

Wie üblich sind alle Antworten zu begründen/beweisen.

Aufgabe 1 (5 Punkte):

Wir wollen ein paar Teile von Bemerkung 2.2.3 verifizieren, die in der Vorlesung nur behauptet wurden. Sei L eine Sprache und sei X die Menge all derjenigen vollständigen L-Theorien T, bei denen aus $T \models \phi$ bereits $\phi \in T$ folgt. Für jede L-Theorie T' definieren wir eine Teilmenge von X:

$$A_{T'} := \{ T \in X \mid T' \subseteq T \}$$

Zeigen Sie:

- (a) Sind T_1 und T_2 L-Theorien und $T' := \{\phi_1 \lor \phi_2 \mid \phi_1 \in T_1, \phi_2 \in T_2\}$, so ist $A_{T_1} \cup A_{T_2} = A_{T'}$. Zu zeigen ist, für $T \in X$: $T_1 \subseteq T \lor T_2 \subseteq T \iff T' \subseteq T$. \Rightarrow : Sei o.E. $T_1 \subseteq T$, und sei $\phi_1 \lor \phi_2 \in T'$ wie oben. Dann ist $\phi_1 \in T_1 \subseteq T$, also $T \models \phi_1 \lor \phi_2$, also $\phi_1 \lor \phi_2 \in T$. \Leftarrow : Sei $T' \subseteq T$. Wir nehmen an, dass $T_2 \not\subseteq T$ ist und zeigen dann $T_1 \subseteq T$. Es gibt also ein $\phi_2 \in T_2 \setminus T$, und wir wollen für jedes $\phi_1 \in T_1$ zeigen: $\phi_1 \in T$. Nach Annahme ist $\phi_1 \lor \phi_2 \in T$. Zusammen mit $\neg \phi_2 \in T$ folgt $\phi_1 \in T$.
- (b) Wenn man die Menge $A_{T'}$ als abgeschlossen auffasst, wird X dadurch zu einem topologischen Raum. Wir zeigen die Axiome für abg. Mengen: \emptyset ist abg: $A_{\{\bot\}} = \emptyset$ (da keine konsistente Theorie \bot enthält). X ist abg: $A_{\emptyset} = X$.

 Die Vereinigung von endl vielen abg. Mengen A_{T_i} (i = 1, ..., n) ist wieder abgeschlossen: Es reicht, den Fall n = 2

zu betrachten. der folgt aus Aufgabenteil (a). Der Schnitt von beliebig vielen abg. Mengen A_{T_i} $(i \in I)$ ist wieder abgeschlossen: Offensichtlich liegt ein $T \in X$ im Schnitt genau dann, wenn $T_i \subseteq T$ für alle i, also wenn $T' := \bigcap_i T_i \subseteq T$, also wenn $T \in A_{T'}$. Also ist $A_{T'}$ der Schnitt.

- (c) Die Mengen der Form $A_{\{\phi\}}$ für L-Aussagen ϕ sind nicht nur abgeschlossen, sondern auch offen. Für $T \in X$ gilt: $T \in A_{\{\phi\}}$ gdw. $\phi \in T$ gdw $\neg \phi \notin T$ gdw. $T \in A_{\{\neg \phi\}}$. Das Komplement von $A_{\{\phi\}}$ ist also $A_{\{\neg \phi\}}$, also abgeschlossen, also ist $A_{\{\phi\}}$ offen.
- (d) Diese Mengen $A_{\{\phi\}}$ bilden eine Basis des topologischen Raums, d. h. jede offene Menge $U\subseteq X$ ist Vereinigung von (beliebig vielen) Mengen der Form $A_{\{\phi\}}$. Ist U offen, so ist U das Komplement von $A_{T'}$ für eine Theorie T'. Habe $A_{T'}=\bigcap_{\phi\in T'}A_{\{\phi\}}$, also $U=\bigcup_{\phi\in T'}A_{\{\neg\phi\}}$.
- (e) X ist Hausdorff, d.h. je zwei verschiedene Elemente von X haben disjunkte offene Umgebungen. Hinweis: Zeigen Sie, dass eine Menge der Form $A_{\{\phi\}}$ existiert, die die beiden Elemente trennt. Sind T_1, T_2 verschiedene vollständige Theorien, so existiert eine L-Aussage ϕ mit $\phi \in T_1$ und $\neg \phi \in T_2$. Dann ist $T_1 \in A_{\{\phi\}}$ und $T_2 \in A_{\{\neg\phi\}}$. Die Mengen $A_{\{\phi\}}$ und $A_{\{\neg\phi\}}$ sind disjunkt und beide offen.

Man kann X als topologischen Raum auffassen, bei dem eine Teilmenge $Y \subseteq X$ abgeschlossen ist genau dann, wenn eine (möglicherweise unvollständige) Theorie T' existiert mit $Y = \{T \in X \mid T' \subseteq T\}$. Der Kompaktheitssatz besagt dann genau, dass X kompakt ist.

Aufgabe 2 (5 Punkte):

Sei $k \ge 1$ eine natürliche Zahl. Zeigen Sie: Ein (unendlicher) Graph ist k-färbbar genau dann, wenn jeder endliche Teilgraph k-färbbar ist.

Genauer:

Ein Graph ist eine Menge M von "Knoten", wobei je zwei verschiedene Knoten durch eine Kante verbunden sein können, aber nicht müssen. "Verbunden sein" ist also eine zweistellige Relation R auf M, die symmetrisch (d. h. $R(x,y) \leftrightarrow R(y,x)$) und irreflexiv (d. h. $\neg R(x,x)$) ist.

Ein Teilgraph eines Graphs M ist eine Teilmenge $N\subseteq M$ mit der Einschränkung von R als Kantenrelation, d.h. $a,b\in N$ sind in N durch eine Kante verbunden genau dann, wenn sie es in M sind.

Eine k-Färbung eines Graphs M ist einfach nur eine Abbildung $f: M \to \{1, \dots, k\}$. (Jedem Knoten wird eine "Farbe" zugeordnet; die Zahlen $1, \dots, k$ stehen für k verschiedene Farben.)² Eine k-Färbung ist "geeignet", wenn zwei Knoten, die durch eine Kante verbunden sind, nie die gleiche Farbe haben. Man nennt einen Graphen M k-färbbar, wenn eine geeignete k-Färbung von M existiert.

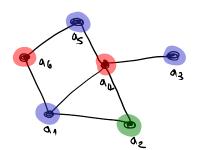
 $^{^1\}mathrm{Manchmal}$ nennt man ein solches Nauch einen "induzierten Teilgraph von M ".

²Genauer gesagt handelt es sich hier um Knotenfärbungen. Es gibt auch den Begriff der Kantenfärbung.

Hinweis: Wenn man Färbungen auf geschickte Art in einer Sprache ausdrückt, folgt das aus dem Kompaktheitssatz. Genauer: Sei $L = \{R\}$, und betrachten Sie das "atomare Diagramm" von M:

 $\operatorname{Diag}(\mathcal{M}) := \{ \phi \in \operatorname{Th}_{L(M)}(\mathcal{M}) \mid \phi \text{ ist eine atomare Aussage oder die Negation einer atomaren Aussage} \}.$

Erweitern Sie die Sprache so, dass Sie darin eine k-Färbung beschreiben können, und fügen Sie zur Theorie hinzu, dass die k-Färbung geeignet ist. Können Sie aus einem Modell dieser Theorie eine Färbung des ursprünglichen Graphs M erhalten?



Eine drei-Färbung eines eines Graphs. Dieser Graph ist nicht 2-färbbar, da a1, a2 und a4 drei verschiedene Farben haben müssen.

Sei ein Graph M gegeben. Wenn M k-färbbar ist, dann offensichtlich auch jede endliche Teilmenge, d. h. es bleibt, die andere Richtung zu zeigen. Wir nehmen also an, dass jede endliche Teilmenge von M k-färbbar ist.

Seien L und $\text{Diag}(\mathcal{M})$ wie im Hinweis. Sei $L' := L(M) \cup \{F_i \mid i = 1, ..., k\}$, wobei F_i ein einstelliges Relationssymbol ist. Sei $T' := \text{Diag}(\mathcal{M}) \cup T$, wobei T aus den folgenden L'-Aussagen besteht:

- (1) $\forall x \colon F_1 \lor \cdots \lor F_k$
- (2) Für jedes Paar $i \neq j$: $\forall x : \neg(F_i(x) \land F_j(x))$. (3) Für jedes $i : \forall x, x' : ((F_i(x) \land F_i(x')) \rightarrow \neg R(x, x'))$
- (1) und (2) besagen also, dass (für Modelle $\mathcal{M}' \models T'$) die $F_i(\mathcal{M}')$ eine Partition von M' bilden (so dass wir eine Färbung f auf M' definieren können durch: f(a) = i genau dann, wenn $\mathcal{M}' \models F_i(a)$), und (3) besagt, dass diese Färbung geeignet ist.

Behauptung: T' ist konsistent.

Bew: Nach dem Kompaktheitssatz reicht es zu zeigen, dass jede endliche Teilmenge $T_0' \subseteq T'$ konsistent ist.

Seien a_1, \ldots, a_m die (endlich vielen) Konstanten aus L(M), die in T'_0 vorkommen. Wir fassen die Teilmenge $M_0 := \{a_1, \ldots, a_m\}$ von M als L(M)-Struktur auf, indem wir die anderen Konstanten aus L(M) beliebig interpretieren. Dann ist \mathcal{M}_0 ein Modell der L(M)-Theorie $T'_0 \cap \text{Diag}(\mathcal{M})$.

Nach Annahme ist M_0 k-färbbar, d. h. es existiert eine geeignete Färbung $f: M_0 \to \{1, \dots, k\}$. Wir können also \mathcal{M}_0 zu einer L'-Struktur machen, die ein Modell von T' ist, indem wir $F_i^{\mathcal{M}_0} := \{a \in M_0 \mid f(a) = i\}$ setzen.

Damit ist \mathcal{M}_0 insbesondere ein Modell von T'_0 ; T'_0 ist also konsistent, und die Behauptung ist gezeigt.

Da T' konsistent ist, existiert ein Modell $\mathcal{M}' \models T'$. Wir haben eine Abbildung $\alpha \colon M \to M'$, die ein $a \in M$ abbildet auf die Interpretation von a in \mathcal{M}' . Daraus, dass \mathcal{M}' ein Modell von Diag (\mathcal{M}) ist, folgt:

- (a) α ist injektiv (da für $a, b \in M$ mit $a \neq b$ gilt: $\mathcal{M}' \models a \neq b$.)
- (b) $\mathcal{M} \models R(a, b) \iff \mathcal{M}' \models R(a, b)$.

Anders ausgedrückt: M kann als Teilgraph von M' aufgefasst werden.

Da $\mathcal{M}' \models T$ haben wir auf M' eine geeignete Färbung. Diese schränkt sich zu einer geeigneten Färbung von M ein.