Wie üblich sind alle Antworten zu begründen/beweisen.

Aufgabe 1 (5 Punkte):

Sind (A, <) und (B, <) angeordnete Mengen, so definiert man auf $A \times B$ die lexikographische Ordnung wie folgt: Für $(a, b), (a', b') \in A \times B$ setze

$$(a,b) < (a',b)$$
 \iff $a < a' \lor (a = a' \land b < b')$

Im Folgenden dürfen Sie ohne Beweis verwenden, dass die lexikographische Ordnung wieder eine Ordnungsrelation ist.

(a) Zeigen Sie: Sind A und B wohlgeordnet, so ist auch $A \times B$ (mit der lexikographischen Ordnung) wohlgeordnet. Sei $X \subseteq A \times B$. Sei $A' = \{a \in A \mid \exists b \in B : (a,b) \in X\} \subseteq A$ die Projektion von X nach A, sei a_0 das Minimum von A' (existiert, da A wohlgeordnet), und sei b_0 das Minimum von $B' := \{b \mid (a_0,b) \in X\}$ (existiert, da B wohlgeordnet und da B' nach Wahl von a_0 nicht leer ist).

Behauptung (a_0, b_0) ist das Minimum von X.

Das es ist X liegt, ist klar.

Wenn $(a',b') \in X$ kleiner wäre, wäre entweder $a' < a_0$, was im Widerspruch ist dazu, dass a_0 das Minimum von A' ist, oder $a' = a_0$ und $b' < b_0$, was im Widerspruch zur Wahl von b_0 ist.

- (b) Welche der folgenden angeordneten Mengen sind ordnungsisomorph zueinander und welche nicht?
 - $M_1 := \mathbb{N}$
 - $M_2 := \mathbb{N} \times \{0, 1\}$
 - $M_3 := \{0,1\} \times \mathbb{N}$

Hierbei verwenden wir die übliche Ordnung auf \mathbb{N} und auf $\{0,1\}$ und die lexikographische Ordnung auf den Produkten.

Habe Ordnungsiso $M_2 \to M_1$, $(n, a) \mapsto 2n + a$:

Bijektivität ist klar.

Ordnungserhaltend: Habe 2n + a < 2n' + a' gdw. n < n' oder (n = n') und a = 0 und a' = 1). Diese Bedingung ist genau äquivalent zur lexikographischen Ordnung auf $\mathbb{N} \times \{0,1\}$

Habe Keinen Ordnungsiso $M_1 \to M_3$. Annahme: $f \colon M_1 \to M_3$ ist ordnungserhaltend.

 M_1 hat 0 als minimales Element, M_3 hat (0,0) als minimales Element; also f(0) = (0,0).

 M_1 hat 1 als nächst-größeres Element, M_3 hat (0,1) als nächst-größeres Element; also f(1)=(0,1).

Analog erhalte: f(n) = (0, n). Damit ist f bereits auf ganz N definiert, aber es ist nicht surjektiv.

Aufgabe 2 (5 Punkte):

(a) Seien (M, <) und (M', <) wohlgeordnete Mengen. Zeigen Sie, dass maximal eine ordnungserhaltende Bijektion $f: M \to M'$ existiert.

Hinweis: Wenn es zwei verschiedene gäbe: Betrachten Sie das kleinste Element $a \in M$, auf dem sie sich unterscheiden.

Wir nehmen also wie im Hinweis an: Ex. zwei verschiedene Isos $f_1, f_2 \colon M \to M'$, und a ist das kleinste Element, wo sie sich unterscheiden. Setze $N = \{m \in M \mid m < a\}$ und $N' = f_1(N) = f_2(N)$. Da f_i eine Bijektion ist, muss $f_i(M \setminus N) = M' \setminus N'$ sein. Nun ist a das kleinste Element von $M \setminus N$, d.h. es muss von beiden f_i auf das kleinste Element von $M' \setminus N'$ abgebildet werden. Damit unterscheiden sich f_1 und f_2 doch nicht bei a. Widerspruch.

- (b) Geben Sie ein Beispiel an, das zeigt: Sind (M,<) und (M',<) nur angeordnet (aber möglicherweise nicht wohlgeordnet), so können mehrere veschiedene ordnungserhaltende Bijektionen $f: M \to M'$ existieren. $f_i: \mathbb{Z} \to \mathbb{Z}, n \mapsto n+i$ für i=1,2.
- (c) Sei nun (M, <) wieder wohlgeordnet; wir nehmen außerdem an, dass M unendlich ist. Zeigen Sie, dass eine ordnungserhaltende Injektion von M nach M existiert, die keine Bijektion ist.

Sei a_0 das Minimum von M und sei a_i das Minimum von $M \setminus \{a_0, \ldots, a_{i-1}\}$. (Da M unendlich ist, sind diese Mengen jeweils nicht-leer, d.h. a_i existiert.)

Definiere die Bijektion $f: M \to M \setminus \{a\}$ durch: $f(a_i) = a_{i+1}$ für $i \in \mathbb{N}$, und f(b) = b für $b \in M \setminus \{a_i \mid i \in \mathbb{N}\}$.