▲□▶▲□▶▲□▶▲□▶ □ のQ@

Unsolvability of the CP and IP for automaton groups

Enric Ventura

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

GAGTA-6, Dusseldorf

August 2nd, 2012.

3. Usolvability of CP

4. Unsolvable IP

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Our State and State and
- Unsolvability of IP

3. Usolvability of CP

4. Unsolvable IP

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- 2 Automaton groups
- 3 Unsolvability of CP and orbit undecidability
- Unsolvability of IP

3. Usolvability of CP

4. Unsolvable IP

Main results

Consider the family of automaton groups.

Observation

The word problem is solvable for all automaton groups.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of automaton groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

3. Usolvability of CP

Main results

Consider the family of automaton groups.

Observation

The word problem is solvable for all automaton groups.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of automaton groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

3. Usolvability of CP

Main results

Consider the family of automaton groups.

Observation

The word problem is solvable for all automaton groups.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of automaton groups.

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ▲○

3. Usolvability of CP

Main results

Consider the family of automaton groups.

Observation

The word problem is solvable for all automaton groups.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of automaton groups.

3. Usolvability of CP

4. Unsolvable IP 0000

(日) (日) (日) (日) (日) (日) (日)

Reduction to matrices

Both results come from ...

Theorem (Sunic-V.)

Let $\Gamma \leq GL_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d \rtimes \Gamma$ is an automaton group.

... by using

Theorem (Bogopolski-Martino-V.)

There exists $\Gamma \leqslant GL_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Theorem (Sunic-V.)

Given Γ , $\Delta \leq \operatorname{GL}_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

3. Usolvability of CP

(日) (日) (日) (日) (日) (日) (日)

Reduction to matrices

Both results come from ...

Theorem (Sunic-V.)

Let $\Gamma \leq GL_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d \rtimes \Gamma$ is an automaton group.

... by using

Theorem (Bogopolski-Martino-V.)

There exists $\Gamma \leq GL_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Theorem (Sunic-V.)

Given Γ , $\Delta \leqslant GL_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

3. Usolvability of CP

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reduction to matrices

Both results come from ...

Theorem (Sunic-V.)

Let $\Gamma \leq \operatorname{GL}_d(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^d \rtimes \Gamma$ is an automaton group.

... by using

Theorem (Bogopolski-Martino-V.)

There exists $\Gamma \leq GL_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Theorem (Sunic-V.)

Given Γ , $\Delta \leq GL_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Outline

2. Automaton groups

3. Usolvability of CP

4. Unsolvable IP

3 Unsolvability of CP and orbit undecidability

Unsolvability of IP

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

1. Main results

2. Automaton groups ●00000000 3. Usolvability of CP 000000 4. Unsolvable IP

Tree automorphisms

Let X be an alphabet on k letters, and let X^* be the free monoid on X, thought as a rooted k-ary tree:

Definition

• Every tree automorphism g decomposes as a root permutation $\pi_q: X \to X$, and k sections $g|_x$, for $x \in X$:

 $g(xw) = \pi_g(x)g|_x(w).$

1. Main results

2. Automaton groups ●00000000 3. Usolvability of CP 000000 4. Unsolvable IP

Tree automorphisms

Let X be an alphabet on k letters, and let X^* be the free monoid on X, thought as a rooted k-ary tree:

Definition

• Every tree automorphism g decomposes as a root permutation $\pi_g: X \to X$, and k sections $g|_x$, for $x \in X$:

 $g(xw) = \pi_g(x)g|_x(w).$

3. Usolvability of CP

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

$$\alpha = \sigma(1,1), \quad \beta = 1(\alpha,\gamma), \quad \gamma = 1(\alpha,\delta), \quad \delta = 1(1,\beta).$$

3. Usolvability of CP

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

$$\alpha = \sigma(1,1), \ \beta = 1(\alpha,\gamma), \ \gamma = 1(\alpha,\delta), \ \delta = 1(1,\beta).$$

3. Usolvability of CP 000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

$$\alpha = \sigma(1, 1), \ \beta = 1(\alpha, \gamma), \ \gamma = 1(\alpha, \delta), \ \delta = 1(1, \beta).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group G(A) of tree automorphisms generated by an automaton A is called an automaton group.

$$\alpha = \sigma(1, 1), \ \beta = 1(\alpha, \gamma), \ \gamma = 1(\alpha, \delta), \ \delta = 1(1, \beta).$$

1. Main results 00 2. Automaton groups

3. Usolvability of CP

4. Unsolvable IP 0000

Affinities of *n*-adic integers

Definition

Let $\mathcal{M} = \{M_1, \dots, M_m\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \ge 2$ be relatively prime to all these determinants (thus, M_i is invertible over the ring \mathbb{Z}_n of n-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^d$, consider the invertible affine transformation $_{\mathbf{v}}M \colon \mathbb{Z}_n^d \to \mathbb{Z}_n^d, \ _{\mathbf{v}}M(\mathbf{u}) = \mathbf{v} + M\mathbf{u}$.

Let

$$G_{\mathcal{M},n} = \langle \{ {}_{\mathbf{v}}M \mid M \in \mathcal{M}, \ \mathbf{v} \in \mathbb{Z}^d \} \rangle \leqslant Aff_d(\mathbb{Z}_n).$$

emma

If, in addition, det $M_i = \pm 1$, then $G_{\mathcal{M},n} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \ldots, M_m \rangle \leq \operatorname{GL}_d(\mathbb{Z})$.

・ロト・日本・モート ヨー うへの

3. Usolvability of CP

4. Unsolvable IP 0000

(日) (日) (日) (日) (日) (日) (日)

Affinities of *n*-adic integers

Definition

Let $\mathcal{M} = \{M_1, \dots, M_m\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \ge 2$ be relatively prime to all these determinants (thus, M_i is invertible over the ring \mathbb{Z}_n of n-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^d$, consider the invertible affine transformation $_{\mathbf{v}}M \colon \mathbb{Z}_n^d \to \mathbb{Z}_n^d, _{\mathbf{v}}M(\mathbf{u}) = \mathbf{v} + M\mathbf{u}$.

Let

$G_{\mathcal{M},n} = \langle \{ {}_{\mathbf{v}}M \mid M \in \mathcal{M}, \ \mathbf{v} \in \mathbb{Z}^d \} \rangle \leqslant Aff_d(\mathbb{Z}_n).$

emma

If, in addition, det $M_i = \pm 1$, then $G_{\mathcal{M},n} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \ldots, M_m \rangle \leq \operatorname{GL}_d(\mathbb{Z})$.

3. Usolvability of CP

4. Unsolvable IP 0000

Affinities of *n*-adic integers

Definition

Let $\mathcal{M} = \{M_1, \dots, M_m\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \ge 2$ be relatively prime to all these determinants (thus, M_i is invertible over the ring \mathbb{Z}_n of n-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^d$, consider the invertible affine transformation $_{\mathbf{v}}M \colon \mathbb{Z}_n^d \to \mathbb{Z}_n^d, _{\mathbf{v}}M(\mathbf{u}) = \mathbf{v} + M\mathbf{u}$.

Let

$$G_{\mathcal{M},n} = \langle \{ {}_{\mathbf{v}}M \mid M \in \mathcal{M}, \ \mathbf{v} \in \mathbb{Z}^d \} \rangle \leqslant Aff_d(\mathbb{Z}_n).$$

emma

If, in addition, det $M_i = \pm 1$, then $G_{\mathcal{M},n} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \ldots, M_m \rangle \leq \operatorname{GL}_d(\mathbb{Z})$.

・ロト・個ト・モト・モト ヨー のへで

3. Usolvability of CP

4. Unsolvable IP 0000

(日) (日) (日) (日) (日) (日) (日)

Affinities of *n*-adic integers

Definition

Let $\mathcal{M} = \{M_1, \dots, M_m\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \ge 2$ be relatively prime to all these determinants (thus, M_i is invertible over the ring \mathbb{Z}_n of n-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^d$, consider the invertible affine transformation $_{\mathbf{v}}M \colon \mathbb{Z}_n^d \to \mathbb{Z}_n^d, _{\mathbf{v}}M(\mathbf{u}) = \mathbf{v} + M\mathbf{u}$.

Let

$$G_{\mathcal{M},n} = \langle \{ {}_{\mathbf{v}}M \mid M \in \mathcal{M}, \ \mathbf{v} \in \mathbb{Z}^d \} \rangle \leqslant Aff_d(\mathbb{Z}_n).$$

Lemma

If, in addition, det $M_i = \pm 1$, then $G_{\mathcal{M},n} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \ldots, M_m \rangle \leq \operatorname{GL}_d(\mathbb{Z})$.

3. Usolvability of CP

4. Unsolvable IP 0000

Affinities of *n*-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}} \colon \mathbb{Z}_n^d \to \mathbb{Z}_n^d$, $\mathbf{u} \mapsto \mathbf{u} + \mathbf{v}$.

Since $_{\mathbf{v}}M = \tau_{\mathbf{v}} _{\mathbf{0}}M$, we have $G_{\mathcal{M},n}$ generated by $_{\mathbf{0}}M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_i}$, where the \mathbf{e}_i 's are the canonical vectors.

If $M \in GL_d(\mathbb{Z})$, then ${}_{\mathbf{v}}M \in Aff_d(\mathbb{Z}_n)$ restricts to an integral bijective affine transformation ${}_{\mathbf{v}}M \in Aff_d(\mathbb{Z})$; hence, we can view $G_{\mathcal{M},n} \leq Aff_d(\mathbb{Z})$ (and is independent from n; let's denote it by $G_{\mathcal{M}}$).

They get multiplied as

$$\mathbf{v} M_{\mathbf{v}'} M' : \mathbf{u} \longrightarrow \mathbf{v}' + M' \mathbf{u} \longrightarrow \mathbf{v} + M(\mathbf{v}' + M' \mathbf{u}) =$$

 $(\mathbf{v} + M \mathbf{v}') + MM' \mathbf{u} =$
 $\mathbf{v} + M \mathbf{v}' (MM')(\mathbf{u}).$

So, $G_{\mathcal{M}} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \ldots, M_m \rangle \leqslant \operatorname{GL}_d(\mathbb{Z})$.

3. Usolvability of CP

4. Unsolvable IP 0000

Affinities of *n*-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}} : \mathbb{Z}_n^d \to \mathbb{Z}_n^d$, $\mathbf{u} \mapsto \mathbf{u} + \mathbf{v}$. Since $_{\mathbf{v}}M = \tau_{\mathbf{v}} _{\mathbf{0}}M$, we have $G_{\mathcal{M},n}$ generated by $_{\mathbf{0}}M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_i}$, where the \mathbf{e}_i 's are the canonical vectors.

If $M \in GL_d(\mathbb{Z})$, then ${}_{\mathbf{v}}M \in Aff_d(\mathbb{Z}_n)$ restricts to an integral bijective affine transformation ${}_{\mathbf{v}}M \in Aff_d(\mathbb{Z})$; hence, we can view $G_{\mathcal{M},n} \leq Aff_d(\mathbb{Z})$ (and is independent from n; let's denote it by $G_{\mathcal{M}}$).

They get multiplied as

 $\mathbf{v}^{M_{\mathbf{v}'}M':\mathbf{u}\longrightarrow\mathbf{v}'+M'\mathbf{u}\longrightarrow\mathbf{v}+M(\mathbf{v}'+M'\mathbf{u})=}_{(\mathbf{v}+M\mathbf{v}')+MM'\mathbf{u}=}_{\mathbf{v}+M\mathbf{v}'}(MM')(\mathbf{u}).$

So, $G_{\mathcal{M}} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \dots, M_m \rangle \leqslant \operatorname{GL}_d(\mathbb{Z})$.

2. Automaton groups 000●00000 3. Usolvability of CP

4. Unsolvable IP

Affinities of *n*-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}} \colon \mathbb{Z}_n^d \to \mathbb{Z}_n^d$, $\mathbf{u} \mapsto \mathbf{u} + \mathbf{v}$. Since $_{\mathbf{v}}M = \tau_{\mathbf{v}} _{\mathbf{0}}M$, we have $G_{\mathcal{M},n}$ generated by $_{\mathbf{0}}M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_i}$, where the \mathbf{e}_i 's are the canonical vectors.

If $M \in GL_d(\mathbb{Z})$, then ${}_{\mathbf{v}}M \in Aff_d(\mathbb{Z}_n)$ restricts to an integral bijective affine transformation ${}_{\mathbf{v}}M \in Aff_d(\mathbb{Z})$; hence, we can view $G_{\mathcal{M},n} \leq Aff_d(\mathbb{Z})$ (and is independent from n; let's denote it by $G_{\mathcal{M}}$).

They get multiplied as

$$\mathbf{v}M_{\mathbf{v}'}M': \mathbf{u} \longrightarrow \mathbf{v}' + M'\mathbf{u} \longrightarrow \mathbf{v} + M(\mathbf{v}' + M'\mathbf{u}) =$$

 $(\mathbf{v} + M\mathbf{v}') + MM'\mathbf{u} =$
 $\mathbf{v} + M\mathbf{v}'(MM')(\mathbf{u}).$

So, $G_{\mathcal{M}} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \ldots, M_m \rangle \leqslant \operatorname{GL}_d(\mathbb{Z})$.

2. Automaton groups 000●00000 3. Usolvability of CP

4. Unsolvable IP

Affinities of *n*-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}} \colon \mathbb{Z}_n^d \to \mathbb{Z}_n^d$, $\mathbf{u} \mapsto \mathbf{u} + \mathbf{v}$. Since $_{\mathbf{v}}M = \tau_{\mathbf{v}} _{\mathbf{0}}M$, we have $G_{\mathcal{M},n}$ generated by $_{\mathbf{0}}M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_i}$, where the \mathbf{e}_i 's are the canonical vectors.

If $M \in GL_d(\mathbb{Z})$, then ${}_{\mathbf{v}}M \in Aff_d(\mathbb{Z}_n)$ restricts to an integral bijective affine transformation ${}_{\mathbf{v}}M \in Aff_d(\mathbb{Z})$; hence, we can view $G_{\mathcal{M},n} \leq Aff_d(\mathbb{Z})$ (and is independent from n; let's denote it by $G_{\mathcal{M}}$).

They get multiplied as

$$\mathbf{v}M_{\mathbf{v}'}M': \mathbf{u} \longrightarrow \mathbf{v}' + M'\mathbf{u} \longrightarrow \mathbf{v} + M(\mathbf{v}' + M'\mathbf{u}) =$$

 $(\mathbf{v} + M\mathbf{v}') + MM'\mathbf{u} =$
 $\mathbf{v}_{+M\mathbf{v}'}(MM')(\mathbf{u}).$

So, $G_{\mathcal{M}} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \dots, M_m \rangle \leqslant \operatorname{GL}_d(\mathbb{Z})$.

1. Main results

2. Automaton groups

3. Usolvability of CP

4. Unsolvable IP 0000

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$G_{\mathcal{M}}$ is an automaton group

So, we have the groups $G_{\mathcal{M},n}$ (with $\mathcal{M} = \{M_1, \dots, M_m\}$ as before) and $\det M_i = \pm 1 \Rightarrow G_{\mathcal{M},n} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \dots, M_m \rangle \leq \operatorname{GL}_d(\mathbb{Z})$.

It only remains to prove that:

Proposition $G_{\mathcal{M},n}$ is an automaton group.

1. Main results

2. Automaton groups

3. Usolvability of CP

4. Unsolvable IP 0000

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$G_{\mathcal{M}}$ is an automaton group

So, we have the groups $G_{\mathcal{M},n}$ (with $\mathcal{M} = \{M_1, \dots, M_m\}$ as before) and $\det M_i = \pm 1 \Rightarrow G_{\mathcal{M},n} \cong \mathbb{Z}^d \rtimes \Gamma$, where $\Gamma = \langle M_1, \dots, M_m \rangle \leq \operatorname{GL}_d(\mathbb{Z})$.

It only remains to prove that:

3. Usolvability of CP

4. Unsolvable IP 0000

$G_{\mathcal{M}}$ is an automaton group

Definition

Elements in \mathbb{Z}_n may be (uniquely) represented as right infinite words over $Y_n = \{0, ..., n-1\}$:

$$y_1 y_2 y_3 \cdots \iff y_1 + n \cdot y_2 + n^2 \cdot y_3 + \cdots$$

Similarly, elements of \mathbb{Z}_n^d (the free *d*-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_n = Y_n^d = \{(y_1, \dots, y_d)^T \mid y_i \in Y_n\}$:

$$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \quad \longleftrightarrow \quad \mathbf{x}_1 + n \cdot \mathbf{x}_2 + n^2 \cdot \mathbf{x}_3 + \cdots$$

Note that $|Y_n| = n$ and $|X_n| = n^d$.

3. Usolvability of CP

4. Unsolvable IP 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$G_{\mathcal{M}}$ is an automaton group

Definition

Elements in \mathbb{Z}_n may be (uniquely) represented as right infinite words over $Y_n = \{0, ..., n-1\}$:

$$y_1 y_2 y_3 \cdots \iff y_1 + n \cdot y_2 + n^2 \cdot y_3 + \cdots$$

Similarly, elements of \mathbb{Z}_n^d (the free *d*-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_n = Y_n^d = \{(y_1, \dots, y_d)^T \mid y_i \in Y_n\}$:

$$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \quad \longleftrightarrow \quad \mathbf{x}_1 + n \cdot \mathbf{x}_2 + n^2 \cdot \mathbf{x}_3 + \cdots$$

Note that $|Y_n| = n$ and $|X_n| = n^d$.

3. Usolvability of CP

4. Unsolvable IP 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$G_{\mathcal{M}}$ is an automaton group

Definition

Elements in \mathbb{Z}_n may be (uniquely) represented as right infinite words over $Y_n = \{0, ..., n-1\}$:

$$y_1 y_2 y_3 \cdots \iff y_1 + n \cdot y_2 + n^2 \cdot y_3 + \cdots$$

Similarly, elements of \mathbb{Z}_n^d (the free *d*-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_n = Y_n^d = \{(y_1, \dots, y_d)^T \mid y_i \in Y_n\}$:

$$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \quad \longleftrightarrow \quad \mathbf{x}_1 + n \cdot \mathbf{x}_2 + n^2 \cdot \mathbf{x}_3 + \cdots$$

Note that $|Y_n| = n$ and $|X_n| = n^d$.

3. Usolvability of CP 000000 4. Unsolvable IP

$G_{\mathcal{M}}$ is an automaton group

Definition

For $\mathbf{v} \in \mathbb{Z}^d$, define vectors $Mod(\mathbf{v}) \in X_n$ and $Div(\mathbf{v}) \in \mathbb{Z}^d$ s.t. $\mathbf{v} = Mod(\mathbf{v}) + n \cdot Div(\mathbf{v}).$

Lemma

For every $\mathbf{v} \in \mathbb{Z}^d$, and every $\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \ldots \in \mathbb{Z}_n^d$, we have

 $\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathsf{Mod}(\mathbf{v} + M\mathbf{x}_1) + n \cdot_{\mathsf{Div}(\mathbf{v} + M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$

Proof.

$$\mathbf{v}^{M}(\mathbf{x}_{1}\mathbf{x}_{2}\cdots) = \mathbf{v} + M\mathbf{x}_{1}\mathbf{x}_{2}\cdots = \mathbf{v} + M(\mathbf{x}_{1} + n \cdot (\mathbf{x}_{2}\mathbf{x}_{3}\cdots))$$

$$= \mathbf{v} + M\mathbf{x}_1 + H \cdot M\mathbf{x}_2\mathbf{x}_3 \cdots$$
$$= \operatorname{Mod}(\mathbf{v} + M\mathbf{v}_2) + p \cdot \operatorname{Div}(\mathbf{v} + M\mathbf{v}_2) +$$

$$= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_1) + H \cdot \operatorname{Div}(\mathbf{v} + M\mathbf{x}_1) + H M\mathbf{x}_2\mathbf{x}_3 \cdots$$
$$= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_1) + \mu \cdot (\operatorname{Div}(\mathbf{v} + M\mathbf{x}_2) + M\mathbf{x}_3 \cdots)$$

$$= \operatorname{Miod}(\mathbf{v} + M\mathbf{X}_1) + n \cdot (\operatorname{Div}(\mathbf{v} + M\mathbf{X}_1) + M\mathbf{X}_2\mathbf{X}_3 \cdots)$$

$$= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_1) + n \cdot_{\operatorname{Div}(\mathbf{v} + M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3 \cdots). \square$$

3. Usolvability of CP

4. Unsolvable IP 0000

$G_{\mathcal{M}}$ is an automaton group

Definition

For $\mathbf{v} \in \mathbb{Z}^d$, define vectors $Mod(\mathbf{v}) \in X_n$ and $Div(\mathbf{v}) \in \mathbb{Z}^d$ s.t. $\mathbf{v} = Mod(\mathbf{v}) + n \cdot Div(\mathbf{v}).$

Lemma

For every $\mathbf{v} \in \mathbb{Z}^d$, and every $\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \ldots \in \mathbb{Z}_n^d$, we have

 $\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathrm{Mod}(\mathbf{v}+M\mathbf{x}_1) + n \cdot_{\mathrm{Div}(\mathbf{v}+M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$

Proof.

$$\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\cdots) = \mathbf{v} + M\mathbf{x}_1\mathbf{x}_2\cdots = \mathbf{v} + M(\mathbf{x}_1 + n \cdot (\mathbf{x}_2\mathbf{x}_3\cdots))$$

$$=$$
 v + M**x**₁ + n · M**x**₂**x**₃ · · ·

- $= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_1) + n \cdot \operatorname{Div}(\mathbf{v} + M\mathbf{x}_1) + nM\mathbf{x}_2\mathbf{x}_3 \cdots$
- $= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_1) + n \cdot (\operatorname{Div}(\mathbf{v} + M\mathbf{x}_1) + M\mathbf{x}_2\mathbf{x}_3 \cdots)$
- $= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_1) + n \cdot_{\operatorname{Div}(\mathbf{v} + M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3 \cdots). \square$

3. Usolvability of CP 000000 4. Unsolvable IP

$G_{\mathcal{M}}$ is an automaton group

Definition

For $\mathbf{v} \in \mathbb{Z}^d$, define vectors $Mod(\mathbf{v}) \in X_n$ and $Div(\mathbf{v}) \in \mathbb{Z}^d$ s.t. $\mathbf{v} = Mod(\mathbf{v}) + n \cdot Div(\mathbf{v}).$

Lemma

For every $\mathbf{v} \in \mathbb{Z}^d$, and every $\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \ldots \in \mathbb{Z}_n^d$, we have

 $\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathrm{Mod}(\mathbf{v}+M\mathbf{x}_1) + n \cdot_{\mathrm{Div}(\mathbf{v}+M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$

Proof.

$$\mathbf{v}^{M}(\mathbf{x}_{1}\mathbf{x}_{2}\cdots) = \mathbf{v} + M\mathbf{x}_{1}\mathbf{x}_{2}\cdots = \mathbf{v} + M(\mathbf{x}_{1} + n \cdot (\mathbf{x}_{2}\mathbf{x}_{3}\cdots))$$

$$= \mathbf{v} + M\mathbf{x}_{1} + n \cdot M\mathbf{x}_{2}\mathbf{x}_{3}\cdots$$

$$= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_{1}) + n \cdot \operatorname{Div}(\mathbf{v} + M\mathbf{x}_{1}) + nM\mathbf{x}_{2}\mathbf{x}_{3}\cdots)$$

$$= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_{1}) + n \cdot (\operatorname{Div}(\mathbf{v} + M\mathbf{x}_{1}) + M\mathbf{x}_{2}\mathbf{x}_{3}\cdots)$$

$$= \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_{1}) + n \cdot \operatorname{Div}(\mathbf{v} + M\mathbf{x}_{1}) + M\mathbf{x}_{2}\mathbf{x}_{3}\cdots)$$

3. Usolvability of CP

4. Unsolvable IP 0000

$G_{\mathcal{M}}$ is an automaton group

$$\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \operatorname{Mod}(\mathbf{v} + M\mathbf{x}_1) + n \cdot_{\operatorname{Div}(\mathbf{v} + M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between -||M|| and ||M|| - 1 (note that $|V_M| = (2||M||)^d$).

Definition

Construct the automaton $A_{M,n}$:

- Alphabet: X_n.
- States: m_v for $v \in V_M$, with root permutation and sections

 $m_{\mathbf{v}}(\mathbf{x}) = \operatorname{Mod}(\mathbf{v} + M\mathbf{x}), \text{ and } m_{\mathbf{v}}|_{\mathbf{x}} = m_{\operatorname{Div}(\mathbf{v} + M\mathbf{x})}.$

• Straightforward to see that sections are again states.

3. Usolvability of CP 000000 4. Unsolvable IP 0000

$G_{\mathcal{M}}$ is an automaton group

$$\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathrm{Mod}(\mathbf{v}+M\mathbf{x}_1) + n \cdot_{\mathrm{Div}(\mathbf{v}+M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between -||M|| and ||M|| - 1 (note that $|V_M| = (2||M||)^d$).

Definition

Construct the automaton $A_{M,n}$:

- Alphabet: X_n.
- States: m_v for $v \in V_M$, with root permutation and sections

 $m_{\mathbf{v}}(\mathbf{x}) = \operatorname{Mod}(\mathbf{v} + M\mathbf{x}), \text{ and } m_{\mathbf{v}}|_{\mathbf{x}} = m_{\operatorname{Div}(\mathbf{v} + M\mathbf{x})}.$

• Straightforward to see that sections are again states.

3. Usolvability of CP 000000 4. Unsolvable IP

$G_{\mathcal{M}}$ is an automaton group

$$\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathrm{Mod}(\mathbf{v}+M\mathbf{x}_1) + n \cdot_{\mathrm{Div}(\mathbf{v}+M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between -||M|| and ||M|| - 1 (note that $|V_M| = (2||M||)^d$).

Definition

Construct the automaton $\mathcal{A}_{M,n}$:

- Alphabet: X_n.
- States: m_v for $v \in V_M$, with root permutation and sections

 $m_{\mathbf{v}}(\mathbf{x}) = \operatorname{Mod}(\mathbf{v} + M\mathbf{x}), \text{ and } m_{\mathbf{v}}|_{\mathbf{x}} = m_{\operatorname{Div}(\mathbf{v} + M\mathbf{x})}.$

• Straightforward to see that sections are again states.

3. Usolvability of CP

4. Unsolvable IP

$G_{\mathcal{M}}$ is an automaton group

$$\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathrm{Mod}(\mathbf{v}+M\mathbf{x}_1) + n \cdot_{\mathrm{Div}(\mathbf{v}+M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between -||M|| and ||M|| - 1 (note that $|V_M| = (2||M||)^d$).

Definition

Construct the automaton $\mathcal{A}_{M,n}$:

- Alphabet: X_n.
- States: m_v for $v \in V_M$, with root permutation and sections

 $m_{\mathbf{v}}(\mathbf{x}) = \operatorname{Mod}(\mathbf{v} + M\mathbf{x}), \text{ and } m_{\mathbf{v}}|_{\mathbf{x}} = m_{\operatorname{Div}(\mathbf{v} + M\mathbf{x})}.$

• Straightforward to see that sections are again states.

3. Usolvability of CP

4. Unsolvable IP

$G_{\mathcal{M}}$ is an automaton group

$$\mathbf{v}M(\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3\cdots) = \mathrm{Mod}(\mathbf{v}+M\mathbf{x}_1) + n \cdot_{\mathrm{Div}(\mathbf{v}+M\mathbf{x}_1)} M(\mathbf{x}_2\mathbf{x}_3\mathbf{x}_4\cdots).$$

Definition

For $M \in \mathcal{M}$, let V_M be the set of integral vectors with coordinates between -||M|| and ||M|| - 1 (note that $|V_M| = (2||M||)^d$).

Definition

Construct the automaton $\mathcal{A}_{M,n}$:

- Alphabet: X_n.
- States: m_v for $v \in V_M$, with root permutation and sections

 $m_{\mathbf{v}}(\mathbf{x}) = \operatorname{Mod}(\mathbf{v} + M\mathbf{x}), \text{ and } m_{\mathbf{v}}|_{\mathbf{x}} = m_{\operatorname{Div}(\mathbf{v} + M\mathbf{x})}.$

• Straightforward to see that sections are again states.

3. Usolvability of CP

4. Unsolvable IP

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$G_{\mathcal{M}}$ is an automaton group

Observation

The state $m_{\mathbf{v}} \in \mathcal{A}_{M,n}$ acts on a vector $\mathbf{u} = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \in \mathbb{Z}_n^d$ as $m_{\mathbf{v}}(\mathbf{u}) = {}_{\mathbf{v}} M(\mathbf{u})$.

Definition

Construct the automaton $A_{\mathcal{M},n}$ as the disjoint union of the automata $A_{M_1,n}, \ldots, A_{M_m,n}$.

- Alphabet: X_n,
- It has $2^d \sum_{i=1}^m ||M_i||^d$ states.

Proposition

 $G_{\mathcal{M},n}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathcal{M},n}$ (over an alphabet of size n^d , and having $2^d \sum_{i=1}^m ||M_i||^d$ states).

3. Usolvability of CP

4. Unsolvable IP 0000

$G_{\mathcal{M}}$ is an automaton group

Observation

The state $m_{\mathbf{v}} \in \mathcal{A}_{M,n}$ acts on a vector $\mathbf{u} = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \in \mathbb{Z}_n^d$ as $m_{\mathbf{v}}(\mathbf{u}) = {}_{\mathbf{v}} M(\mathbf{u})$.

Definition

Construct the automaton $A_{\mathcal{M},n}$ as the disjoint union of the automata $A_{M_1,n}, \ldots, A_{M_m,n}$.

- Alphabet: X_n,
- It has $2^d \sum_{i=1}^m ||M_i||^d$ states.

Proposition

 $G_{\mathcal{M},n}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathcal{M},n}$ (over an alphabet of size n^d , and having $2^d \sum_{i=1}^m ||M_i||^d$ states).

3. Usolvability of CP

4. Unsolvable IP 0000

$G_{\mathcal{M}}$ is an automaton group

Observation

The state $m_{\mathbf{v}} \in \mathcal{A}_{M,n}$ acts on a vector $\mathbf{u} = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \cdots \in \mathbb{Z}_n^d$ as $m_{\mathbf{v}}(\mathbf{u}) = {}_{\mathbf{v}} M(\mathbf{u})$.

Definition

Construct the automaton $A_{\mathcal{M},n}$ as the disjoint union of the automata $A_{M_1,n}, \ldots, A_{M_m,n}$.

- Alphabet: X_n,
- It has $2^d \sum_{i=1}^m ||M_i||^d$ states.

Proposition

 $G_{\mathcal{M},n}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathcal{M},n}$ (over an alphabet of size n^d , and having $2^d \sum_{i=1}^m ||M_i||^d$ states).

3. Usolvability of CP

4. Unsolvable IP

Our State and State and

Unsolvability of IP

- * ロ * * @ * * 注 * 注 * うへぐ

3. Usolvability of CP ●00000

Orbit decidability

Definition

Let G be a f.g. group. A subgroup $\Gamma \leq \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in G$, it decides whether there exists $\alpha \in \Gamma$ such that $\alpha(u)$ is conjugate to v.

First examples: $G = \mathbb{Z}^d$

Observation (folklore)

The full group $Aut(\mathbb{Z}^d) = GL_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = Au if and only if $gcd(u_1, \ldots, u_d) = gcd(v_1, \ldots, v_d)$.

・ロト・西ト・ヨト・ヨー うへぐ

3. Usolvability of CP ●00000

Orbit decidability

Definition

Let G be a f.g. group. A subgroup $\Gamma \leq \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in G$, it decides whether there exists $\alpha \in \Gamma$ such that $\alpha(u)$ is conjugate to v.

First examples: $G = \mathbb{Z}^d$

Observation (folklore)

The full group $Aut(\mathbb{Z}^d) = GL_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = Au if and only if $gcd(u_1, \ldots, u_d) = gcd(v_1, \ldots, v_d)$.

(ロ) (型) (主) (主) (三) の(で)

3. Usolvability of CP ●00000

Orbit decidability

Definition

Let G be a f.g. group. A subgroup $\Gamma \leq \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in G$, it decides whether there exists $\alpha \in \Gamma$ such that $\alpha(u)$ is conjugate to v.

First examples: $G = \mathbb{Z}^d$

Observation (folklore)

The full group $Aut(\mathbb{Z}^d) = GL_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = Au if and only if $gcd(u_1, \ldots, u_d) = gcd(v_1, \ldots, v_d)$.

1. Main results

2. Automaton groups

3. Usolvability of CP ○●○○○○ 4. Unsolvable IP 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

subgroups of $GL_d(\mathbb{Z})$

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \le GL_d(\mathbb{Z})$.

1. Main results

2. Automaton groups

3. Usolvability of CP ○●○○○○ 4. Unsolvable IP 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

subgroups of $GL_d(\mathbb{Z})$

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leq GL_d(\mathbb{Z})$.

1. Main results

2. Automaton groups

3. Usolvability of CP ○●○○○○ 4. Unsolvable IP 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

subgroups of $GL_d(\mathbb{Z})$

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leq GL_d(\mathbb{Z})$.

3. Usolvability of CP 00●000

Mihailova's subgroup

Definition

Let $U = \langle x_1, \dots, x_n | r_1, \dots, r_m \rangle$ be a finite presentation. The Mihailova group corresponding to U is

 $M(U) = \{(v, w) \in F_n \times F_n \mid v =_U w\} =$

 $= \langle (x_1, x_1), \ldots, (x_n, x_n), (1, r_1), \ldots, (1, r_m) \rangle \leqslant F_n \times F_n$

Theorem (Mihailova 1958)

The membership problem in $F_2 \times F_2$ is unsolvable.

Theorem (Grunewald 1978)

3. Usolvability of CP 00●000

Mihailova's subgroup

Definition

Let $U = \langle x_1, \dots, x_n | r_1, \dots, r_m \rangle$ be a finite presentation. The Mihailova group corresponding to U is

 $M(U) = \{(v, w) \in F_n \times F_n \mid v =_U w\} =$

 $=\langle (x_1,x_1),\ldots,(x_n,x_n),(1,r_1),\ldots,(1,r_m)\rangle \leqslant F_n\times F_n.$

Theorem (Mihailova 1958)

The membership problem in $F_2 \times F_2$ is unsolvable.

Theorem (Grunewald 1978)

3. Usolvability of CP 00●000

Mihailova's subgroup

Definition

Let $U = \langle x_1, \dots, x_n | r_1, \dots, r_m \rangle$ be a finite presentation. The Mihailova group corresponding to U is

 $M(U) = \{(v, w) \in F_n \times F_n \mid v =_U w\} =$

 $=\langle (x_1,x_1),\ldots,(x_n,x_n),(1,r_1),\ldots,(1,r_m)\rangle \leqslant F_n\times F_n.$

Theorem (Mihailova 1958)

The membership problem in $F_2 \times F_2$ is unsolvable.

Theorem (Grunewald 1978)

3. Usolvability of CP 00●000

Mihailova's subgroup

Definition

Let $U = \langle x_1, \dots, x_n | r_1, \dots, r_m \rangle$ be a finite presentation. The Mihailova group corresponding to U is

 $M(U) = \{(v, w) \in F_n \times F_n \mid v =_U w\} =$

 $=\langle (x_1,x_1),\ldots,(x_n,x_n),(1,r_1),\ldots,(1,r_m)\rangle \leqslant F_n\times F_n.$

Theorem (Mihailova 1958)

The membership problem in $F_2 \times F_2$ is unsolvable.

Theorem (Grunewald 1978)

1. Main results2. Automaton groups
occession3. Usolvability of CP
occession4. Unsolvable IP
occessionConnection with orbit decidabilityProposition (Bogopolski-Martino-V. 2008)Let G be a group, and let $A \leq B \leq Aut(G)$ and $v \in G$ be such that
 $B \cap Stab([v]) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(G)$, let $w = v\varphi$ and

 $\{\phi \in B \mid v\phi \sim w\} = B \cap (Stab^*(v) \cdot \varphi) = (B \cap Stab^*(v)) \cdot \varphi = \{\varphi\}.$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

 $OD(A) \Rightarrow MP(A, B). \square$

 1. Main results
 2. Automaton groups
 3. Usolvability of CP
 4. Unsolvable IP

 $\circ \circ$ $\circ \circ \circ \circ \circ$ $\circ \circ \circ \circ$ $\circ \circ \circ \circ$ $\circ \circ \circ \circ$

 Connection with orbit decidability

 Proposition (Bogopolski-Martino-V. 2008)

 Let G be a group, and let $A \leq B \leq \operatorname{Aut}(G)$ and $v \in G$ be such that

 $B \cap Stab([v]) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(G)$, let $w = v\varphi$ and

 $\{\phi \in B \mid v\phi \sim w\} = B \cap (Stab^*(v) \cdot \varphi) = (B \cap Stab^*(v)) \cdot \varphi = \{\varphi\}.$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

 $OD(A) \Rightarrow MP(A, B).\Box$

1. Main results
oo2. Automaton groups
 $occoeccoecce3. Usolvability of CP
<math>occoecce4. Unsolvable IP
<math>occoecceConnection with orbit decidabilityProposition (Bogopolski-Martino-V. 2008)
Let G be a group, and let <math>A \leq B \leq Aut(G)$ and $v \in G$ be such that

 $B \cap Stab([v]) = 1$. Then,

OD(A) solvable \Rightarrow MP(A, B) solvable.

Proof. Given $\varphi \in B \leq \operatorname{Aut}(G)$, let $w = v\varphi$ and

 $\{\phi \in B \mid v\phi \sim w\} = B \cap (Stab^*(v) \cdot \varphi) = (B \cap Stab^*(v)) \cdot \varphi = \{\varphi\}.$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

 $OD(A) \Rightarrow MP(A, B). \Box$

3. Usolvability of CP 0000●0

ヘロマ ヘ動 マイロマー

э

4. Unsolvable IP 0000

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leq GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z})$, $d \geq 4$. \Box

Question

3. Usolvability of CP 0000●0

ヘロト ヘ戸ト ヘヨト ヘヨト

э

4. Unsolvable IP 0000

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leq GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \le B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z}), d \geq 4$. \Box

Question

3. Usolvability of CP 0000●0 4. Unsolvable IP 0000

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leq GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z}), d \geq 4$. \Box

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

900

э

ヘロマ ヘ動 マイロマー

3. Usolvability of CP 0000●0 4. Unsolvable IP 0000

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leq GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z})$, $d \geq 4$. \Box

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

500

э

ヘロマ ヘ動 マイロマー

3. Usolvability of CP 0000●0 4. Unsolvable IP 0000

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leq GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \le B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z})$, $d \geq 4$. \Box

Question

Does there exist an orbit undecidable subgroup of $GL_3(\mathbb{Z})$?

900

э

ヘロマ ヘ動 マイロマ

3. Usolvability of CP 0000●0

ヘロマ ヘ動 マイロマ

э

4. Unsolvable IP 0000

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leq GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \le B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z}), d \geq 4$. \Box

Question

3. Usolvability of CP 0000●0

ヘロマ ヘ動 マイロマ

э

4. Unsolvable IP

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leq GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \le B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z}), d \geq 4$. \Box

Question

3. Usolvability of CP 0000●0

イロン イボン イヨン

4. Unsolvable IP 0000

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \ge 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leq GL_d(\mathbb{Z})$.

Proof.

- Take a copy of $F_2 = \langle P, Q \rangle$ inside $GL_2(\mathbb{Z})$.
- Take $F_2 \times F_2 \simeq B \leqslant GL_4(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leq GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \Box

Question

3. Usolvability of CP 00000● 4. Unsolvable IP

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Connection to semidirect products

Observation (Bogopolski-Martino-V.)

Let H be f.g., and $\Gamma \leq Aut(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leq Aut(H)$ is orbit decidable.

Proof. OD(Γ) is exactly the CP in G applied to $u, v \in H.\Box$

Corollary (Bogopolski-Martino-V.)

There exists $\Gamma \leq GL_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Corollary (Sunic-V.)

3. Usolvability of CP 00000● 4. Unsolvable IP 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Connection to semidirect products

Observation (Bogopolski-Martino-V.)

Let H be f.g., and $\Gamma \leq Aut(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leq Aut(H)$ is orbit decidable.

Proof. OD(Γ) is exactly the CP in G applied to $u, v \in H.\Box$

Corollary (Bogopolski-Martino-V.)

There exists $\Gamma \leq GL_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Corollary (Sunic-V.)

3. Usolvability of CP 00000● 4. Unsolvable IP 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Connection to semidirect products

Observation (Bogopolski-Martino-V.)

Let H be f.g., and $\Gamma \leq Aut(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leq Aut(H)$ is orbit decidable.

Proof. OD(Γ) is exactly the CP in G applied to $u, v \in H.\Box$

Corollary (Bogopolski-Martino-V.)

There exists $\Gamma \leq GL_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Corollary (Sunic-V.)

3. Usolvability of CP 00000● 4. Unsolvable IP 0000

Connection to semidirect products

Observation (Bogopolski-Martino-V.)

Let H be f.g., and $\Gamma \leq Aut(H)$ f.g. If $H \rtimes \Gamma$ has solvable CP, then $\Gamma \leq Aut(H)$ is orbit decidable.

Proof. OD(Γ) is exactly the CP in G applied to $u, v \in H.\Box$

Corollary (Bogopolski-Martino-V.)

There exists $\Gamma \leq GL_d(\mathbb{Z})$ f.g. such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable conjugacy problem.

Corollary (Sunic-V.)

3. Usolvability of CP

4. Unsolvable IP

Outline

- 2 Automaton groups
- Unsolvability of CP and orbit undecidability

Unsolvability of IP

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

3. Usolvability of CP

Unsolvable IP
 ●○○○

A construction due to Gordon

Let $U = \langle x_1, \ldots, x_n | R \rangle$ be fin. pres. For $w = w(x_1, \ldots, x_n)$, consider

$$H_{w} = \left\langle X, a, b, c \mid R \\ a^{-1}ba = c^{-1}b^{-1}cbc \\ a^{-2}b^{-1}aba^{2} = c^{-2}b^{-1}cbc^{2} \\ a^{-3}[w, b]a^{3} = c^{-3}bc^{3} \\ a^{-(3+i)}x_{i}ba^{3+i} = c^{-(3+i)}bc^{3+i}, i \ge 1 \right.$$

_emma

- 1) If $w \neq_U 1$ then U embeds in H_w .
- 2) If $w =_U 1$ then $H_w = \{1\}$.
- 3) H_w is two generated (by b and ca⁻¹)

Theorem (Adian-Rabin)

3. Usolvability of CP

4. Unsolvable IP ●000

A construction due to Gordon

Let $U = \langle x_1, \ldots, x_n | R \rangle$ be fin. pres. For $w = w(x_1, \ldots, x_n)$, consider

$$H_{w} = \left\langle X, a, b, c \mid R \\ a^{-1}ba = c^{-1}b^{-1}cbc \\ a^{-2}b^{-1}aba^{2} = c^{-2}b^{-1}cbc^{2} \\ a^{-3}[w, b]a^{3} = c^{-3}bc^{3} \\ a^{-(3+i)}x_{i}ba^{3+i} = c^{-(3+i)}bc^{3+i}, i \ge 1 \right.$$

Lemma

- 1) If $w \neq_U 1$ then U embeds in H_w .
- 2) If $w =_U 1$ then $H_w = \{1\}$.
- 3) H_w is two generated (by b and ca⁻¹)

Theorem (Adian-Rabin)

3. Usolvability of CP

4. Unsolvable IP ●000

A construction due to Gordon

Let $U = \langle x_1, \ldots, x_n | R \rangle$ be fin. pres. For $w = w(x_1, \ldots, x_n)$, consider

$$H_{w} = \left\langle X, a, b, c \mid R \\ a^{-1}ba = c^{-1}b^{-1}cbc \\ a^{-2}b^{-1}aba^{2} = c^{-2}b^{-1}cbc^{2} \\ a^{-3}[w, b]a^{3} = c^{-3}bc^{3} \\ a^{-(3+i)}x_{i}ba^{3+i} = c^{-(3+i)}bc^{3+i}, i \ge 1 \right.$$

Lemma

- 1) If $w \neq_U 1$ then U embeds in H_w .
- 2) If $w =_U 1$ then $H_w = \{1\}$.
- 3) H_w is two generated (by b and ca⁻¹)

Theorem (Adian-Rabin)

3. Usolvability of CP

Unsolvable IP
 ●○○○

A construction due to Gordon

Let $U = \langle x_1, \ldots, x_n | R \rangle$ be fin. pres. For $w = w(x_1, \ldots, x_n)$, consider

$$H_{w} = \left\langle X, a, b, c \mid R \\ a^{-1}ba = c^{-1}b^{-1}cbc \\ a^{-2}b^{-1}aba^{2} = c^{-2}b^{-1}cbc^{2} \\ a^{-3}[w,b]a^{3} = c^{-3}bc^{3} \\ a^{-(3+i)}x_{i}ba^{3+i} = c^{-(3+i)}bc^{3+i}, i \ge 1 \right\rangle$$

Lemma

- 1) If $w \neq_U 1$ then U embeds in H_w .
- 2) If $w =_U 1$ then $H_w = \{1\}$.
- 3) H_w is two generated (by b and ca⁻¹).

Theorem (Adian-Rabin)

3. Usolvability of CP

4. Unsolvable IP ●000

A construction due to Gordon

Let $U = \langle x_1, \ldots, x_n | R \rangle$ be fin. pres. For $w = w(x_1, \ldots, x_n)$, consider

$$H_{w} = \left\langle X, a, b, c \mid R \\ a^{-1}ba = c^{-1}b^{-1}cbc \\ a^{-2}b^{-1}aba^{2} = c^{-2}b^{-1}cbc^{2} \\ a^{-3}[w,b]a^{3} = c^{-3}bc^{3} \\ a^{-(3+i)}x_{i}ba^{3+i} = c^{-(3+i)}bc^{3+i}, i \ge 1 \right\rangle$$

Lemma

- 1) If $w \neq_U 1$ then U embeds in H_w .
- 2) If $w =_U 1$ then $H_w = \{1\}$.
- 3) H_w is two generated (by b and ca⁻¹).

Theorem (Adian-Rabin)

The isomorphism problem, the triviality problem, the finite problem are all unsolvable.

3. Usolvability of CP

 Unsolvable IP ○●○○

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The generation problem

Take U with unsolvable WP (in particular $|U| = \infty$), consider the presentations H_w as above, and consider the Mihailova group corresponding to H_w :

 $L_w = M(H_w) = \{(u, v) \in F_2 \times F_2 \mid u =_{H_w} v\} \leqslant F_2 \times F_2.$

Observe that

$$\begin{aligned} L_w = F_2 \times F_2 & \Leftrightarrow \quad u =_{H_w} v \quad \forall u, v \in F_2 \\ & \Leftrightarrow \quad H_w = \{1\} \\ & \Leftrightarrow \quad w =_U 1. \end{aligned}$$

Theorem (Miller 1971)

3. Usolvability of CP

 Unsolvable IP ○●○○

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The generation problem

Take U with unsolvable WP (in particular $|U| = \infty$), consider the presentations H_w as above, and consider the Mihailova group corresponding to H_w :

 $L_w = M(H_w) = \{(u, v) \in F_2 \times F_2 \mid u =_{H_w} v\} \leqslant F_2 \times F_2.$

Observe that

$$L_{w} = F_{2} \times F_{2} \quad \Leftrightarrow \quad u =_{H_{w}} v \quad \forall u, v \in F_{2}$$
$$\Leftrightarrow \quad H_{w} = \{1\}$$
$$\Leftrightarrow \quad w =_{U} 1.$$

Theorem (Miller 1971)

3. Usolvability of CP

 Unsolvable IP ○●○○

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The generation problem

Take U with unsolvable WP (in particular $|U| = \infty$), consider the presentations H_w as above, and consider the Mihailova group corresponding to H_w :

$$L_w = M(H_w) = \{(u, v) \in F_2 \times F_2 \mid u =_{H_w} v\} \leqslant F_2 \times F_2.$$

Observe that

$$L_{w} = F_{2} \times F_{2} \quad \Leftrightarrow \quad u =_{H_{w}} v \quad \forall u, v \in F_{2}$$
$$\Leftrightarrow \quad H_{w} = \{1\}$$
$$\Leftrightarrow \quad w =_{U} 1.$$

Theorem (Miller 1971)

3. Usolvability of CP

 Unsolvable IP ○●○○

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The generation problem

Take U with unsolvable WP (in particular $|U| = \infty$), consider the presentations H_w as above, and consider the Mihailova group corresponding to H_w :

$$L_w = M(H_w) = \{(u, v) \in F_2 \times F_2 \mid u =_{H_w} v\} \leqslant F_2 \times F_2.$$

Observe that

$$\begin{array}{rcl} L_w = F_2 \times F_2 & \Leftrightarrow & u =_{H_w} v & \forall u, v \in F_2 \\ & \Leftrightarrow & H_w = \{1\} \\ & \Leftrightarrow & w =_U 1. \end{array}$$

Theorem (Miller 1971)

3. Usolvability of CP

Unsolvable IP
 O●OO

The generation problem

Take U with unsolvable WP (in particular $|U| = \infty$), consider the presentations H_w as above, and consider the Mihailova group corresponding to H_w :

$$L_w = M(H_w) = \{(u, v) \in F_2 \times F_2 \mid u =_{H_w} v\} \leqslant F_2 \times F_2.$$

Observe that

$$\begin{array}{rcl} L_w = F_2 \times F_2 & \Leftrightarrow & u =_{H_w} v & \forall u, v \in F_2 \\ & \Leftrightarrow & H_w = \{1\} \\ & \Leftrightarrow & w =_U 1. \end{array}$$

Theorem (Miller 1971)

1. Main results OO	2. Automaton groups	3. Usolvability of CP	4. Unsolvable IP ○○●○
Towards IP			

- take $F_2 \leqslant GL_2(\mathbb{Z})$, and $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$.
- Take $L_w \leq F_2 \times F_2 \leq GL_4(\mathbb{Z})$.
- Consider $G_w = \mathbb{Z}^d \rtimes L_w$ and $G_1 = \mathbb{Z}^4 \rtimes (F_2 \times F_2)$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_2 \times F_2 \Rightarrow L_w$$
 f.p. $\Rightarrow G_w = G_1$ f.p.

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Given Γ , $\Delta \leq \operatorname{GL}_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

1. Main results OO	2. Automaton groups	3. Usolvability of CP	4. Unsolvable IP ○○●○
Towards IP			

- take $F_2 \leqslant GL_2(\mathbb{Z})$, and $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$.
- Take $L_w \leqslant F_2 \times F_2 \leqslant GL_4(\mathbb{Z})$.
- Consider $G_w = \mathbb{Z}^d \rtimes L_w$ and $G_1 = \mathbb{Z}^4 \rtimes (F_2 \times F_2)$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_2 \times F_2 \Rightarrow L_w$$
 f.p. $\Rightarrow G_w = G_1$ f.p.

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Given Γ , $\Delta \leq \operatorname{GL}_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

1. Main results 00	2. Automaton groups	3. Usolvability of CP	4. Unsolvable IP 00€0
Towards IP			

- take $F_2 \leqslant GL_2(\mathbb{Z})$, and $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$.
- Take $L_w \leqslant F_2 \times F_2 \leqslant GL_4(\mathbb{Z})$.
- Consider $G_w = \mathbb{Z}^d \rtimes L_w$ and $G_1 = \mathbb{Z}^4 \rtimes (F_2 \times F_2)$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_2 \times F_2 \Rightarrow L_w$$
 f.p. $\Rightarrow G_w = G_1$ f.p.

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Given Γ , $\Delta \leq \operatorname{GL}_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

1. Main results 00	2. Automaton groups	3. Usolvability of CP	4. Unsolvable IP 00●0
Towards IP			

- take $F_2 \leqslant GL_2(\mathbb{Z})$, and $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$.
- Take $L_w \leqslant F_2 \times F_2 \leqslant GL_4(\mathbb{Z})$.
- Consider $G_w = \mathbb{Z}^d \rtimes L_w$ and $G_1 = \mathbb{Z}^4 \rtimes (F_2 \times F_2)$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_2 \times F_2 \Rightarrow L_w$$
 f.p. $\Rightarrow G_w = G_1$ f.p.

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Given Γ , $\Delta \leq \operatorname{GL}_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

1. Main results	2. Automaton groups	3. Usolvability of CP	4. Unsolvable IP ○○●○
Towards IP			

- take $F_2 \leqslant GL_2(\mathbb{Z})$, and $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$.
- Take $L_w \leqslant F_2 \times F_2 \leqslant GL_4(\mathbb{Z})$.
- Consider $G_w = \mathbb{Z}^d \rtimes L_w$ and $G_1 = \mathbb{Z}^4 \rtimes (F_2 \times F_2)$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_2 \times F_2 \Rightarrow L_w$$
 f.p. $\Rightarrow G_w = G_1$ f.p.

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Given Γ , $\Delta \leq \operatorname{GL}_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

1. Main results OO	2. Automaton groups	3. Usolvability of CP	4. Unsolvable IP ○○●○
Towards IP			

- take $F_2 \leqslant GL_2(\mathbb{Z})$, and $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$.
- Take $L_w \leqslant F_2 \times F_2 \leqslant GL_4(\mathbb{Z})$.
- Consider $G_w = \mathbb{Z}^d \rtimes L_w$ and $G_1 = \mathbb{Z}^4 \rtimes (F_2 \times F_2)$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_2 \times F_2 \Rightarrow L_w \text{ f.p.} \Rightarrow G_w = G_1 \text{ f.p.}$$

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Given Γ , $\Delta \leq \operatorname{GL}_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

1. Main results OO	2. Automaton groups	3. Usolvability of CP	4. Unsolvable IP ○○●○
Towards IP			

- take $F_2 \leqslant GL_2(\mathbb{Z})$, and $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$.
- Take $L_w \leqslant F_2 \times F_2 \leqslant GL_4(\mathbb{Z})$.
- Consider $G_w = \mathbb{Z}^d \rtimes L_w$ and $G_1 = \mathbb{Z}^4 \rtimes (F_2 \times F_2)$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_2 \times F_2 \Rightarrow L_w$$
 f.p. $\Rightarrow G_w = G_1$ f.p.

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Given Γ , $\Delta \leq \operatorname{GL}_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

1. Main results	2. Automaton groups	3. Usolvability of CP	4. Unsolvable IP ○○●○
Towards IP			

- take $F_2 \leqslant GL_2(\mathbb{Z})$, and $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$.
- Take $L_w \leqslant F_2 \times F_2 \leqslant GL_4(\mathbb{Z})$.
- Consider $G_w = \mathbb{Z}^d \rtimes L_w$ and $G_1 = \mathbb{Z}^4 \rtimes (F_2 \times F_2)$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_2 \times F_2 \Rightarrow L_w$$
 f.p. $\Rightarrow G_w = G_1$ f.p.

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Given Γ , $\Delta \leq \operatorname{GL}_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

1. Main results	2. Automaton groups	3. Usolvability of CP	4. Unsolvable IP ○○●○
Towards IP			

- take $F_2 \leqslant GL_2(\mathbb{Z})$, and $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$.
- Take $L_w \leqslant F_2 \times F_2 \leqslant GL_4(\mathbb{Z})$.
- Consider $G_w = \mathbb{Z}^d \rtimes L_w$ and $G_1 = \mathbb{Z}^4 \rtimes (F_2 \times F_2)$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_2 \times F_2 \Rightarrow L_w$$
 f.p. $\Rightarrow G_w = G_1$ f.p.

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Given Γ , $\Delta \leq \operatorname{GL}_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

1. Main results	2. Automaton groups	3. Usolvability of CP	4. Unsolvable IP ○○●○
Towards IP			

- take $F_2 \leqslant GL_2(\mathbb{Z})$, and $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$.
- Take $L_w \leqslant F_2 \times F_2 \leqslant GL_4(\mathbb{Z})$.
- Consider $G_w = \mathbb{Z}^d \rtimes L_w$ and $G_1 = \mathbb{Z}^4 \rtimes (F_2 \times F_2)$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_2 \times F_2 \Rightarrow L_w$$
 f.p. $\Rightarrow G_w = G_1$ f.p.

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Given Γ , $\Delta \leq \operatorname{GL}_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

1. Main results	2. Automaton groups	3. Usolvability of CP	4. Unsolvable IP ○○●○
Towards IP			

- take $F_2 \leqslant GL_2(\mathbb{Z})$, and $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$.
- Take $L_w \leqslant F_2 \times F_2 \leqslant GL_4(\mathbb{Z})$.
- Consider $G_w = \mathbb{Z}^d \rtimes L_w$ and $G_1 = \mathbb{Z}^4 \rtimes (F_2 \times F_2)$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_2 \times F_2 \Rightarrow L_w$$
 f.p. $\Rightarrow G_w = G_1$ f.p.

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Given Γ , $\Delta \leq \operatorname{GL}_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

1. Main results OO	2. Automaton groups	3. Usolvability of CP	4. Unsolvable IP 00●0
Towards IP			

- take $F_2 \leqslant GL_2(\mathbb{Z})$, and $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$.
- Take $L_w \leqslant F_2 \times F_2 \leqslant GL_4(\mathbb{Z})$.
- Consider $G_w = \mathbb{Z}^d \rtimes L_w$ and $G_1 = \mathbb{Z}^4 \rtimes (F_2 \times F_2)$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_2 \times F_2 \Rightarrow L_w$$
 f.p. $\Rightarrow G_w = G_1$ f.p.

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Given Γ , $\Delta \leq \operatorname{GL}_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

1. Main results OO	2. Automaton groups	3. Usolvability of CP	4. Unsolvable IP 00●0
Towards IP			

- take $F_2 \leqslant GL_2(\mathbb{Z})$, and $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$.
- Take $L_w \leqslant F_2 \times F_2 \leqslant GL_4(\mathbb{Z})$.
- Consider $G_w = \mathbb{Z}^d \rtimes L_w$ and $G_1 = \mathbb{Z}^4 \rtimes (F_2 \times F_2)$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_2 \times F_2 \Rightarrow L_w$$
 f.p. $\Rightarrow G_w = G_1$ f.p.

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Given Γ , $\Delta \leq GL_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

1. Main results	2. Automaton groups	3. Usolvability of CP	4. Unsolvable IP ○○●○
Towards IP			

- take $F_2 \leqslant GL_2(\mathbb{Z})$, and $F_2 \times F_2 \leqslant GL_2(\mathbb{Z}) \times GL_2(\mathbb{Z}) \leqslant GL_4(\mathbb{Z})$.
- Take $L_w \leqslant F_2 \times F_2 \leqslant GL_4(\mathbb{Z})$.
- Consider $G_w = \mathbb{Z}^d \rtimes L_w$ and $G_1 = \mathbb{Z}^4 \rtimes (F_2 \times F_2)$.
- Observe that

$$w =_U 1 \Rightarrow L_w = F_2 \times F_2 \Rightarrow L_w$$
 f.p. $\Rightarrow G_w = G_1$ f.p.

$$w \neq_U 1 \Rightarrow U \hookrightarrow H_w \Rightarrow |H_w| = \infty \Rightarrow L_w \text{ not f.p.} \Rightarrow G_w \text{ not f.p.}$$

Given Γ , $\Delta \leq \operatorname{GL}_d(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^d \rtimes \Gamma \simeq \mathbb{Z}^d \rtimes \Delta$.

Corollary (Sunic-V.)

3. Usolvability of CP

4. Unsolvable IP 000●

THANKS

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?