Übungsblatt 10

Abgabe der Lösungen: 19. 1. 2016

Aufgabe 37. (5 Punkte)

Es seien $n, m \in \mathbb{N}$, Ω sei eine offene Teilmenge von \mathbb{R}^n , $f: \Omega \to \mathbb{R}^m$ sei eine C^1 -Submersion. Beweisen Sie: f ist eine offene Abbildung; d.h., für jede offene Teilmenge U von Ω ist f(U) offen in \mathbb{R}^m .

Aufgabe 38. (5 Punkte)

Es seien $k, m, n \in \mathbb{N}$, $U \subseteq \mathbb{R}^n$ und $V \subseteq \mathbb{R}^m$ seien offen, $f: U \to V \subseteq \mathbb{R}^m$ und $g: V \to \mathbb{R}^k$ seien Immersionen [bzw. Submersionen]. Beweisen Sie, dass $g \circ f: U \to \mathbb{R}^k$ eine Immersion [bzw. Submersion] ist.

Aufgabe 39. (10 Punkte)

Ist die Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^3$ mit

$$f(u,\phi) := \begin{pmatrix} (3 + \cos(\phi)\sin(u) - \sin(\phi)\sin(2u))\cos(2\phi) \\ (3 + \cos(\phi)\sin(u) - \sin(\phi)\sin(2u))\sin(2\phi) \\ \sin(\phi)\sin(u) + \cos(\phi)\sin(2u) \end{pmatrix}$$

eine Immersion? Es sei $Q:=[0,2\pi[\,\times\,[0,\pi[.\,\,{\rm Ist}\,\,f\,ig|_Q:\,Q\to f(\mathbb{R}^2)\,\,{\rm surjektiv}?\,\,{\rm Ist}\,\,f\,ig|_Q\,\,{\rm injektiv}?$

Aufgabe 40. (10 Punkte)

Beweisen Sie, dass die Menge

$$X := \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) \,\middle|\, x \in \left] 0, 1 \right] \right\} \cup \left\{ (x, y) \in \mathbb{R}_{\leq 0} \times \mathbb{R} \,\middle|\, |y| \geq \frac{1}{2} \right\} \subset \mathbb{R}^2$$

(bezüglich der Standardmetrik auf \mathbb{R}^2) zusammenhängend ist und bestimmen Sie die Wegzusammenhangskomponenten von X.

Aufgabe 41. (10 Punkte)

Beweisen Sie Satz 2.1.8: *Es seien* $n, m \in \mathbb{N}$ *und* $r \in \mathbb{N}_{\geq 1} \cup \{\infty\}$. $\Omega \subseteq \mathbb{R}^n$ *sei offen,* $f : \Omega \to \mathbb{R}^m$ *sei* C^r , *es sei* $x_0 \in \Omega$, *und* $D_{x_0} f : \mathbb{R}^n \to \mathbb{R}^m$ *sei surjektiv. Dann existieren*

- eine offene Umgebung V von x_0 in Ω ,
- eine offene Umgebung U' von 0 in \mathbb{R}^{n-m} ,
- eine offene Umgebung U von $f(x_0)$ in \mathbb{R}^m und
- $ein C^r$ -Diffeomorphismus $\varphi: U \times U' \to V$

 $mit \ \forall (x,y) \in U \times U' : (f \circ \varphi)(x,y) = x$. Insbesondere gibt es eine Umgebung U von $f(x_0)$ in \mathbb{R}^m , die im Bild von f enthalten ist.