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Free group case

The reduced rank of a free group H: r(H) = max{0, r(H)− 1}

Theorem (Hanna Neumann, 1957)

Suppose G is a free group, H1 and H2 are finitely generated
subgroups in G.
Then H1 ∩ H2 is also finitely generated (Howson) and

r(H1 ∩ H2) 6 2 r(H1) r(H2)

Theorem (Igor Mineyev, 2011)

r(H1 ∩ H2) 6 r(H1) r(H2)

(Hanna Neumann conjecture)
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Free product case

Factor-free subgroup of a free product (or an amalgamated
free product): one that intersects trivially with the conjugates
to the factors of the product.

Factor-free subgroups are free.

Theorem (S.Ivanov, 2000)

Suppose G = A ∗ B, and H1, H2 are factor-free subgroups of G
with finite ranks.
Then H1 ∩ H2 also has finite rank and

r(H1 ∩ H2) 6 6r(H1)r(H2).

(W.Dicks and S.Ivanov, 2008: more precise estimate).
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Amalgamated free product case

Theorem (A.Z., 2011)

Suppose G = A ∗T B, T is finite, and H1, H2 are factor-free
subgroups of G with finite ranks.
Then H1 ∩ H2 also has finite rank, and

r(H1 ∩ H2) 6 6|T | · r(H1)r(H2).

(Recall factor-free subgroups are those which intersect trivially
with the conjugates to the factors A,B.)

Idea of the proof is given further.
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Graph Ψ(H)

Suppose H is a factor-free subgroup of G = A ∗T B

Graph Ψ(H) associated with subgroup H:

2 types of vertices of Ψ(H):

1 Primary vertices correspond to the right cosets of H in G ;

2 Secondary vertices correspond to double cosets HgA and HgB
(g ∈ G ).

Edges of Ψ(H): each primary vertex Hg is connected by an
edge with the secondary vertex HgA and with HgB.
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Graph Γ(H)

Suppose H is a factor-free subgroup of G = A ∗T B

Graph Γ(H) associated with subgroup H:

2 types of vertices of Γ(H):

1 Primary vertices correspond to double cosets HgT (g ∈ G );

2 Secondary vertices correspond to double cosets HgA and HgB
(g ∈ G ).

Edges of Γ(H): each primary vertex HgT is connected by an
edge with the secondary vertex HgA and with HgB.
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Core graphs

π : Ψ(H)→ Γ(H) – the projection:

π(Hg) = HgT , π(HgA) = HgA, π(HgB) = HgB

(extended to the edges in a natural way).

Γ1(H) – the core of Γ(H) (the union of all reduced closed
paths ending at HT vertex)

Ψ1(H) – the (full) inverse image of Γ1(H) under π (a
subgraph of Ψ(H) obtained from it by deleting all
”unnecessary” edges and vertices)
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Facts about the graphs

If H has finite rank, then Γ1(H) is finite.

H ∼= π1(Γ1(H)). Therefore,

r(H) = −χ(Γ1(H)) =
1

2

∑
(deg v − 2),

where χ is Euler characteristics of a graph and the last sum
expands over all secondary vertices of Γ1(H).

For any w – secondary vertex of Ψ1(H)

deg Ψ1(H) w = |T | · deg Γ1(H) π(w).

Therefore, the rank of H can be calculated using the graph
Ψ1(H).
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Intersecting subgroups

Now we shall work with graphs Ψ1(H1 ∩H2), Ψ1(H1) and Ψ1(H2).

Note that the map τ : (H1 ∩ H2)g → (H1g ,H2g) is injective,
while η : (H1 ∩ H2)gA→ (H1gA,H2gA) might be not.

Suppose that w1, ...,wk are all secondary vertices of
Ψ1(H1 ∩ H2) such that η(wi ) = (v1, v2), i = 1...k, where
v1, v2 are fixed secondary vertices of Ψ1(H1), Ψ1(H2)
respectively. Then

deg wi ≤ deg v1, deg wi ≤ deg v2, i = 1...k
(since subgroups are factor-free)∑k

i=1 deg wi ≤ deg v1 · deg v2 (since τ is injective)

After summing over all pairs (v1, v2) and using the facts
above we obtain the desired estimate.
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Further generalizations

The next step perhaps is to generalize this estimate for:

amalgamated free products with more than two factors

HNN-extensions

fundamental groups of graph of groups.

Conjecture

Suppose G is a fundamental group of a finite graph of groups X
with finite edge groups, and H1, H2 are factor-free subgroups of G
with finite ranks (a subgroup is factor-free if it intersects trivially
with the conjugates to all vertex groups).
Then H1 ∩ H2 also has finite rank, and

r(H1 ∩ H2) 6 6n · r(H1)r(H2),

where n is the maximum of orders of edge groups of X .
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Thank you!
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