GRK 2240:
Algebro-geometric Methods in Algebra, Arithmetic and Topology

Mathematisches Institut Heinrich-Heine-Universität Universitätsstr. 1
40225 Düsseldorf

Fachbereich Mathematik und Informatik
Bergische Universität Wuppertal
Gaußstr. 20
42119 Wuppertal

Research Aims:

The main goal of the research training group Algebro-Geometric Methods in Algebra, Arithmetic and Topology is the application of tools and results from Algebraic Geometry to pure mathematics, for instance in nearby areas of Algebraic Topology, Group Theory, K-theory, Model Theory, Number Theory and Representation Theory. Usage of these sophisticated and powerful tools will by taught systematically to our doctoral researchers. The following project titles illustrate the broad range of applications we have in mind:


1. Algebraic cobordism of spherical varieties (Hornbostel)
2. Arithmetic representation growth of virtually free groups (Klopsch, Reineke)
3. Brauer groups of algebraic stacks (Hornbostel, Schröer)
4. Representations of compact p-adic reductive groups and of semisimple profinite groups (Klopsch, Späth)
5. Representation zeta functions of analytic groups via model theoretic methods
(Halupczok, Klopsch)
6. Hermitian K-groups of classifying spaces (Hornbostel, Zibrowius)
7. Cohomology and geometry of Deligne-Lusztig varieties (Orlik, Schröer)
8. Local-analytic motivic integration (Halupczok, Orlik)
9. Local structures and Clifford theory via Deligne-Lusztig induction (Orlik, Späth)
10. Obstructions for quiver moduli spaces (Reineke,Schröer)
11. Witt rings of homogeneous spaces (Zibrowius)
12. Stratifizierte gemischte Tate-Motive in derp-adischen analytischenGeometrie (Orlik, Wendt)
13. Chow–Witt-Ringe und verfeinerte enumerative Geometrie (Wendt, Zibrowius)

Projects 1 and 11 are conducted in cooperation with Prof. Dr. Nicolas Perrin
(Laboratoire de Mathématiques de Versailles) homepage

Responsible for the content: E-Mail sendenDaniel Harrer/Stefan Schröer