
SIMPLICIAL SETS & SPECTRA

JEROEN HEKKING

Abstract. These are notes for my talk at the Wuppertal Summer School on
Derived and Triangulated Categories.

1. Introduction

1.1. Notation.

• Set,Top is the category of sets resp. topological spaces.
• Fun(C,D) is the category of functors C→ D, for given categories C,D.
• C(x, y) is the hom-set homC(x, y) for objects x, y in a category C.

2. Simplicial sets

In mainly follow [GJ09].

2.1. The category of simplicial sets.

Definition. The simplex category ∆ is the category with finite, linearly ordered
sets as objects, and order preserving functions as morphisms.

For n ∈ N, we write [n] = {0, 1, 2, . . . , n} (with obvious order) for the unique (up
to isomorphism) object in ∆ with n+ 1 elements.

Definition. A simplicial set is a functor ∆op → Set. The category of simplicial
sets is sSet := Fun(∆op, Set).

In order to describe simplicial sets, it is convenient to know that the morphisms
in ∆ are generated by the following special ones. Consider the

coface maps: di : [n− 1]→ [n] for 0 ≤ i ≤ n
codegeneracy maps: sj : [n+ 1]→ [n] for 0 ≤ j ≤ n

defined as follows.

• di is the unique injective map in ∆ which misses i ∈ [n].
• sj is the unique surjective map in ∆ which hits j ∈ [n] twice.

Now every morphism in ∆ can be written as a composition of coface and codegenarcy
maps. In fact, we can say more. For this, we first observe that these maps together
satisfy certain relationships in ∆, called the cosimplicial identities:

djdi = didj−1 if i < j

sjdi = disj−1 if i < j

sjdj = id = sjdj+1

sjdi = di−1sj if i > j + 1

sjsi = sisj+1 if i ≤ j
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Now let C be the category where an object is a series of sets {Xn}n≥0 together
with

face maps: di : Xn → Xn−1 for 0 ≤ i ≤ n
degeneracy maps: sj : Xn → Xn+1 for 0 ≤ j ≤ n

satisfying the simplicial identities

didj = dj−1di if i < j

disj = sj−1di if i < j

djsj = id = dj+1sj

disj = sjdi−1 if i > j + 1

sisj = sj+1si if i ≤ j

A morphism {Xn}n≥0 → {Yn}n≥0 is a sequence of functions {fn : Xn → Yn}n≥0,
commuting with the di’s and sj ’s. Since the simplicial identities are exactly dual to
the cosimplicial identities, we have a functor

H : sSet→ C

which sends a simplicial set X : ∆→ Set to the sequence of sets Xn := X([n]), to-
gether with the maps di := X(di) and sj := X(sj). Now the coface and codegenarcy
maps plus to cosimplicial identities generate ∆ in the following precise sense:

Proposition. The functor H is an equivalence.

Fundamentally, simplicial sets are a combinatorial way to think of spaces. To
give the idea, let X ∈ sSet be given. The elements of Xn are called n-simplices. We
think of an n-simplex σ ∈ Xn as an ‘n-cell’ in the ’space’ X, with faces d0σ, . . . , dnσ.
For example, we think of a 1-simplex γ as a path from the point d1γ to the point
d0γ, and a two-simplex τ as a triangle with faces d0τ, d1τ, d2τ , and vertices

d0d0τ = d0d1τ d1d2τ = d1d1τ d0d2τ = d1d0τ

We can see that these are the vetices by drawing a picture, and see that this agrees
with the simplicial identities.

An n-simplex σ in X is called degenerate if there is some (n− 1)-simplex τ such
that σ = sjτ for some τ . For example, for a 0-simplex x ∈ X, we think of s0x as
the trivial path at x. A simplex which is not degenerate is called non-degenerate.

Example. Let n ≥ 0. The most fundamental example of a simplicial set is the
standard n-simplex, written ∆[n]. As a functor, this is nothing but the image of [n]
under Yoneda ∆→ sSet, so ∆[n] = ∆(−, [n]). As a space, we think of ∆[n] as the
topological n-simplex, which is the convex hull of its n+1 vertices. As a series of sets,
we have that ∆[n]0 is the set of vertices, labelled 0, 1, . . . , n. The 1-simplices are the
edges and the degenerate vertices, and so on for higher dimensions. There is a unique
non-degenerate simplex in highest level, namely ιn := id[n] ∈ ∆[n]n = ∆([n], [n]). It
corresponds to the n-cell which is the whole topological n-simplex.

The boundary ∂∆[n] of ∆[n] is the simplicial set generated by simplices of level
< n. It is the largest subcomplex of ∆[n] that contains all the faces diιn.

For 0 ≤ k ≤ n, the k-th horn Λk[n] is the largest subcomplex of ∆[n] which
contains all faces diιn except the k-th face dkιn. We have inclusions Λk[n] ⊂ ∂∆[n] ⊂
∆[n]. It is instructive to draw pictures for low n.

By Yoneda, we have

X ∼= colim
∆[n]→X

∆[n]

for any X ∈ sSet. In particular, Xn is naturally isomorphic to sSet(∆[n], X).
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Example. Let C be a category. The nerve of C is the simplicial set N(C), where
N(C)n is the set of diagrams in C of the form

x0
f0−→ x1

f1−→ . . .
fn−1−−−→ xn

The maps di act by composing fi−1 with fi (or removing f0 resp. fn−1 when i = 0
resp. i = n), while sj acts by inserting an identity at xj .

More abstractly, we consider [n] ∈∆ as a category in the obvious way. Then the
simplicial set N(C) is the functor Ob(Fun(−,C)). This also shows that the nerve
construction is natural in C: the functor

N(−) : Cat→ sSet = Fun(∆op, Set)

is the ‘transpose’ of the hom-set functor Cat×∆op → Set.

2.2. Geometric realization. Write |∆[n]| for the topological n-simplex.

Example. The singular complex Sing(Y ) of a topological space Y is the simplicial
set

[n] 7→ Top(|∆[n]|, Y )

This gives a functor Sing(−) : Top→ sSet.

Later, we will see that the singular complex can be used to define singular
homology. First, we will see how it gives an adjunction between simplicial sets and
topological spaces, which is one step towards formalizing the idea of thinking of
simplicial sets as spaces.

Definition. The geometric realization functor |−| : sSet → Top is the left Kan
extension of the functor |−| : ∆→ Top along the Yoneda embedding ∆[−] : ∆→
sSet.

In concrete terms, for a simplicial set X we have that

|X| = colim
∆[n]→X

|∆[n]|

This reflects the idea of simplicial sets as spaces explained earlier: to get the
geometric realization of X, we take a topological n-simplex |∆[n]| for each n-simplex
in X, and then glue them together according to the face- and degeneracy maps of
X.

Example. The simplicial n-sphere Sn is the simplicial set ∆[n]/∂∆[n]. Its geometric
realization is an n-sphere.

Example. Let G be a group, considered as a category with 1 element and with G
as hom-set. Then the classifying space of G is |NG|.

Proposition. The singular complex is right adjoint to the geometric realization:

|−| : sSet � Top : Sing(−)

The proof is a straightforward application of Yoneda. We will later see that this
adjunction can be turned into a Quillen equivalence.

One can show that the geometric realization of a simplicial set is a CW complex.
In particular, it is a compactly generated Hausdorff space.1 Write Topcgh for the
category of compactly generated Hausdorff space. Then the functor

|−| : sSet→ Topcgh

preserves all finite limits.

1Recall that a topological space Y is compactly generated if F ⊂ Y is closed if and only if
F ∩K is closed in K for all compacta K ⊂ Y .

3



2.3. Dold-Kan correspondence. We generalize the idea of simplicial sets to
arbitrary categories:

Definition. Let C be a category. Then a simplicial object in C is a functor ∆op → C.
The category of such is sC := Fun(∆op,C).

Of particular interest is when C is the category Ab of abelian groups. The
Dold-Kan correspondence tells us that we can think of sAb as chain complexes
· · ·X2 → X1 → X0 in positive degrees. Writing the category of such as Ch≥0, then
we have

Proposition. There is an equivalence of categories

N : sAb � Ch≥0 : Γ

To explain the functor N , we need a few definitions. Let A ∈ sAb be given.

• The Moore complex CA is the chain complex where CAn := An, and with
boundary maps the alternating face maps

∂ :=
∑

0≤i≤n
(−1)idi : CAn → CAn−1

• The degeneracies in the Moore complex is the subcomplex DA where DAn
is the subgroup of CAn generated by degenerate simplices.
• The normalized chain complex is the subcomplexNA of CA with

⋂
1≤i≤n ker di

in degree n, and with d0 as boundary maps.

Lemma. For the natural maps NA→ CA→ CA/DA, it holds

• NA→ CA/DA is an isomorphism;
• NA→ CA is a quasi-isomorphism (in fact a chain homotopy equivalence).

For a chain complex C, one has that Γ(C)n is the direct sum
⊕

[n]�[k] Ck indexed

over surjections [n] � [k]. We omit the description of the face and degeneracy maps.

Example. Let Z : sSet → sAb be the functor that takes free abelian groups
level-wise. Then we recover the singular homology functor as the composition

Top
Sing(−)−−−−−→ sSet

Z−→ sAb
C(−)−−−→ Ch≥0

Hn−−→ Ab

2.4. Model structure on sSet. Recall that a map of topological spaces Y → Y ′

is a weak equivalence (or simply: equivalence) if it induces isomorphisms on all
homotopy groups.

Definition. We call a map f : X → X ′ in sSet a

• cofibrations if it is a the monomorphisms, i.e., a levelwise injection,
• equivalence if |f | is an equivalence,
• Kan fibration if it has the right lifting property with respect to all horn

inclusions Λk[n]→ ∆[n], meaning that for each solid commutative diagram

Λk[n] X

∆[n] X ′

the dotted arrow exists, making the diagram commutative.

Proposition. These fibration, cofibrations and equivalences define a model structure
on sSet.
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This model structure is called the standard or Quillen model structure, and
is designed to model spaces by simplicial sets. There are other model structures
available, with other purposes. For example, one has the Joyal model structure,
which is designed to model ∞-categories by simplicial sets, but we won’t go into
this.

Neither will we go into the (non-trivial) proof of the above statement, but refer to
e.g. [Hov99, §3.2]. From here on, we endow sSet with the Quillen model structure.

Remark. In fact, sSet has more structure: it is cartesian closed, where the internal
mapping space Map(X,X ′) is the simplicial set [n] 7→ sSet(X ×∆[n], X ′). In fact,
this makes sSet into a simplicial model category, which means that the model
structure is compatible with the enrichtment over sSet in a specified way that we
won’t go in to.

Definition. A Kan complex is a fibrant simplicial set, that is, a simplicial set K
for which each horn Λk[n]→ K has an extension ∆[n]→ K.

Let K be a Kan complex, and x ∈ K a 0-simplex. We can define the homotopy
groups πn(K,x) of K at x as follows. Consider Sn = ∆[n]/∂∆[n] as pointed, with
point ∂∆[n]. Then an element of πn(K,x) is an equivalence class of a pointed map
(Sn, ∂∆[n])→ (K,x), where the equivalence relation is homotopy of maps relative
to ∂∆[n]. The latter is not hard to define, by drawing the same diagrams as one
would in the topological case, using ∆[1] as the unit interval [0, 1], etc.

One can show that the πn(K,x) are actually groups, using the horn-filling
condition. For example, for g, h ∈ πn(K,x) with representatives γ, η : ∆[1] → K,
we take the horn τ : Λ1[2] → K with edges γ, η. Then a filler σ : ∆[2] → K of τ
gives a concatenation of paths: γ · η = d1σ.

For a general simplicial set X, one puts πn(X,x) := πn(K,x), where K is a
fibrant replacement of X.

Theorem. The adjunction |−| a Sing(−) is a Quillen equivalence.

In particular, up to fibrant/cofibrant replacements, it does not matter whether
we compute homotopy groups in sSet or in Top. Likewise, we have

Proposition. For A ∈ sAb, it holds πn(A, 0) ∼= Hn(NA) ∼= Hn(CA).

2.5. Pointed simplicial sets. The category of pointed simpicial sets is the under-
category sSet∗ := sSet∆[0]/.

Definition. For X,X ′ ∈ sSet∗,

• the smash product is X ∧X ′ := (X ×X ′)/(X ∨X ′), where X ∨X ′ is the
coproduct in sSet∗,

• the mapping space is the simplicial set [n] 7→ sSet∗(X ∧ (∆[n] t {∗}), X ′),
pointed by the trivial map to the point of X ′.

This makes sSet∗ into a closed monoidal category, in the sense that we have an
adjuntion

(−) ∧X a Map∗(X,−)

Let X ∈ sSet∗ be given. The suspension of X is ΣX := X ∧ S1, while the loop
space of X is Map∗(S

1, X). By the closed monoidal structure on sSet∗, these form
an adjoint pair Σ a Ω. In fact, this is a Quillen adjunction.

Observe, for X ∈ sSet∗ it holds that πn(ΩX) ∼= πn+1(X).
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3. Spectra

I mainly follow [BF78] and [Lev16].
One idea of spectra is to stabilize the adjoint pair Σ a Ω on sSet∗ to an adjoint

equivalence by inverting Σ. It turns out that the resulting homotopy category is a
triangulated category. An analogy is with chain complexes. The homotopy category
of Ch≥0 is not triangulated, since the suspension Σ = (−)[1] is not an equivalence.
The solution is by going to unbounded chain complexes, and thus admitting negative
homology groups. Similarly, it will turn out that by inverting Σ on sSet we will
introduce negative homotopy groups, and by passing to the homotopy category, we
get a triangulated category.

Another motivation for spectra comes from the fact that they represent homology
theories, but we will not go into this. There are also other models for spectra
available, part of the reason being that people wanted the category of spectra to be
symmetric monoidal. We will not touch this at all.

3.1. The category of spectra.

Definition. A spectrum E is a sequence E = (E0, E1, . . . ) of pointed simplicial sets,
together with bonding maps σEn : S1 ∧En → En+1. A map of spectra f : E → E′ is
a series of maps fn : En → E′n commuting with the bonding maps. The category of
spectra is written Sp.

Example. For X ∈ sSet∗, the suspension spectrum is Σ∞X = (X,S1∧X, . . . , Sn∧
X, . . . ), with obvious bonding maps. This defines a functor Σ∞ : sSet∗ → Sp, with
right adjoint

Ω∞ : Sp→ sSet∗ : E 7→ E0

Example. The sphere spectrum is S := Σ∞S0, that is, it has Sn := Sn, and obvious
bonding maps, using that S1 ∧ Sn ∼= Sn+1.

Example. Let X ∈ sSet∗ and E ∈ Sp. Then E ∧ X is the spectrum where
(E ∧X)n := En ∧X, with obvious bonding map. We write Σ(E) := E ∧ S1.

Likewise, Map(X,E) is the spectrum where Map(X,E)n := Map∗(X,En), and
with bonding map S1 ∧Map∗(X,En)→ Map∗(X,En+1) the adjoint of the map

S1 ∧Map∗(X,En) ∧X S1∧ev−−−−→ S1 ∧ En
σE
n−−→ En+1

We write Ω(E) := Map(S1, E).
These constructions are adjoint to one another: we have (−) ∧X a Map(X,−).

We can extend these definition to unpointed simplicial sets, by adding a disjoint
base point. This makes Sp tensored and cotensored over sSet.

For X ∈ sSet∗, the unit of the adjunction Σ a Ω gives maps

Σ : πm(X)→ πm(ΩΣX) ∼= πm+1(ΣX) ∼= πm+1(S1 ∧X)

Definition. For n ∈ Z, the n-th homotopy group of E ∈ Sp is

πn(E) := colimk πn+k(Ek)

= colimk

(
· · · → πn+k(Ek)

Σ−→ πn+k+1(S1 ∧ Ek)
σE
k−−→ πn+k+1(Ek+1)→ . . .

)
A map of spectra f : E → E′ is a stable weak equivalence if it induces isomorphisms
on all homotopy groups.
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3.2. Ω-spectra.

Definition. An Ω-spectrum is a spectrum E for which the bonding maps S1∧En →
En+1 induce equivalence En → ΩEn+1 via the adjunction S1 ∧ (−) ∼= Σ a Ω.

Lemma. There is a functor Q : Sp→ Sp, together with a natural transformation
η : id → Q, such that for each E ∈ Sp the map ηE : E → QE is a stable weak
equivalence, and with QE an Ω spectrum.

From here on, we choose such Q, η.

3.3. The stable model category structure.

Definition. Let f : E → F be a map of spectra. Then f is called a

• stable cofibration if E0 → F0 is a cofibration, and all the maps

En+1 ∪S1∧En
(S1 ∧ Fn)

(fn+1,σ
F
n )−−−−−−→ Fn+1

are cofibrations as well,
• stable fibration if each fn is a fibration, and each square

En (QE)n

Fn (QF )n

η

fn Qfn

η

is a homotopy pullback (= right derived functor of ordinary pullback) in
sSet∗.

Proposition. The stable equivalence, cofibrations and fibrations together with the
tensoring and cotensoring (−) ∧X a Map(X,−) form a simplicial model structure
on Sp.

From here on, we endow Sp with this model structure. The stable homotopy
category SH := Ho(Sp) is the homotopy category of Sp.

4. The triangulated structure on the stable homotopy category

It turns out that SH is triangulated: we want to get a taste of the proof of this.
Note that Sp is pointed by the zero-object 0 := Σ∞(∗).

4.1. SH is additive. The steps as carried out in [Sch12] are:

(1) SH has finite products. In fact, the localization functor γ : Sp → SH

preserves these, so finite products in SH are given by finite products of
spectra.

(2) For E,F ∈ Sp, the maps

E ∼= E × 0→ E × F & F ∼= 0× F → E × F

exhibit E × F as coproduct of E and F .
(3) Let E ∈ Sp. The maps ∆ : E → E×E and the first inclusion E → E ∪E ∼=

E × E induce a map E × E → E × E by the previous point. We ask that
this is an equivalence.

The additive structure on SH(E,F ) is then given by

(f + g) = E
∆−→ E × E = E ∪ E (f,g)−−−→ E

for f, g ∈ SH(E,F ).
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4.2. The equivalence Σ. In this part, I mainly follow [Jar07]. The idea is to relate
Σ a Ω to a Quillen equivalence via natural stable equivalences.

Definition. For n ∈ Z and E ∈ Sp, we define the spectrum E[n] via

E[n]m :=

{
0 if n+m < 0

En+m if n+m ≥ 0

Clearly, we have an adjunction (−)[1] a (−)[−1]. Also, for n,m ∈ Z, it holds

πn(E[m]) = colimk πn+k(Ek+m) ∼= colimk πn−m+k(Ek) ∼= πn−m(E)

Lemma. If E → F is a stable cofibration, then so is E[1]→ F [1].

Proof. This is straightforward, by using that E → F being a stable cofibration
implies that all En → Fn are cofibrations. �

Proposition. The adjunction (−)[1] a (−)[−1] is a Quillen equivalence Sp � Sp.

Proof. Since (−)[1] preserves cofibrations and trivial cofibrations, the adjunction is
Quillen. Since (−)[m] shifts homotopy groups, it holds that E → F [−1] is a stable
weak equivalence if and only if E[1]→ F is. �

Proposition. There are natural stable equivalences Σ ' (−)[1] and Ω ' (−)[−1].
Consequently, Σ a Ω is a Quillen adjunction, and Σ is an equivalence on SH.

4.3. Distinguished triangles. One can define distinguished triangles explicitly
using mapping cones, as in [Wei94, §10.9]. We will instead use homotopy theory in
a slightly informal way.

Definition. Let f : E → F be a map of spectra (or a map in any pointed model
category). Then the homotopy cofiber hocofib(f) is the homotopy pushout F ∪hE 0
(i.e., the left derived functor of the ordinary cofiber functor).

One can show that there is a natural stable equivalence

hocofib(E → 0) ' ΣE

Consequently, for any f : E → F in Sp, we have a sequence of maps

E
f−→ F → hocofib(f) = F ∪hE 0→ 0 ∪hE 0 ' ΣE

Definition. A distinguished triangle in SH is any sequence E′ → F ′ → G→ ΣE′

isomorphic to the image of a sequence as above.

Theorem. The stable homotopy category SH with translation functor Σ, the above
distinguished triangles, and additive structure from §4.1, is a triangulated category.
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