgelegt: Die Bewertung ist ein surjektiver Gruppenhomorphismus von K^{\times} nach Γ mit Kern \mathcal{O}_{K}^{\times} ; es gilt also $\Gamma \cong K^{\times}/\mathcal{O}_{K}^{\times}$. Außerdem ist die Ordnung auf Γ dadurch festgelegt, dass $v(a) \geq 0$ genau dann, wenn $a \in \mathcal{O}_K$ ist.

Definition 1.4.5 Ein (abstrakter) **Bewertungsring** von einem Körper K ist ein Unterring $R \subseteq K$, so dass gilt: Für alle $a \in K$ ist $a \in R$ oder $\frac{1}{a} \in R$.

Bemerkung 1.4.6 Ist K ein bewerteter Körper, so ist der Bewertungsring \mathcal{O}_K insbesondere ein abstrakter Bewertungsring.

Satz 1.4.7 Jeder abstrakte Bewertungsring eines Körpers K ist der Bewertungsring einer Bewertung auf K.

Beispiel 1.4.8 Ist $\mathbb{R}^* \succ \mathbb{R}$ eine elementare Erweiterung, so können wir auf \mathbb{R}^* eine Bewertung definieren, die die Größenordnung von Elementen misst. Es ist die Bewertung, die als Bewertungsring die Menge der "endlichen" Zahlen hat: $\mathcal{O}_{\mathbb{R}^*} := \{a \in \mathbb{R}^* \mid \exists b \in \mathbb{R} \colon |a|_{\mathbb{R}} < b\}$. Der Restklassenkörper zu dieser Bewertung ist \mathbb{R} .

Definition 1.4.9 Sei K ein bewerteter Körper und \bar{K} sein Restklassenkörper. Man sagt, K hat Charakteristik (p,q), wenn char K=p und char $\bar{K}=q$ ist. Ist q=p, so sagt man auch, K hat \ddot{A} quicharakteristik p. Ist $q \neq p$, so sagt man, K hat gemischte Charakteristik.

Bemerkung 1.4.10 Als Charakteristiken von bewerteten Körpern können auftreten: (0,0), (0,p) und (p,p), für Primzahlen p.

1.5 Fortsetzung von Bewertungen

Definition 1.5.1 Seien (K_1, v_1) und (K_2, v_2) bewertete Körper mit $K_1 \subseteq K_2$ und seien Γ_1 und Γ_2 die entsprechenden Wertegruppen. Wir nennen v_2 eine Fortsetzung von v_1 (auf K_2), wenn v_1 äquivalent ist zur Einschränkung $v_2|_{K_1}$.

Bemerkung 1.5.2 Nach Bemerkung 1.4.4 ist das äquivalent zu: $\mathcal{O}_{K_1} = \mathcal{O}_{K_2} \cap K_1$. Außerdem gilt dann auch $\mathcal{O}_{K_1}^{\times} = \mathcal{O}_{K_2}^{\times} \cap K_1$ und $\mathcal{M}_{K_1} = \mathcal{M}_{K_2} \cap K_1$, und man erhält eine natürliche Einbettung $\bar{K}_1 \subseteq \bar{K}_2$.

Satz 1.5.3 Ist $K \subseteq L$ eine Körpererweiterung, so lässt sich jede Bewertung auf K zu einer Bewertung auf L fortsetzen.

1.6 Newton-Polygone

Im folgenden sei K ein bewerteter Körper mit Wertegruppe Γ und $\Gamma_{\mathbb{Q}} = \{\frac{\gamma}{n} \mid \gamma \in \Gamma, n \in \mathbb{N}_{\geq 1}\}$ die divisible Hülle von Γ .

Definition 1.6.1 Sei $f = \sum_{i=0}^{n} a_i X^i \in K[X]$ ein Polynom mit $a_n \neq 0$. Das **Newton-Polygon** von f ist der Streckenzug durch die Punkte $(\ell, NP_f(\ell)) \in \mathbb{N} \times \Gamma_{\mathbb{Q}}$, für $0 \leq \ell \leq n$, wobei

$$\mathrm{NP}_f(\ell) = \min \left\{ v(a_\ell), \min_{i < \ell, j > \ell} \frac{(\ell-i)v(a_j) + (j-\ell)v(a_i)}{j-i} \right\}.$$

Aufeinanderfolgende Teilstrecken, die auf einer Geraden liegen, nennt man ein **Segment** des Newtonpolygons.

Satz 1.6.2 Sei $f = \sum_{i=0}^{n} a_i X^i \in K[X]$ ein Polynom vom Grad n. Wir setzen die Bewertung von K auf beliebige Weise auf K^{alg} fort und schreiben $f = a_n \cdot \prod_{i=1}^{n} (X - \alpha_i)$, mit $\alpha_i \in K^{\text{alg}}$ und $v(\alpha_1) \geq v(\alpha_2) \geq \cdots \geq v(\alpha_n)$. Dann ist $\operatorname{NP}_f(\ell) = v(a_n) + \sum_{i>\ell} v(\alpha_i)$ für $\ell = 0, \ldots, n$; oder anders ausgedrückt: $v(\alpha_\ell) = \operatorname{NP}_f(\ell) - \operatorname{NP}_f(\ell+1)$ für $\ell = 1, \ldots, n$.

Korollar 1.6.3 *Ist* $f \in \mathcal{O}_K[X]$ *ein normiertes Polynom, so liegen alle Null-stellen von* f *in* \mathcal{O}_K .

Korollar 1.6.4 Wenn wir die Bewertung von K auf beliebige Weise auf K^{alg} fortsetzen, so hat diese Fortsetzung als Wertegruppe $\Gamma_{\mathbb{O}}$.

Korollar 1.6.5 Sind $f, g \in K[X]$ Polynome vom Grad n und m und ist $h = f \cdot g$, so lässt sich NP_h wie folgt aus NP_f und NP_g bestimmen:

- $NP_h(m+n) = NP_f(n) + NP_g(m)$
- Die Segmente von NP_h sind genau die Segmente von NP_f und die Segmente von NP_g, so sortiert, dass NP_h konvex ist; also formal: Ist λ_i = NP_f(i) NP_f(i-1) für i = 1,...,n, und analog μ_i = NP_g(i) NP_g(i-1) und ν_i = NP_h(i) NP_h(i-1), so erhält man die Folge ν₁,...,ν_{m+n}, indem man die Folge λ₁,...,λ_n, μ₁,...,μ_m aufsteigend sortiert.

Korollar 1.6.6 (Verallgemeinertes Eisensteinsches Irreduzibilitäts-Kriterium) Sei $f \in K[X]$ ein Polynom vom Grad n über einem Körper K. Wenn eine Bewertung auf K existiert, so dass $\operatorname{NP}_f(\ell) \notin \Gamma$ für $1 \leq \ell \leq n-1$ gilt, so ist f irreduzibel.

1.7 Henselsche Körper

Definition 1.7.1 Ein bewerteter Körper K heißt **henselsch**, wenn gilt: Sind $f \in \mathcal{O}_K[X]$ und $a \in \mathcal{O}_K$ mit v(f(a)) > 0 und v(f'(a)) = 0, so existiert (mindestens) ein $a_0 \in \mathcal{O}_K$ mit $f(a_0) = 0$ und $v(a_0 - a) > 0$.

Satz 1.7.2 (Hensels Lemma) Sei K ein bewerteter Körper mit Wertegruppe $\Gamma = \mathbb{Z}$, der vollständig ist bezüglich der Metrik $d(a,b) := 2^{-v(a-b)}$. Dann ist K henselsch.

Bemerkung 1.7.3 Eine zu Definition 1.7.1 äquivalente Formulierung ist: K ist henselsch, wenn für jedes $f \in \mathcal{O}_K[X]$ gilt: Jede einfache Nullstelle $\bar{a} \in \bar{K}$ von $\mathrm{res}(f)$ lässt sich zu einer Nullstelle $b \in \mathrm{res}^{-1}(\bar{a})$ von f liften.

Satz 1.7.4 (Newtons Lemma) Sei K wie in Satz ?? bewerteter $K\"{o}rper$ mit Wertegruppe $\Gamma = \mathbb{Z}$, sei $f \in \mathcal{O}_K[X]$ ein Polynom, und sei $a \in \mathcal{O}_K$ so, dass v(f(a)) > 2v(f'(a)) gilt. Dann existiert genau ein $b \in \mathcal{O}_K$ mit f(b) = 0 und $v(b-a) \geq v(f(a)) - v(f'(a))$.

Bemerkung 1.7.5 In henselschen Körpern gilt sogar Newtons Lemma (Übung).

Beispiel 1.7.6 Algebraisch abgeschlossene bewertete Körper sind henselsch.

Beispiel 1.7.7 Der Körper $\mathbb{R}^* \succ \mathbb{R}$ mit der Bewertung aus Beispiel 1.4.8 ist henselsch.

Bemerkung 1.7.8 Man kann zeigen: Ein bewerteter Körper K ist henselsch genau dann, wenn die Bewertung von K genau eine Fortsetzung auf den algebraischen Abschluss K^{alg} besitzt.

Bemerkung 1.7.9 Man kann zeigen: Zu jedem bewerteten Körper K gibt es einen kleinsten henselschen bewerteten Körper $K^h \subseteq K^{\mathrm{alg}}$, der K enthält. K^h ist (als bewerteter Körper) eindeutig bis auf Automorphismus über K und heißt henselsche Hülle von K.

Bemerkung 1.7.10 Man kann zeigen: Ist K Körper mit Betrag und \hat{K} die Vervollständigung, so ist $K^h = \hat{K} \cap K^{alg}$.

1.8 Anwendung auf diophantische Gleichungen

Konvention: Alle Ringe sind kommutativ und mit 1.

Notation 1.8.1 Sei $\underline{f} := (f_1, \dots, f_\ell) \in \mathbb{Z}[X_1, \dots, X_n]^\ell$ ein Tupel von Polynomen und sei R ein Ring. Dann schreiben wir

$$V_f(R) := \{\underline{a} \in R^n \mid f_1(\underline{a}) = \dots = f_\ell(\underline{a}) = 0\}$$

für die Lösungen des Gleichungssystems "f = 0" in \mathbb{R}^n .

Bemerkung 1.8.2 Die Lösbarkeit von diophantischen Gleichungen ist unentscheidbar: Es gibt keinen Algorithmus, der ein Polynom $f \in \mathbb{Z}[X_1, \ldots, X_n]$ nimmt und entscheidet, ob $V_f(\mathbb{Z})$ nicht-leer ist.

Bemerkung 1.8.3 Ist $V_{\underline{f}}(\mathbb{Z})$ nicht-leer, so ist auch $V_{\underline{f}}(\mathbb{Z}/m\mathbb{Z})$ nicht-leer für alle $m \geq 1$.

Lemma 1.8.4 Sei $\underline{f} \in \mathbb{Z}[X_1, \dots, X_n]^\ell$ und $m \geq 1$. Ist $m = \prod_i p_i^{r_i}$ die Primfaktorzerlegung von m, so ist $\#V_{\underline{f}}(\mathbb{Z}/m\mathbb{Z}) = \prod_i \#V_{\underline{f}}(\mathbb{Z}/p_i^{r_i}\mathbb{Z})$.

Bemerkung 1.8.5 Für jede Primzahl p und jedes $r \geq 0$ gilt: $\mathbb{Z}/p^r\mathbb{Z} \cong \mathbb{Z}_p/p^r\mathbb{Z}_p$, also insbesondere $\#V_f(\mathbb{Z}/p^r\mathbb{Z}) = \#V_f(\mathbb{Z}_p/p^r\mathbb{Z}_p)$.

Definition 1.8.6 Sei $\underline{f} \in \mathbb{Z}[X_1, \dots, X_n]^{\ell}$ und p prim. Die **Poincaré-Reihe** zu \underline{f} ist die formale Potenzreihe

$$P_{\underline{f},p}(Z) := \sum_{r \in \mathbb{N}} N_r Z^r \in \mathbb{Q}[[Z]],$$

 $f\ddot{u}r\ N_r := \#V_f(\mathbb{Z}/p^r\mathbb{Z}).$

Satz 1.8.7 Sei $\underline{f} \in \mathbb{Z}[X_1, \dots, X_n]^{\ell}$ und p prim. Die Poincaré-Reihe $P_{\underline{f},p}(Z)$ ist eine rationale Funktion in Z, d. h. $P_{\underline{f},p}(Z) \in \mathbb{Q}(Z)$.

Beispiel 1.8.8 Ist f das Null-Polynom in n Variablen, so ist $P_{f,p}(Z) = \frac{1}{1-p^n Z}$.

Satz 1.8.9 Sei $\underline{f} \in \mathbb{Z}[X_1, \dots, X_n]^{\ell}$. Dann existieren ein Polynom $h \in \mathbb{Z}[Z, P]$ und Ringformeln $\phi_0, \dots, \phi_m, \phi'_0, \dots, \phi'_m$, so dass für jede Primzahl p gilt:

$$P_{\underline{f},p}(Z) = \frac{\sum_{i=0}^{m} (\#\phi_i(\mathbb{F}_p) - \#\phi_i'(\mathbb{F}_p))Z^i}{h(Z,p)}.$$

2 Quantorenelimination in bewerteten Körpern

Im gesamten Kapitel ist (K, v) ein bewerteter Körper mit Wertegruppe Γ , Bewertungsring \mathcal{O}_K , maximalem Ideal $\mathcal{M}_K \subseteq \mathcal{O}_K$ und Restklassenkörper \bar{K} .

2.1 Leitterme

Definition 2.1.1 Eine anguläre Komponente auf einem bewerteten Körper K ist ein Gruppenhomomorphismus ac: $K^{\times} \to \bar{K}^{\times}$, der auf \mathcal{O}_{K}^{\times} mit res übereinstimmt. Wir setzen außerdem ac(0) := 0.

Satz 2.1.2 Sei K ein bewerteter Körper, aufgefasst als Struktur in einer beliebigen Sprache (in der sich ausdrücken lässt, dass K ein bewerteter Körper ist). Dann besitzt K eine elementare Erweiterung $K' \succ K$, auf der eine anguläre Komponente existiert.

Bemerkung 2.1.3 $1 + \mathcal{M}_K$ ist eine Untergruppe der multiplikativen Gruppe K^{\times} .

Definition 2.1.4 Wir setzen RV $^{\times}$:= $K^{\times}/(1+\mathcal{M}_K)$ und RV := RV $^{\times} \cup \{0\}$ und schreiben rv: $K \to RV$ für die kanonische Abbildung $K^{\times} \to RV^{\times}$, fortgesetzt durch $0 \mapsto 0$. Für $a \in K$ nennt man rv(a) den **Leitterm** von a, und RV ist die **Leittermstruktur**. Für die Gruppe RV $^{\times}$ verwenden wir multiplikative Notation. Außerdem setzen wir $0 \cdot \xi = 0$ für $\xi \in RV$.

Bemerkung 2.1.5 Für $a, b \in K$ gilt rv(a) = rv(b) genau dann, wenn v(a-b) > v(a) ist oder a = b = 0.

Beispiel 2.1.6 Im Fall K = k((t)) bilden die Elemente der Form $at^m \in K$ (für $a \in k$, $m \in \mathbb{Z}$) ein Repräsentantensystem von RV^{\times} ; es gilt $RV^{\times} \cong k^{\times} \times \Gamma$ (als Gruppen).

Bemerkung 2.1.7 Die Bewertung $v: K \to \Gamma \cup \{\infty\}$ faktorisiert über RV, d. h., es existiert eine Abbildung $v_{\rm RV}: {\rm RV} \to \Gamma \cup \{\infty\}$, so dass $v = v_{\rm RV} \circ {\rm rv}$ gilt. Die Einschränkung $v_{\rm RV}|_{\rm RV}^{\times}$ ist ein Gruppenhomomorphismus von $({\rm RV}^{\times}, \cdot)$ nach $(\Gamma, +)$. Außerdem induziert rv einen injektiven Gruppenhomomorphismus $\bar{K}^{\times} \to {\rm RV}^{\times}$, dessen Bild genau der Kern von $v_{\rm RV}|_{\rm RV}^{\times}$ ist.

Bemerkung 2.1.8 Sei ac: $K \to \bar{K}$ eine anguläre Komponente. Dann erhalten wir eine induzierte Abbildung ac_{RV}: RV $\to \bar{K}$ (d. h. ac(a) = ac_{RV}(rv(a)) für $a \in K$) und einen Gruppen-Isomorphismus RV[×] $\to \bar{K}^{\times} \times \Gamma, \xi \mapsto (ac_{RV}(\xi), v(\xi))$.

Bemerkung 2.1.9 Die Fasern $F = \text{rv}^{-1}(\zeta)$ der Abbildung rv (für $\zeta \in \text{RV}$) sind genau die Menge $\{0\}$ und die maximalen offenen Bälle, die 0 nicht enthalten; also $F = B_{>v_{\text{RV}}(\zeta)}(a)$, für $a \in \text{rv}^{-1}(\zeta)$ beliebig.

Notation 2.1.10 Seien $\xi_1, \ldots, \xi_n, \zeta \in \text{RV}$. Wenn $a_i \in K$ existieren mit $\text{rv}(a_i) = \xi_i$ und $\text{rv}(a_1 + \cdots + a_n) = \zeta$, so schreiben wir $\zeta \approx \xi_1 + \cdots + \xi_n$. Wenn genau ein ζ existiert mit $\zeta \approx \xi_1 + \cdots + \xi_n$, so sagen wir, $\xi_1 + \cdots + \xi_n$ ist wohldefiniert, und wir schreiben $\zeta = \xi_1 + \cdots + \xi_n$. Außerdem setzen wir $-\xi_1 := \text{rv}(-1) \cdot \xi_1$.

Lemma 2.1.11 Seien $a_1, \ldots, a_n \in K$. Dann ist $\operatorname{rv}(a_1) + \cdots + \operatorname{rv}(a_n)$ wohlde-finiert genau dann, wenn $v(a_1 + \cdots + a_n) = \min\{v(a_1), \ldots, v(a_n)\}$ ist. Ist dies nicht der Fall, so gilt $\operatorname{rv}(a_1) + \cdots + \operatorname{rv}(a_n) \approx \zeta$ genau für diejenigen $\zeta \in \operatorname{RV}$, die $v(\zeta) > \min\{v(a_1), \ldots, v(a_n)\}$ erfüllen.

2.2 Quantorenelimination: Die Aussagen

Definition 2.2.1 Wir definieren L_{RV} als die zweisortige Sprache mit Sorten VF (für einen bewerteten Körper) und RV (für die zugehörige Leittermstruktur) und den folgenden Symbolen:

- die Ringsprache auf VF
- auf RV die Sprache der multiplikativen Gruppen und ein dreistelliges Relationssymbol für " $\xi_1 + \xi_2 \approx \xi_3$ ".
- ein Funktionssymbol rv: VF \rightarrow RV für die Abbildung rv: $K \rightarrow$ RV.

Ist K ein bewerteter Körper, so werden wir die L_{RV} -Struktur (K, RV) oft auch einfach mit K bezeichnen.

Bemerkung 2.2.2 Sei $L := L_{\text{ring}} \cup \{V\}$, wobei V ein Relationssymbol für den Bewertungsgring eines bewerteten Körpers ist. Dann sind, für bewertete Körper K, die L-definierbaren Teilmengen von K^n die selben wie die L_{RV} -definierbaren Teilmengen. Sowohl in L^{eq} als auch in $L_{\text{RV}}^{\text{eq}}$ existieren Sorten für RV, \bar{K} und $\Gamma \cup \{\infty\}$. Außerdem sind in beiden Sprachen definierbar: $\mathcal{O}_K \subseteq K$; $\mathcal{M}_K \subseteq K$; die Ring-Sprache auf \bar{K} ; die angeordnete-abelsche-Gruppen-Sprache auf Γ ; $v : K \to \Gamma \cup \{\infty\}$; $\text{rv} : K \to \text{RV}$; $v_{\text{RV}} : \text{RV} \to \Gamma \cup \{\infty\}$; $\text{res} : \mathcal{O}_K \to \bar{K}$.

Bemerkung 2.2.3 Es existiert eine L_{RV} -Theorie, deren Modelle genau die (K, RV) sind, für bewertete Körper K.

Definition 2.2.4 Seien (p,q) eine mögliche Charakteristik von bewerteten Körpern (vgl. Bemerkung 1.4.10). Wir schreiben HEN für die Theorie der henselschen bewerteten Körper, $\operatorname{HEN}_p\supseteq\operatorname{HEN}$ für die Theorie der henselschen bewerteten Körper der Charakteristik p (bei beliebiger Restklassenkörper-Charakteristik) und $\operatorname{HEN}_{p,q}\supseteq\operatorname{HEN}_p$ für die Theorie der henselschen bewerteten Körper der Charakteristik (p,q).

Bemerkung 2.2.5 Diese Theorien existieren. Es gilt: $\text{HEN}_0 = \text{HEN} \cup \{\text{char } K \neq p \mid p \text{ prim}\}\ und \ \text{HEN}_{0,0} = \text{HEN} \cup \{\text{char } \bar{K} \neq p \mid p \text{ prim}\}.$

Definition 2.2.6 Eine RV-Erweiterung von L_{RV} ist eine Sprache $L \supseteq L_{RV}$, so dass $L \setminus L_{RV}$ "nur auf RV lebt", d. h. nur aus Konstanten in RV, Funktions-symbolen RV $^{\ell} \to RV$ und Relationssymbolen auf RV $^{\ell}$ besteht.

Definition 2.2.7 Sei L eine RV-Erweiterung von L_{RV} . Wir nennen eine L-Formel VF-quantorenfrei (kurz: "VF-qf"), wenn sie keine Quantoren über Variablen der Sorte VF enthält.

Satz 2.2.8 Sei $L \supseteq L_{RV}$ eine RV-Erweiterung und sei $T \supseteq HEN_{0,0}$ eine L-Theorie. Dann ist jede L-Formel ist modulo T äquivalent zu einer VF-quantorenfreien L-Formel.

Korollar 2.2.9 Sei $L \supseteq L_{\text{RV}}$ eine RV-Erweiterung und sei $T \supseteq \text{HEN}_0$ eine L-Theorie. Dann existiert für jede L-Formel $\phi(\underline{x})$ ein $N_0 > 0$ und eine VF-quantorenfreie L-Formel $\psi(\underline{x})$, so dass gilt: Ist $K \models T$ ein Modell mit char $\overline{K} = 0$ oder char $\overline{K} > N_0$, so ist $\phi(K) = \psi(K)$.

\mathbf{Index}

\mathbb{Q}_p , 3 RV-Erweiterung, 11 VF=quantorenfrei, 11	Körper bewerteter, 4			
p-adische Norm, 2	Leitterm, 9 Leittermstruktur, 9			
p-adische Zahlen, 3	Lemma			
p-adischer Betrag, 2	von Hensel, 7			
VF-qf, 11	von Newton, 7			
abelsche Gruppe	von rewion,			
angeordnete, 4	Newton-Polygon, 6			
abgeschlossener Ball, 5	Newtons Lemma, 7			
angeordnete abelsche Gruppe, 4	nicht-archimedisch, 2			
anguläre Komponente, 9	Norm, 2			
archimedisch, 2	p-adische, 2			
Betrag, 2	offener Ball, 5			
p -adischer, $\frac{2}{2}$ archimedischer, $\frac{2}{2}$	Poincaré-Reihe, 8			
trivialer, 2	Restklassenabbildung, 5			
bewerteter Körper, 4	Restklassenkörper, 5			
Bewertung, 4				
Bewertungs-Topologie, 5	satz			
Bewertungsring, 5	Hensels Lemma, 7			
abstrakter, 5	Newtons Lemma, 7			
Charakteristik, 6	Satz von Ostrowski, 2			
Characteristik, 0	Segment, 6			
Dreiecksungleichung, 2	1 D			
ultrametrische, 2	trivialer Betrag, 2			
Eisensteinsches Irreduzibilitäts=Kriterium ultrametrische Dreiecksungleichung,				
verallgemeinertes, 7	Verallgemeinertes Eisensteinsches Irre-			
formale Laurent-Reihen, 4	duzibilitäts=Kriterium, 7			
formale Potenzreihen, 4	Wantagruppa			
Fortsetzung, 6	Wertegruppe, 4 wohldefiniert			
<i>C,</i>				
ganze p -adische Zahlen, 3	Summe in RV, 10			
gemischte Charakteristik, 6	Äquicharakteristik, 6			
Gruppe	äquivalente Bewertungen, 4			
angeordnete abelsche, $\frac{4}{}$				
Hensels Lemma, 7 henselsche Hülle, 8				