Rank of intersection of free subgroups in free amalgamated products of groups

Alexander Zakharov

Moscow State University
July 30, 2012

Free group case

The reduced rank of a free group $H: \bar{r}(H)=\max \{0, r(H)-1\}$

Free group case

The reduced rank of a free group $H: \bar{r}(H)=\max \{0, r(H)-1\}$

Theorem (Hanna Neumann, 1957)

Suppose G is a free group, H_{1} and H_{2} are finitely generated subgroups in G.
Then $H_{1} \cap H_{2}$ is also finitely generated (Howson) and

$$
\bar{r}\left(H_{1} \cap H_{2}\right) \leqslant 2 \bar{r}\left(H_{1}\right) \bar{r}\left(H_{2}\right)
$$

Free group case

The reduced rank of a free group $H: \bar{r}(H)=\max \{0, r(H)-1\}$

Theorem (Hanna Neumann, 1957)

Suppose G is a free group, H_{1} and H_{2} are finitely generated subgroups in G.
Then $H_{1} \cap H_{2}$ is also finitely generated (Howson) and

$$
\bar{r}\left(H_{1} \cap H_{2}\right) \leqslant 2 \bar{r}\left(H_{1}\right) \bar{r}\left(H_{2}\right)
$$

Theorem (Igor Mineyev, 2011)

$$
\bar{r}\left(H_{1} \cap H_{2}\right) \leqslant \bar{r}\left(H_{1}\right) \bar{r}\left(H_{2}\right)
$$

(Hanna Neumann conjecture)

Free product case

- Factor-free subgroup of a free product (or an amalgamated free product): one that intersects trivially with the conjugates to the factors of the product.

Free product case

- Factor-free subgroup of a free product (or an amalgamated free product): one that intersects trivially with the conjugates to the factors of the product.
- Factor-free subgroups are free.

Free product case

- Factor-free subgroup of a free product (or an amalgamated free product): one that intersects trivially with the conjugates to the factors of the product.
- Factor-free subgroups are free.

Theorem (S.Ivanov, 2000)

Suppose $G=A * B$, and H_{1}, H_{2} are factor-free subgroups of G with finite ranks.
Then $H_{1} \cap H_{2}$ also has finite rank and

$$
\bar{r}\left(H_{1} \cap H_{2}\right) \leqslant 6 \bar{r}\left(H_{1}\right) \bar{r}\left(H_{2}\right) .
$$

Free product case

- Factor-free subgroup of a free product (or an amalgamated free product): one that intersects trivially with the conjugates to the factors of the product.
- Factor-free subgroups are free.

Theorem (S.Ivanov, 2000)

Suppose $G=A * B$, and H_{1}, H_{2} are factor-free subgroups of G with finite ranks.
Then $H_{1} \cap H_{2}$ also has finite rank and

$$
\bar{r}\left(H_{1} \cap H_{2}\right) \leqslant 6 \bar{r}\left(H_{1}\right) \bar{r}\left(H_{2}\right) .
$$

(W.Dicks and S.Ivanov, 2008: more precise estimate).

Amalgamated free product case

Theorem (A.Z., 2011)

Suppose $G=A *_{T} B, T$ is finite, and H_{1}, H_{2} are factor-free subgroups of G with finite ranks.
Then $H_{1} \cap H_{2}$ also has finite rank, and

$$
\bar{r}\left(H_{1} \cap H_{2}\right) \leqslant 6|T| \cdot \bar{r}\left(H_{1}\right) \bar{r}\left(H_{2}\right) .
$$

(Recall factor-free subgroups are those which intersect trivially with the conjugates to the factors A, B.)

Amalgamated free product case

Theorem (A.Z., 2011)

Suppose $G=A *_{T} B, T$ is finite, and H_{1}, H_{2} are factor-free subgroups of G with finite ranks.
Then $H_{1} \cap H_{2}$ also has finite rank, and

$$
\bar{r}\left(H_{1} \cap H_{2}\right) \leqslant 6|T| \cdot \bar{r}\left(H_{1}\right) \bar{r}\left(H_{2}\right) .
$$

(Recall factor-free subgroups are those which intersect trivially with the conjugates to the factors A, B.)
Idea of the proof is given further.

Graph $\Psi(H)$

Suppose H is a factor-free subgroup of $G=A *_{T} B$
Graph $\Psi(H)$ associated with subgroup H :

Graph $\Psi(H)$

Suppose H is a factor-free subgroup of $G=A *_{T} B$
Graph $\Psi(H)$ associated with subgroup H :

- 2 types of vertices of $\Psi(H)$:

Graph $\Psi(H)$

Suppose H is a factor-free subgroup of $G=A *_{T} B$
Graph $\Psi(H)$ associated with subgroup H :

- 2 types of vertices of $\Psi(H)$:
(1) Primary vertices correspond to the right cosets of H in G;

Graph $\Psi(H)$

Suppose H is a factor-free subgroup of $G=A *_{T} B$
Graph $\Psi(H)$ associated with subgroup H :

- 2 types of vertices of $\Psi(H)$:
(1) Primary vertices correspond to the right cosets of H in G;
(2) Secondary vertices correspond to double cosets HgA and HgB $(g \in G)$.

Graph $\Psi(H)$

Suppose H is a factor-free subgroup of $G=A *_{T} B$
Graph $\Psi(H)$ associated with subgroup H :

- 2 types of vertices of $\Psi(H)$:
(1) Primary vertices correspond to the right cosets of H in G;
(2) Secondary vertices correspond to double cosets HgA and HgB $(g \in G)$.
- Edges of $\Psi(H)$: each primary vertex Hg is connected by an edge with the secondary vertex $H g A$ and with $H g B$.

Graph 「(H)

Suppose H is a factor-free subgroup of $G=A *_{T} B$ Graph $\Gamma(H)$ associated with subgroup H :

Graph 「(H)

Suppose H is a factor-free subgroup of $G=A *_{T} B$
Graph $\Gamma(H)$ associated with subgroup H :

- 2 types of vertices of $\Gamma(H)$:

Graph 「(H)

Suppose H is a factor-free subgroup of $G=A *_{T} B$
Graph $\Gamma(H)$ associated with subgroup H :

- 2 types of vertices of $\Gamma(H)$:
(1) Primary vertices correspond to double cosets $\mathrm{HgT}(g \in G)$;

Graph 「(H)

Suppose H is a factor-free subgroup of $G=A *_{T} B$
Graph $\Gamma(H)$ associated with subgroup H :

- 2 types of vertices of $\Gamma(H)$:
(1) Primary vertices correspond to double cosets $\mathrm{HgT}(g \in G)$;
(2) Secondary vertices correspond to double cosets HgA and HgB $(g \in G)$.

Graph 「(H)

Suppose H is a factor-free subgroup of $G=A *_{T} B$
Graph $\Gamma(H)$ associated with subgroup H :

- 2 types of vertices of $\Gamma(H)$:
(1) Primary vertices correspond to double cosets $\mathrm{HgT}(g \in G)$;
(2) Secondary vertices correspond to double cosets HgA and HgB $(g \in G)$.
- Edges of $\Gamma(H)$: each primary vertex $\mathrm{Hg} T$ is connected by an edge with the secondary vertex $H g A$ and with $H g B$.

Core graphs

- $\pi: \Psi(H) \rightarrow \Gamma(H)$ - the projection:

$$
\pi(H g)=H g T, \quad \pi(H g A)=H g A, \quad \pi(H g B)=H g B
$$

(extended to the edges in a natural way).

Core graphs

- $\pi: \Psi(H) \rightarrow \Gamma(H)$ - the projection:

$$
\pi(H g)=H g T, \quad \pi(H g A)=H g A, \quad \pi(H g B)=H g B
$$

(extended to the edges in a natural way).

- $\Gamma_{1}(H)$ - the core of $\Gamma(H)$ (the union of all reduced closed paths ending at HT vertex)

Core graphs

- $\pi: \Psi(H) \rightarrow \Gamma(H)$ - the projection:

$$
\pi(H g)=H g T, \quad \pi(H g A)=H g A, \quad \pi(H g B)=H g B
$$

(extended to the edges in a natural way).

- $\Gamma_{1}(H)$ - the core of $\Gamma(H)$ (the union of all reduced closed paths ending at HT vertex)
- $\Psi_{1}(H)$ - the (full) inverse image of $\Gamma_{1}(H)$ under π (a subgraph of $\Psi(H)$ obtained from it by deleting all "unnecessary" edges and vertices)

Facts about the graphs

- If H has finite rank, then $\Gamma_{1}(H)$ is finite.

Facts about the graphs

- If H has finite rank, then $\Gamma_{1}(H)$ is finite.
- $H \cong \pi_{1}\left(\Gamma_{1}(H)\right)$.

Facts about the graphs

- If H has finite rank, then $\Gamma_{1}(H)$ is finite.
- $H \cong \pi_{1}\left(\Gamma_{1}(H)\right)$. Therefore,

$$
\bar{r}(H)=-\chi\left(\Gamma_{1}(H)\right)=\frac{1}{2} \sum(\operatorname{deg} v-2)
$$

where χ is Euler characteristics of a graph and the last sum expands over all secondary vertices of $\Gamma_{1}(H)$.

Facts about the graphs

- If H has finite rank, then $\Gamma_{1}(H)$ is finite.
- $H \cong \pi_{1}\left(\Gamma_{1}(H)\right)$. Therefore,

$$
\bar{r}(H)=-\chi\left(\Gamma_{1}(H)\right)=\frac{1}{2} \sum(\operatorname{deg} v-2)
$$

where χ is Euler characteristics of a graph and the last sum expands over all secondary vertices of $\Gamma_{1}(H)$.

- For any w - secondary vertex of $\Psi_{1}(H)$

$$
\operatorname{deg} \Psi_{1}(H) w=|T| \cdot \operatorname{deg}_{\Gamma_{1}(H)} \pi(w)
$$

Facts about the graphs

- If H has finite rank, then $\Gamma_{1}(H)$ is finite.
- $H \cong \pi_{1}\left(\Gamma_{1}(H)\right)$. Therefore,

$$
\bar{r}(H)=-\chi\left(\Gamma_{1}(H)\right)=\frac{1}{2} \sum(\operatorname{deg} v-2)
$$

where χ is Euler characteristics of a graph and the last sum expands over all secondary vertices of $\Gamma_{1}(H)$.

- For any w - secondary vertex of $\Psi_{1}(H)$

$$
\operatorname{deg} \Psi_{1}(H) w=|T| \cdot \operatorname{deg}_{\Gamma_{1}(H)} \pi(w)
$$

- Therefore, the rank of H can be calculated using the graph $\Psi_{1}(H)$.

Intersecting subgroups

Now we shall work with graphs $\Psi_{1}\left(H_{1} \cap H_{2}\right), \Psi_{1}\left(H_{1}\right)$ and $\Psi_{1}\left(H_{2}\right)$.

Intersecting subgroups

Now we shall work with graphs $\Psi_{1}\left(H_{1} \cap H_{2}\right), \Psi_{1}\left(H_{1}\right)$ and $\Psi_{1}\left(H_{2}\right)$.

- Note that the map $\tau:\left(H_{1} \cap H_{2}\right) g \rightarrow\left(H_{1} g, H_{2} g\right)$ is injective, while $\eta:\left(H_{1} \cap H_{2}\right) g A \rightarrow\left(H_{1} g A, H_{2} g A\right)$ might be not.

Intersecting subgroups

Now we shall work with graphs $\Psi_{1}\left(H_{1} \cap H_{2}\right), \Psi_{1}\left(H_{1}\right)$ and $\Psi_{1}\left(H_{2}\right)$.

- Note that the map $\tau:\left(H_{1} \cap H_{2}\right) g \rightarrow\left(H_{1} g, H_{2} g\right)$ is injective, while $\eta:\left(H_{1} \cap H_{2}\right) g A \rightarrow\left(H_{1} g A, H_{2} g A\right)$ might be not.
- Suppose that w_{1}, \ldots, w_{k} are all secondary vertices of $\Psi_{1}\left(H_{1} \cap H_{2}\right)$ such that $\eta\left(w_{i}\right)=\left(v_{1}, v_{2}\right), i=1 \ldots k$, where v_{1}, v_{2} are fixed secondary vertices of $\Psi_{1}\left(H_{1}\right), \Psi_{1}\left(H_{2}\right)$ respectively. Then

Intersecting subgroups

Now we shall work with graphs $\Psi_{1}\left(H_{1} \cap H_{2}\right), \Psi_{1}\left(H_{1}\right)$ and $\Psi_{1}\left(H_{2}\right)$.

- Note that the map $\tau:\left(H_{1} \cap H_{2}\right) g \rightarrow\left(H_{1} g, H_{2} g\right)$ is injective, while $\eta:\left(H_{1} \cap H_{2}\right) g A \rightarrow\left(H_{1} g A, H_{2} g A\right)$ might be not.
- Suppose that w_{1}, \ldots, w_{k} are all secondary vertices of $\Psi_{1}\left(H_{1} \cap H_{2}\right)$ such that $\eta\left(w_{i}\right)=\left(v_{1}, v_{2}\right), i=1 \ldots k$, where v_{1}, v_{2} are fixed secondary vertices of $\Psi_{1}\left(H_{1}\right), \Psi_{1}\left(H_{2}\right)$ respectively. Then
- deg $w_{i} \leq \operatorname{deg} v_{1}, \quad \operatorname{deg} w_{i} \leq \operatorname{deg} v_{2}, i=1 \ldots k$ (since subgroups are factor-free)

Intersecting subgroups

Now we shall work with graphs $\Psi_{1}\left(H_{1} \cap H_{2}\right), \Psi_{1}\left(H_{1}\right)$ and $\Psi_{1}\left(H_{2}\right)$.

- Note that the map $\tau:\left(H_{1} \cap H_{2}\right) g \rightarrow\left(H_{1} g, H_{2} g\right)$ is injective, while $\eta:\left(H_{1} \cap H_{2}\right) g A \rightarrow\left(H_{1} g A, H_{2} g A\right)$ might be not.
- Suppose that w_{1}, \ldots, w_{k} are all secondary vertices of $\Psi_{1}\left(H_{1} \cap H_{2}\right)$ such that $\eta\left(w_{i}\right)=\left(v_{1}, v_{2}\right), i=1 \ldots k$, where v_{1}, v_{2} are fixed secondary vertices of $\Psi_{1}\left(H_{1}\right), \Psi_{1}\left(H_{2}\right)$ respectively. Then
- deg $w_{i} \leq \operatorname{deg} v_{1}, \quad \operatorname{deg} w_{i} \leq \operatorname{deg} v_{2}, i=1 \ldots k$ (since subgroups are factor-free)
- $\sum_{i=1}^{k} \operatorname{deg} w_{i} \leq \operatorname{deg} v_{1} \cdot \operatorname{deg} v_{2}$ (since τ is injective)

Intersecting subgroups

Now we shall work with graphs $\Psi_{1}\left(H_{1} \cap H_{2}\right), \Psi_{1}\left(H_{1}\right)$ and $\Psi_{1}\left(H_{2}\right)$.

- Note that the map $\tau:\left(H_{1} \cap H_{2}\right) g \rightarrow\left(H_{1} g, H_{2} g\right)$ is injective, while $\eta:\left(H_{1} \cap H_{2}\right) g A \rightarrow\left(H_{1} g A, H_{2} g A\right)$ might be not.
- Suppose that w_{1}, \ldots, w_{k} are all secondary vertices of $\Psi_{1}\left(H_{1} \cap H_{2}\right)$ such that $\eta\left(w_{i}\right)=\left(v_{1}, v_{2}\right), i=1 \ldots k$, where v_{1}, v_{2} are fixed secondary vertices of $\Psi_{1}\left(H_{1}\right), \Psi_{1}\left(H_{2}\right)$ respectively. Then
- deg $w_{i} \leq \operatorname{deg} v_{1}, \quad \operatorname{deg} w_{i} \leq \operatorname{deg} v_{2}, i=1 \ldots k$ (since subgroups are factor-free)
- $\sum_{i=1}^{k} \operatorname{deg} w_{i} \leq \operatorname{deg} v_{1} \cdot \operatorname{deg} v_{2}$ (since τ is injective)
- After summing over all pairs $\left(v_{1}, v_{2}\right)$ and using the facts above we obtain the desired estimate.

Further generalizations

The next step perhaps is to generalize this estimate for:

Further generalizations

The next step perhaps is to generalize this estimate for:

- amalgamated free products with more than two factors

Further generalizations

The next step perhaps is to generalize this estimate for:

- amalgamated free products with more than two factors
- HNN-extensions

Further generalizations

The next step perhaps is to generalize this estimate for:

- amalgamated free products with more than two factors
- HNN-extensions
- fundamental groups of graph of groups.

Further generalizations

The next step perhaps is to generalize this estimate for:

- amalgamated free products with more than two factors
- HNN-extensions
- fundamental groups of graph of groups.

Conjecture

Suppose G is a fundamental group of a finite graph of groups X with finite edge groups, and H_{1}, H_{2} are factor-free subgroups of G with finite ranks (a subgroup is factor-free if it intersects trivially with the conjugates to all vertex groups).
Then $H_{1} \cap H_{2}$ also has finite rank, and

$$
\bar{r}\left(H_{1} \cap H_{2}\right) \leqslant 6 n \cdot \bar{r}\left(H_{1}\right) \bar{r}\left(H_{2}\right)
$$

where n is the maximum of orders of edge groups of X.

Thank you!

