Unsolvability of the CP and IP for automaton groups

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya

GAGTA-6, Dusseldorf

August 2nd, 2012.

Outline

(1) Main results

2 Automaton groups
(3) Unsolvability of CP and orbit undecidability

4 Unsolvability of IP

Outline

(1) Main results

(2) Automaton groups
(3) Unsolvability of CP and orbit undecidability
4. Unsolvability of IP

Main results

Consider the family of automaton groups.

Observation

The word problem is solvable for all automaton groups.

Theorem (Sunic-V.)
 There exist automaton groups with unsolvable conjugacy problem.

```
Theorem (Sunic-V.)
The isomorphism prob em is unsolvable within the family of
automaton groups.
```


Main results

Consider the family of automaton groups.
Observation
The word problem is solvable for all automaton groups.

Theorem (Sunic-V.)
 There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)
The isomorphism problem is unsolvable within the family of
automaton groups.

Main results

Consider the family of automaton groups.

Observation

The word problem is solvable for all automaton groups.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)
 The isomornhism nroblem is unsolvable within the family of
 automaton groups.

Main results

Consider the family of automaton groups.
Observation
The word problem is solvable for all automaton groups.

Theorem (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Theorem (Sunic-V.)

The isomorphism problem is unsolvable within the family of automaton groups.

Reduction to matrices

Both results come from...
Theorem (Sunic-V.)
Let $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^{d} \rtimes \Gamma$ is an automaton group.
by using

Theorem (Bogopolski-Martino-V.)

There exists $\Gamma \leqslant \mathrm{GL}_{\boldsymbol{d}}(\mathbb{Z})$ f.g. such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable conjugacy problem.

Theorem (Sunic-V.)

Given $\Gamma . \Delta \leqslant \operatorname{GL}{ }_{d}(\mathbb{Z})$ f.g., it is undecidable whether \mathbb{Z}^{d}

Reduction to matrices

Both results come from...
Theorem (Sunic-V.)
Let $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^{d} \rtimes \Gamma$ is an automaton group.
... by using
Theorem (Bogopolski-Martino-V.)
There exists $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g. such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable conjugacy problem.

Theorem (Sunic-V.)
Given $\Gamma, \Delta \leqslant G L_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$

Reduction to matrices

Both results come from...
Theorem (Sunic-V.)
Let $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ be f.g. Then, $\mathbb{Z}^{d} \rtimes \Gamma$ is an automaton group.
... by using

Theorem (Bogopolski-Martino-V.)

There exists $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g. such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable conjugacy problem.

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$.

Outline

(1) Main results

2 Automaton groups

(3) Unsolvability of CP and orbit undecidability

4 Unsolvability of IP

Tree automorphisms

Let X be an alphabet on k letters, and let X^{*} be the free monoid on X, thought as a rooted k-ary tree:

Definition

- Every tree automorphism g decomposes as a root permutation $\pi_{g}: X \rightarrow X$, and k sections $\left.g\right|_{x}$, for $x \in X$:

Tree automorphisms

Let X be an alphabet on k letters, and let X^{*} be the free monoid on X, thought as a rooted k-ary tree:

Definition

- Every tree automorphism g decomposes as a root permutation $\pi_{g}: X \rightarrow X$, and k sections $\left.g\right|_{x}$, for $x \in X$:

$$
g(x w)=\left.\pi_{g}(x) g\right|_{x}(w)
$$

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The groux $G(A)$ of tree automorphisms generated by an automaton \mathcal{A} is called an automaton group.

The Grigorchuk group: $\mathbf{G}=\langle 1, \alpha, \beta, \gamma, \delta\rangle$, where

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
> - The group $G(\mathcal{A})$ of tree automorphisms generated by an automaton \mathcal{A} is called an automaton group.

The Grigorchuk group: $\mathbf{G}=\langle 1, \alpha, \beta, \gamma, \delta\rangle$, where

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group $G(\mathcal{A})$ of tree automorphisms generated by an automaton \mathcal{A} is called an automaton group.

The Grigorchuk group: $\mathbf{G}=\langle 1, \alpha, \beta, \gamma, \delta\rangle$, where

Automaton groups

Definition

- A set of tree automorphisms is self-similar if it contains all sections of all of its elements.
- A finite automaton is a finite self-similar set (elements are called states).
- The group $G(\mathcal{A})$ of tree automorphisms generated by an automaton \mathcal{A} is called an automaton group.

The Grigorchuk group: $\mathcal{G}=\langle 1, \alpha, \beta, \gamma, \delta\rangle$, where

$$
\alpha=\sigma(1,1), \quad \beta=1(\alpha, \gamma), \quad \gamma=1(\alpha, \delta), \quad \delta=1(1, \beta)
$$

Affinities of n-adic integers

Definition

Let $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \geqslant 2$ be relatively prime to all these determinants (thus, M_{i} is invertible over the ring \mathbb{Z}_{n} of n-adic integers).

For an integral $d \times d$ matrix M and $v \in \mathbb{Z}^{d}$, consider the invertible affine transformation ${ }_{\mathbf{v}} M: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \quad{ }_{\mathrm{v}} M(\mathbf{u})=\mathbf{v}+M \mathbf{u}$.

Lemma

If, in addition, det $M_{i}= \pm 1$, then $G_{M} \cong \mathbb{Z}^{d} \times \Gamma$, where

Affinities of n-adic integers

Definition

Let $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \geqslant 2$ be relatively prime to all these determinants (thus, M_{i} is invertible over the ring \mathbb{Z}_{n} of n-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^{d}$, consider the invertible affine transformation ${ }_{\mathbf{v}} M: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \quad{ }_{\mathrm{v}} \mathrm{M}(\mathbf{u})=\mathbf{v}+M \mathbf{u}$.
\qquad

Affinities of n-adic integers

Definition

Let $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \geqslant 2$ be relatively prime to all these determinants (thus, M_{i} is invertible over the ring \mathbb{Z}_{n} of n-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^{d}$, consider the invertible affine transformation ${ }_{\mathbf{v}} M: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \quad{ }_{\mathrm{v}} \mathrm{M}(\mathbf{u})=\mathbf{v}+M \mathbf{u}$.

Let

$$
G_{\mathcal{M}, n}=\left\langle\left\{\mathbf{v} M \mid M \in \mathcal{M}, \mathbf{v} \in \mathbb{Z}^{d}\right\}\right\rangle \leqslant \operatorname{Aff}_{d}\left(\mathbb{Z}_{n}\right) .
$$

Lemma

If, in addition, det $M_{i}= \pm 1$, then $G_{\mathcal{M} . n} \cong \mathbb{Z}^{d} \rtimes \Gamma$, where

Affinities of n-adic integers

Definition

Let $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ be integral $d \times d$ matrices with non-zero determinants. Let $n \geqslant 2$ be relatively prime to all these determinants (thus, M_{i} is invertible over the ring \mathbb{Z}_{n} of n-adic integers).

For an integral $d \times d$ matrix M and $\mathbf{v} \in \mathbb{Z}^{d}$, consider the invertible affine transformation ${ }_{\mathbf{v}} M: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \quad{ }_{\mathrm{v}} \mathrm{M}(\mathbf{u})=\mathbf{v}+M \mathbf{u}$.

Let

$$
G_{\mathcal{M}, n}=\left\langle\left\{\mathbf{v} M \mid M \in \mathcal{M}, \mathbf{v} \in \mathbb{Z}^{d}\right\}\right\rangle \leqslant \operatorname{Aff}_{d}\left(\mathbb{Z}_{n}\right) .
$$

Lemma

If, in addition, $\operatorname{det} M_{i}= \pm 1$, then $G_{\mathcal{M}, n} \cong \mathbb{Z}^{d} \rtimes \Gamma$, where $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Affinities of n-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}}: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \mathbf{u} \mapsto \mathbf{u}+\mathbf{v}$.
Since ${ }_{\mathrm{v}} M=\tau_{\mathrm{v}}{ }_{0} M$, we have $G_{\mathcal{M}, n}$ generated by $\mathrm{o}_{\mathrm{M}} \mathrm{for} M \in \mathcal{M}$, and $\tau_{\mathrm{e}_{i}}$, where the e_{i} 's are the canonical vectors.

If $M \in \mathrm{GL}_{d}(\mathbb{Z})$, then ${ }_{\mathrm{v}} M \in$ Aff $_{d}\left(\mathbb{Z}_{n}\right)$ restricts to an integral bijective affine transformation $v M \in$ Aff $_{d}(\mathbb{Z})$; hence, we can view $G_{M, n} \leqslant A_{I}(\mathbb{Z})$ (and is independent from n; let's denote it by G_{M}).

They get multiplied as

So, $G_{\mathcal{M}} \cong \mathbb{Z}^{d} \rtimes \Gamma$, where $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Affinities of n-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}}: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \mathbf{u} \mapsto \mathbf{u}+\mathbf{v}$.
Since ${ }_{\mathrm{v}} M=\tau_{\mathrm{v}} \mathrm{M}$, we have $G_{\mathcal{M}, n}$ generated by ${ }_{\mathrm{o}} M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_{i}}$, where the \mathbf{e}_{i} 's are the canonical vectors.

If $M \in \mathrm{GL}_{d}(\mathbb{Z})$, then ${ }_{\mathrm{v}} M \in \operatorname{Aff}_{d}\left(\mathbb{Z}_{n}\right)$ restricts to an integral bijective affine transformation ${ }_{v} M \in A f f_{d}(\mathbb{Z})$; hence, we can view $G_{\mathcal{M}, n} \leqslant \operatorname{Aff} f_{d}(\mathbb{Z})$ (and is independent from n; let's denote it by $G_{\mathcal{M}}$). They get multiplied as

$\mathbf{v}+M \mathbf{v}^{\prime}\left(M M^{\prime}\right)(\mathbf{u})$.
So, $G_{M} \cong \mathbb{Z}^{d} \rtimes \Gamma$, where $\Gamma=\left\langle M_{1}\right.$,
$\left.M_{m}\right) \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Affinities of n-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}}: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \mathbf{u} \mapsto \mathbf{u}+\mathbf{v}$.
Since ${ }_{\mathrm{v}} M=\tau_{\mathrm{v}} \mathrm{M}$, we have $G_{\mathcal{M}, n}$ generated by ${ }_{\mathrm{o}} M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_{i}}$, where the \mathbf{e}_{i} 's are the canonical vectors.

If $M \in \mathrm{GL}_{d}(\mathbb{Z})$, then ${ }_{\mathrm{v}} M \in$ Aff $_{d}\left(\mathbb{Z}_{n}\right)$ restricts to an integral bijective affine transformation $\mathrm{v} M \in$ Aff $_{d}(\mathbb{Z})$; hence, we can view $G_{\mathcal{M}, n} \leqslant A f f_{d}(\mathbb{Z})$ (and is independent from n; let's denote it by $G_{\mathcal{M}}$).

They get multiplied as

So, $G_{M} \cong \mathbb{Z}^{d} \rtimes \Gamma$, where $\Gamma=\left\langle M_{1}\right.$,
$\mathbf{v}+M \mathbf{v}^{\prime}\left(M M^{\prime}\right)(\mathbf{u})$.

Affinities of n-adic integers

Proof. Denote the translation by $\tau_{\mathbf{v}}: \mathbb{Z}_{n}^{d} \rightarrow \mathbb{Z}_{n}^{d}, \mathbf{u} \mapsto \mathbf{u}+\mathbf{v}$.
Since ${ }_{\mathrm{v}} M=\tau_{\mathrm{v}} \mathrm{M}$, we have $G_{\mathcal{M}, n}$ generated by ${ }_{\mathrm{o}} M$ for $M \in \mathcal{M}$, and $\tau_{\mathbf{e}_{i}}$, where the \mathbf{e}_{i} 's are the canonical vectors.

If $M \in \mathrm{GL}_{d}(\mathbb{Z})$, then ${ }_{\mathrm{v}} M \in \operatorname{Aff}_{d}\left(\mathbb{Z}_{n}\right)$ restricts to an integral bijective affine transformation $\mathrm{v} M \in$ Aff $_{d}(\mathbb{Z})$; hence, we can view $G_{\mathcal{M}, n} \leqslant A f f_{d}(\mathbb{Z})$ (and is independent from n; let's denote it by $G_{\mathcal{M}}$).

They get multiplied as

$$
\begin{aligned}
{ }_{\mathbf{v}} M_{\mathbf{v}^{\prime}} M^{\prime}: \mathbf{u} \longrightarrow \mathbf{v}^{\prime}+M^{\prime} \mathbf{u} \longrightarrow & \mathbf{v}+M\left(\mathbf{v}^{\prime}+M^{\prime} \mathbf{u}\right)= \\
& \left(\mathbf{v}+M \mathbf{v}^{\prime}\right)+M M^{\prime} \mathbf{u}= \\
& \mathbf{v}+M \mathbf{v}^{\prime}\left(M M^{\prime}\right)(\mathbf{u})
\end{aligned}
$$

So, $G_{\mathcal{M}} \cong \mathbb{Z}^{d} \rtimes \Gamma$, where $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

$G_{\mathcal{M}}$ is an automaton group

So, we have the groups $G_{\mathcal{M}, n}$ (with $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ as before) and

$$
\operatorname{det} M_{i}= \pm 1 \Rightarrow G_{\mathcal{M}, n} \cong \mathbb{Z}^{d} \rtimes \Gamma
$$

where $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

It only remains to prove that:

Proposition

$G_{\mathcal{M}, n}$ is an automaton group.

$G_{\mathcal{M}}$ is an automaton group

So, we have the groups $G_{\mathcal{M}, n}$ (with $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ as before) and

$$
\operatorname{det} M_{i}= \pm 1 \Rightarrow G_{\mathcal{M}, n} \cong \mathbb{Z}^{d} \rtimes \Gamma
$$

where $\Gamma=\left\langle M_{1}, \ldots, M_{m}\right\rangle \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

It only remains to prove that:
Proposition
$G_{\mathcal{M}, n}$ is an automaton group.

$G_{\mathcal{M}}$ is an automaton group

Definition

Elements in \mathbb{Z}_{n} may be (uniquely) represented as right infinite words over $Y_{n}=\{0, \ldots, n-1\}$:

$$
y_{1} y_{2} y_{3} \cdots \quad \longleftrightarrow \quad y_{1}+n \cdot y_{2}+n^{2} \cdot y_{3}+\cdots
$$

Similarly, elements of \mathbb{Z}_{n}^{d} (the free d-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_{n}=Y_{n}^{d}=\left\{\left(y_{1}, \ldots, y_{d}\right)^{T} \mid y_{i} \in Y_{n}\right\}$:

Note that $\left|Y_{n}\right|=n$ and $\left|X_{n}\right|=n^{d}$.

$G_{\mathcal{M}}$ is an automaton group

Definition

Elements in \mathbb{Z}_{n} may be (uniquely) represented as right infinite words over $Y_{n}=\{0, \ldots, n-1\}$:

$$
y_{1} y_{2} y_{3} \cdots \quad \longleftrightarrow \quad y_{1}+n \cdot y_{2}+n^{2} \cdot y_{3}+\cdots
$$

Similarly, elements of \mathbb{Z}_{n}^{d} (the free d-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_{n}=Y_{n}^{d}=\left\{\left(y_{1}, \ldots, y_{d}\right)^{T} \mid y_{i} \in Y_{n}\right\}$:

$$
\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots \quad \longleftrightarrow \quad \mathbf{x}_{1}+n \cdot \mathbf{x}_{2}+n^{2} \cdot \mathbf{x}_{3}+\cdots .
$$

Note that $\left|Y_{n}\right|=n$ and $\left|X_{n}\right|=n^{d}$.

$G_{\mathcal{M}}$ is an automaton group

Definition

Elements in \mathbb{Z}_{n} may be (uniquely) represented as right infinite words over $Y_{n}=\{0, \ldots, n-1\}$:

$$
y_{1} y_{2} y_{3} \cdots \quad \longleftrightarrow \quad y_{1}+n \cdot y_{2}+n^{2} \cdot y_{3}+\cdots
$$

Similarly, elements of \mathbb{Z}_{n}^{d} (the free d-dimensional module, viewed as column vectors), may be (uniquely) represented as right infinite words over $X_{n}=Y_{n}^{d}=\left\{\left(y_{1}, \ldots, y_{d}\right)^{T} \mid y_{i} \in Y_{n}\right\}$:

$$
\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots \quad \longleftrightarrow \quad \mathbf{x}_{1}+n \cdot \mathbf{x}_{2}+n^{2} \cdot \mathbf{x}_{3}+\cdots .
$$

Note that $\left|Y_{n}\right|=n$ and $\left|X_{n}\right|=n^{d}$.

$G_{\mathcal{M}}$ is an automaton group

Definition

For $\mathbf{v} \in \mathbb{Z}^{d}$, define vectors $\operatorname{Mod}(\mathbf{v}) \in X_{n}$ and $\operatorname{Div}(\mathbf{v}) \in \mathbb{Z}^{d}$ s.t. $\mathbf{v}=\operatorname{Mod}(\mathbf{v})+n \cdot \operatorname{Div}(\mathbf{v})$.

Lemma

For every $\mathbf{v} \in \mathbb{Z}^{d}$, and every $\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \ldots \in \mathbb{Z}_{n}^{d}$, we have

$$
{ }_{\mathrm{v}} M\left(\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathrm{v}+M \mathrm{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathrm{v}+M \mathrm{x}_{1}\right) M\left(\mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}\right.
$$

Proof.

$G_{\mathcal{M}}$ is an automaton group

Definition

For $\mathbf{v} \in \mathbb{Z}^{d}$, define vectors $\operatorname{Mod}(\mathbf{v}) \in X_{n}$ and $\operatorname{Div}(\mathbf{v}) \in \mathbb{Z}^{d}$ s.t. $\mathbf{v}=\operatorname{Mod}(\mathbf{v})+n \cdot \operatorname{Div}(\mathbf{v})$.

Lemma

For every $\mathbf{v} \in \mathbb{Z}^{d}$, and every $\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \ldots \in \mathbb{Z}_{n}^{d}$, we have

$$
{ }_{\mathrm{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \cdots\right) .
$$

Proof.

$G_{\mathcal{M}}$ is an automaton group

Definition

For $\mathbf{v} \in \mathbb{Z}^{d}$, define vectors $\operatorname{Mod}(\mathbf{v}) \in X_{n}$ and $\operatorname{Div}(\mathbf{v}) \in \mathbb{Z}^{d}$ s.t. $\mathbf{v}=\operatorname{Mod}(\mathbf{v})+n \cdot \operatorname{Div}(\mathbf{v})$.

Lemma

For every $\mathbf{v} \in \mathbb{Z}^{d}$, and every $\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \ldots \in \mathbb{Z}_{n}^{d}$, we have

$$
{ }_{\mathbf{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \cdots\right) .
$$

Proof.

$$
\begin{aligned}
{ }_{\mathbf{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \cdots\right) & =\mathbf{v}+M \mathbf{x}_{1} \mathbf{x}_{2} \cdots=\mathbf{v}+M\left(\mathbf{x}_{1}+n \cdot\left(\mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)\right) \\
& =\mathbf{v}+M \mathbf{x}_{1}+n \cdot M \mathbf{x}_{2} \mathbf{x}_{3} \cdots \\
& =\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n M \mathbf{x}_{2} \mathbf{x}_{3} \cdots \\
& =\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot\left(\operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+M \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right) \\
& =\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \cdots\right) .
\end{aligned}
$$

$G_{\mathcal{M}}$ is an automaton group

$$
{ }_{\mathrm{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \cdots\right) .
$$

Definition

For $M \in \mathcal{M}$, let V_{M} be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\|-1$ (note that $\left|V_{M}\right|=(2\|M\|)^{d}$).

Definition

Construct the automaton Am.n:

- Alphabet: X_{n}.
- States: m_{v} for $\mathbf{v} \in V_{M}$, with root permutation and sections

$$
m_{v}(x)=\operatorname{Mod}(v+M x), \quad \text { and }\left.\quad m_{v}\right|_{x}=m_{\operatorname{Div}(v+M x)} .
$$

- Straightforward to see that sections are again states.

$G_{\mathcal{M}}$ is an automaton group

$$
{ }_{\mathrm{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \cdots\right) .
$$

Definition

For $M \in \mathcal{M}$, let V_{M} be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\|-1$ (note that $\left|V_{M}\right|=(2\|M\|)^{d}$).

Definition

Construct the automaton $\mathcal{A}_{M, n}$:

- Alphabet: X_{n}
- States: $m_{\mathbf{v}}$ for $\mathbf{v} \in V_{M}$, with root permutation and sections

$$
m_{\mathrm{v}}(\mathrm{x})=\operatorname{Mod}(\mathrm{v}+M \mathrm{x}), \quad \text { and }\left.\quad m_{\mathrm{v}}\right|_{\mathrm{x}}=m_{\operatorname{Div}(\mathrm{v}+M \mathrm{x})}
$$

- Straightforward to see that sections are again states.

$G_{\mathcal{M}}$ is an automaton group

$$
{ }_{\mathrm{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \cdots\right) .
$$

Definition

For $M \in \mathcal{M}$, let V_{M} be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\|-1$ (note that $\left|V_{M}\right|=(2\|M\|)^{d}$).

Definition

Construct the automaton $\mathcal{A}_{M, n}$:

- Alphabet: X_{n}.
- States: m_{v} for $\mathrm{v} \in V_{M}$, with root permutation and sections

$$
m_{\mathbf{v}}(\mathbf{x})=\operatorname{Mod}(\mathbf{v}+M \mathbf{x}), \quad \text { and }\left.\quad m_{\mathbf{v}}\right|_{\mathbf{x}}=m_{\operatorname{Div}(\mathbf{v}+M \mathbf{x})} .
$$

$G_{\mathcal{M}}$ is an automaton group

$$
{ }_{\mathrm{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \cdots\right) .
$$

Definition

For $M \in \mathcal{M}$, let V_{M} be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\|-1$ (note that $\left|V_{M}\right|=(2\|M\|)^{d}$).

Definition

Construct the automaton $\mathcal{A}_{M, n}$:

- Alphabet: X_{n}.
- States: m_{v} for $\mathbf{v} \in V_{M}$, with root permutation and sections

$$
m_{\mathbf{v}}(\mathbf{x})=\operatorname{Mod}(\mathbf{v}+M \mathbf{x}), \quad \text { and }\left.\quad m_{\mathbf{v}}\right|_{\mathbf{x}}=m_{\operatorname{Div}(\mathbf{v}+M \mathbf{x})}
$$

$G_{\mathcal{M}}$ is an automaton group

$$
{ }_{\mathrm{v}} M\left(\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots\right)=\operatorname{Mod}\left(\mathbf{v}+M \mathbf{x}_{1}\right)+n \cdot \operatorname{Div}\left(\mathbf{v}+M \mathbf{x}_{1}\right) M\left(\mathbf{x}_{2} \mathbf{x}_{3} \mathbf{x}_{4} \cdots\right) .
$$

Definition

For $M \in \mathcal{M}$, let V_{M} be the set of integral vectors with coordinates between $-\|M\|$ and $\|M\|-1$ (note that $\left.\left|V_{M}\right|=(2\|M\|)^{d}\right)$.

Definition

Construct the automaton $\mathcal{A}_{M, n}$:

- Alphabet: X_{n}.
- States: m_{v} for $\mathbf{v} \in V_{M}$, with root permutation and sections

$$
m_{\mathbf{v}}(\mathbf{x})=\operatorname{Mod}(\mathbf{v}+M \mathbf{x}), \quad \text { and }\left.\quad m_{\mathbf{v}}\right|_{\mathbf{x}}=m_{\operatorname{Div}(\mathbf{v}+M \mathbf{x})}
$$

- Straightforward to see that sections are again states.

$G_{\mathcal{M}}$ is an automaton group

Observation

The state $m_{v} \in \mathcal{A}_{M, n}$ acts on a vector $\mathbf{u}=\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots \in \mathbb{Z}_{n}^{d}$ as $m_{\mathbf{v}}(\mathbf{u})={ }_{\mathrm{v}} M(\mathbf{u})$.

Definition

Construct the automaton $\mathcal{A}_{\mathcal{M}, n}$ as the disjoint union of the automata $\mathcal{A}_{M_{1}, n}, \ldots, \mathcal{A}_{M_{m}, n}$.

- Alphabet: X_{n},
- It has $2^{d} \sum_{i=1}^{m}\left\|M_{i}\right\|^{d}$ states.

Proposition

$G_{\mathcal{M} . n}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathcal{M}, n}$ (over an alphabet of size n^{d}, and having $2^{d} \sum_{i=1}^{m}\left\|M_{i}\right\|^{d}$ states).

$G_{\mathcal{M}}$ is an automaton group

Observation

The state $m_{v} \in \mathcal{A}_{M, n}$ acts on a vector $\mathbf{u}=\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots \in \mathbb{Z}_{n}^{d}$ as $m_{\mathbf{v}}(\mathbf{u})={ }_{\mathrm{v}} M(\mathbf{u})$.

Definition

Construct the automaton $\mathcal{A}_{\mathcal{M}, n}$ as the disjoint union of the automata $\mathcal{A}_{M_{1}, n}, \ldots, \mathcal{A}_{M_{m}, n}$.

- Alphabet: X_{n},
- It has $2^{d} \sum_{i=1}^{m}\left\|M_{i}\right\|^{d}$ states.

Proposition

$G_{\mathcal{M}, n}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathcal{M}, n}$ (over an alphabet of size n^{d}, and having $2^{d} \sum_{i=1}^{m}\left\|M_{i}\right\|^{d}$ states).

$G_{\mathcal{M}}$ is an automaton group

Observation

The state $m_{v} \in \mathcal{A}_{M, n}$ acts on a vector $\mathbf{u}=\mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{3} \cdots \in \mathbb{Z}_{n}^{d}$ as $m_{\mathbf{v}}(\mathbf{u})={ }_{\mathrm{v}} M(\mathbf{u})$.

Definition

Construct the automaton $\mathcal{A}_{\mathcal{M}, n}$ as the disjoint union of the automata $\mathcal{A}_{M_{1}, n}, \ldots, \mathcal{A}_{M_{m}, n}$.

- Alphabet: X_{n},
- It has $2^{d} \sum_{i=1}^{m}\left\|M_{i}\right\|^{d}$ states.

Proposition

$G_{\mathcal{M}, n}$ is an automaton group generated by the automaton $\mathcal{A}_{\mathcal{M}, n}$ (over an alphabet of size n^{d}, and having $2^{d} \sum_{i=1}^{m}\left\|M_{i}\right\|^{d}$ states).

Outline

(9) Main results

2 Automaton groups
(3) Unsolvability of CP and orbit undecidability

4 Unsolvability of IP

Orbit decidability

Definition

Let G be a f.g. group. A subgroup $\Gamma \leqslant \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in G$, it decides whether there exists $\alpha \in \Gamma$ such that $\alpha(u)$ is conjugate to v.

First examples: $G=\mathbb{Z}^{d}$
Observation (folklore)
The full aroup Aut $\left(\mathbb{Z}^{d}\right)=G L_{d}(\mathbb{Z})$ is orbit decidable

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in G L_{d}(\mathbb{Z})$ such that $v=A u$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}, \ldots, v_{d}\right)$.

Orbit decidability

Definition

Let G be a f.g. group. A subgroup $\Gamma \leqslant \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in G$, it decides whether there exists $\alpha \in \Gamma$ such that $\alpha(u)$ is conjugate to v.

First examples: $G=\mathbb{Z}^{d}$
Observation (folklore)
The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=G L_{d}(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in G L_{d}(\mathbb{Z})$ such that $v=A u$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}\right.$

Orbit decidability

Definition

Let G be a f.g. group. A subgroup $\Gamma \leqslant \operatorname{Aut}(G)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $u, v \in G$, it decides whether there exists $\alpha \in \Gamma$ such that $\alpha(u)$ is conjugate to v.

First examples: $G=\mathbb{Z}^{d}$

Observation (folklore)

The full group $\operatorname{Aut}\left(\mathbb{Z}^{d}\right)=G L_{d}(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^{d}$, there exists $A \in \mathrm{GL}_{d}(\mathbb{Z})$ such that $v=A u$ if and only if $\operatorname{gcd}\left(u_{1}, \ldots, u_{d}\right)=\operatorname{gcd}\left(v_{1}, \ldots, v_{d}\right)$.

subgroups of $G L_{d}(\mathbb{Z})$

Proposition (Bogopolski-Martino-V., 08)
Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable st
Proposition (Bogopolski-Martino-V., 08)
For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

subgroups of $G L_{d}(\mathbb{Z})$

Proposition (Bogopolski-Martino-V., 08)
Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.q., orbit undecidable, subgroups $\Gamma \leqslant G L_{d}(\mathbb{Z})$

subgroups of $G L_{d}(\mathbb{Z})$

Proposition (Bogopolski-Martino-V., 08)

Every finitely generated subgroup of $G L_{2}(\mathbb{Z})$ is O.D.

Question

Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Mihailova's subgroup

Definition

Let $U=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation. The Mihailova group corresponding to U is

$$
M(U)=\left\{(v, w) \in F_{n} \times F_{n} \mid v=u w\right\}=
$$

Theorem (Mihailova 1958)

The membership problem in $F_{2} \times F_{2}$ is unsolvable.

Theorem (Grunewald 1978)
If $m \geqslant 1$ (i.e. at least one relation) then.
$M(U)$ is finitely presented if and only if U is finite.

Mihailova's subgroup

Definition

Let $U=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation. The Mihailova group corresponding to U is

$$
\begin{gathered}
M(U)=\left\{(v, w) \in F_{n} \times F_{n} \mid v=u w\right\}= \\
=\left\langle\left(x_{1}, x_{1}\right), \ldots,\left(x_{n}, x_{n}\right),\left(1, r_{1}\right), \ldots,\left(1, r_{m}\right)\right\rangle \leqslant F_{n} \times F_{n} .
\end{gathered}
$$

Theorem (Mihailova 1958)

The membership problem in $F_{2} \times F_{2}$ is unsolvable.

Theorem (Grunewald 1978)
If $m \geqslant 1$ (i.e. at least one relation) then.
$M(U)$ is finitely presented if and only if U is finite.

Mihailova's subgroup

Definition

Let $U=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation. The Mihailova group corresponding to U is

$$
\begin{gathered}
M(U)=\left\{(v, w) \in F_{n} \times F_{n} \mid v=u w\right\}= \\
=\left\langle\left(x_{1}, x_{1}\right), \ldots,\left(x_{n}, x_{n}\right),\left(1, r_{1}\right), \ldots,\left(1, r_{m}\right)\right\rangle \leqslant F_{n} \times F_{n} .
\end{gathered}
$$

Theorem (Mihailova 1958)

The membership problem in $F_{2} \times F_{2}$ is unsolvable.
\square
If $m \geqslant 1$ (i.e. at least one relation) then:
$M(U)$ is finitely presented if and only if U is finite.

Mihailova's subgroup

Definition

Let $U=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ be a finite presentation. The Mihailova group corresponding to U is

$$
\begin{gathered}
M(U)=\left\{(v, w) \in F_{n} \times F_{n} \mid v=u w\right\}= \\
=\left\langle\left(x_{1}, x_{1}\right), \ldots,\left(x_{n}, x_{n}\right),\left(1, r_{1}\right), \ldots,\left(1, r_{m}\right)\right\rangle \leqslant F_{n} \times F_{n} .
\end{gathered}
$$

Theorem (Mihailova 1958)
The membership problem in $F_{2} \times F_{2}$ is unsolvable.

Theorem (Grunewald 1978)

If $m \geqslant 1$ (i.e. at least one relation) then:
$M(U)$ is finitely presented if and only if U is finite.

Connection with orbit decidability

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap \operatorname{Stab}([v])=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(G)$, let $w=v \varphi$ and

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

$$
O D(A) \quad \Rightarrow \quad M P(A, B) . \square
$$

Connection with orbit decidability

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap \operatorname{Stab}([v])=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(G)$, let $w=v \varphi$ and

$$
\{\phi \in B \mid v \phi \sim w\}=B \cap\left(\operatorname{Stab}^{*}(v) \cdot \varphi\right)=\left(B \cap \operatorname{Stab}^{*}(v)\right) \cdot \varphi=\{\varphi\} .
$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

Connection with orbit decidability

Proposition (Bogopolski-Martino-V. 2008)

Let G be a group, and let $A \leqslant B \leqslant \operatorname{Aut}(G)$ and $v \in G$ be such that $B \cap \operatorname{Stab}([v])=1$. Then,

$$
O D(A) \text { solvable } \Rightarrow M P(A, B) \text { solvable. }
$$

Proof. Given $\varphi \in B \leq \operatorname{Aut}(G)$, let $w=v \varphi$ and

$$
\{\phi \in B \mid v \phi \sim w\}=B \cap\left(\operatorname{Stab}^{*}(v) \cdot \varphi\right)=\left(B \cap \operatorname{Stab}^{*}(v)\right) \cdot \varphi=\{\varphi\} .
$$

So, deciding whether v can be mapped to w, up to conjugacy, by somebody in A, is the same as deciding whether φ belongs to A. Hence,

$$
O D(A) \quad \Rightarrow \quad M P(A, B) \cdot \square
$$

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)
For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Proof.

- Take a copy of $F_{2}=\langle P, Q\rangle$ inside $G L_{2}(\mathbb{Z})$.
- Take $F_{2} \times F_{2} \simeq B \leqslant G L_{4}(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant G L_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant G L_{d}(\mathbb{Z}), d \geqslant 4$. \square

Question

noec there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Proof.

- Take a copy of $F_{2}=\langle P, Q\rangle$ inside $G L_{2}(\mathbb{Z})$.
- Take $F_{2} \times F_{2} \simeq B \leqslant G L_{4}(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant G L_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$. \square

Question

Does there ϵ xist an orbit undecidable subgroup of GL3

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)
For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Proof.

- Take a copy of $F_{2}=\langle P, Q\rangle$ inside $G L_{2}(\mathbb{Z})$.
- Take $F_{2} \times F_{2} \simeq B \leqslant G L_{4}(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant G L_{d}(\mathbb{Z}), d \geqslant 4$. \square

Question

Does there exist an orbit undecidable subgroup of GL3

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)
For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Proof.

- Take a copy of $F_{2}=\langle P, Q\rangle$ inside $G L_{2}(\mathbb{Z})$.
- Take $F_{2} \times F_{2} \simeq B \leqslant G L_{4}(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant G L_{d}(\mathbb{Z}), d \geqslant 4$. \square

Question

Does there ϵ xist an orbit undecidable subgroup of GL3

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Proof.

- Take a copy of $F_{2}=\langle P, Q\rangle$ inside $G L_{2}(\mathbb{Z})$.
- Take $F_{2} \times F_{2} \simeq B \leqslant G L_{4}(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.

- Similarly for A

Question

Does there exist an orbit undecidable subgroup of $G L_{3}$

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Proof.

- Take a copy of $F_{2}=\langle P, Q\rangle$ inside $G L_{2}(\mathbb{Z})$.
- Take $F_{2} \times F_{2} \simeq B \leqslant G L_{4}(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.

Question

Does there e. ist an orbit undecidable subaroup of GLz

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)

For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Proof.

- Take a copy of $F_{2}=\langle P, Q\rangle$ inside $G L_{2}(\mathbb{Z})$.
- Take $F_{2} \times F_{2} \simeq B \leqslant G L_{4}(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$. \square

Question

Does "nere exist an orbit undecidable subgroup of GL3

Orbit undecidable subgroups

Proposition (Bogopolski-Martino-V., 08)
For $d \geqslant 4$, there exist f.g., orbit undecidable, subgroups $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$.

Proof.

- Take a copy of $F_{2}=\langle P, Q\rangle$ inside $G L_{2}(\mathbb{Z})$.
- Take $F_{2} \times F_{2} \simeq B \leqslant G L_{4}(\mathbb{Z})$.
- The technical condition can be satisfied.
- Take $A \leq B \simeq F_{2} \times F_{2}$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \mathrm{GL}_{4}(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \mathrm{GL}_{d}(\mathbb{Z}), d \geqslant 4$. \square

Question

Does there exist an orbit undecidable subgroup of $G L_{3}(\mathbb{Z})$?

Connection to semidirect products

Observation (Bogopolski-Martino-V.)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable C P, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $O D(\Gamma)$ is exactly the $C P$ in G applied to $u, v \in H . \square$

Corollary (Bogopolski-Martino-V.)

There exists $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g. such that $\mathbb{Z}^{d} \times \Gamma$ has unsolvable conjugacy problem.

Corollary (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Connection to semidirect products

Observation (Bogopolski-Martino-V.)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable $C P$, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $O D(\Gamma)$ is exactly the $C P$ in G applied to $u, v \in H . \square$

Corollary (Bogopolski-Martino-V.)
There exists $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g. such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable
conjugacy problem.

Corollary (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Connection to semidirect products

Observation (Bogopolski-Martino-V.)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable $C P$, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $O D(\Gamma)$ is exactly the $C P$ in G applied to $u, v \in H . \square$

Corollary (Bogopolski-Martino-V.)
There exists $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g. such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable conjugacy problem.

Corollary (Sunic-V.)
There exist automaton groups with unsolvable conjugacy problem.

Connection to semidirect products

Observation (Bogopolski-Martino-V.)

Let H be f.g., and $\Gamma \leqslant \operatorname{Aut}(H)$ f.g. If $H \rtimes \Gamma$ has solvable $C P$, then $\Gamma \leqslant \operatorname{Aut}(H)$ is orbit decidable.

Proof. $O D(\Gamma)$ is exactly the CP in G applied to $u, v \in H . \square$

Corollary (Bogopolski-Martino-V.)
There exists $\Gamma \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g. such that $\mathbb{Z}^{d} \rtimes \Gamma$ has unsolvable conjugacy problem.

Corollary (Sunic-V.)

There exist automaton groups with unsolvable conjugacy problem.

Outline

(1) Main results

2 Automaton groups
(3) Unsolvability of CP and orbit undecidability

4 Unsolvability of IP

A construction due to Gordon

Let $U=\left\langle x_{1}, \ldots, x_{n} \mid R\right\rangle$ be fin. pres. For $w=w\left(x_{1}, \ldots, x_{n}\right)$, consider

$$
\begin{aligned}
H_{w}=\langle X, a, b, c| & R \\
& a^{-1} b a=c^{-1} b^{-1} c b c \\
& a^{-2} b^{-1} a b a^{2}=c^{-2} b^{-1} c b c^{2} \\
& a^{-3}[w, b] a^{3}=c^{-3} b c^{3} \\
& a^{-(3+i)} x_{i} b a^{3+i}=c^{-(3+i)} b c^{3+i}, i \geqslant 1
\end{aligned}
$$

Lemma

1) If $w \neq u 1$ then U embeds in H_{w}
2) If $w=u 1$ then $H_{w}=\{1\}$.
3) H_{w} is two generated (by b and $c a^{-1}$).

Theorem (Adian-Rabin)
The isomorphism problem, the triviality problem, the finite problem are all unsolvable.

A construction due to Gordon

Let $U=\left\langle x_{1}, \ldots, x_{n} \mid R\right\rangle$ be fin. pres. For $w=w\left(x_{1}, \ldots, x_{n}\right)$, consider

$$
\begin{aligned}
H_{w}=\langle X, a, b, c| & R \\
& a^{-1} b a=c^{-1} b^{-1} c b c \\
& a^{-2} b^{-1} a b a^{2}=c^{-2} b^{-1} c b c^{2} \\
& a^{-3}[w, b] a^{3}=c^{-3} b c^{3} \\
& a^{-(3+i)} x_{i} b a^{3+i}=c^{-(3+i)} b c^{3+i}, i \geqslant 1
\end{aligned}
$$

Lemma

1) If $w \neq u 1$ then U embeds in H_{w}.
\square
2) H_{w} is two generated (by b and ca-

Theorem (Adian-Rabin)

The isomorphism problem, the triviality problem, the finite problem are all unsolvable.

A construction due to Gordon

Let $U=\left\langle x_{1}, \ldots, x_{n} \mid R\right\rangle$ be fin. pres. For $w=w\left(x_{1}, \ldots, x_{n}\right)$, consider

$$
\begin{aligned}
H_{w}=\langle X, a, b, c| & R \\
& a^{-1} b a=c^{-1} b^{-1} c b c \\
& a^{-2} b^{-1} a b a^{2}=c^{-2} b^{-1} c b c^{2} \\
& a^{-3}[w, b] a^{3}=c^{-3} b c^{3} \\
& a^{-(3+i)} x_{i} b a^{3+i}=c^{-(3+i)} b c^{3+i}, i \geqslant 1
\end{aligned}
$$

Lemma

1) If $w \neq u 1$ then U embeds in H_{w}.
2) If $w=u 1$ then $H_{w}=\{1\}$.
3) H_{w} is two generated (by b and ca-

Theorem (Adian-Rabin)
The isomorphism problem, the triviality problem, the finite problem are all unsolvable.

A construction due to Gordon

Let $U=\left\langle x_{1}, \ldots, x_{n} \mid R\right\rangle$ be fin. pres. For $w=w\left(x_{1}, \ldots, x_{n}\right)$, consider

$$
\begin{aligned}
H_{w}=\langle X, a, b, c| & R \\
& a^{-1} b a=c^{-1} b^{-1} c b c \\
& a^{-2} b^{-1} a b a^{2}=c^{-2} b^{-1} c b c^{2} \\
& a^{-3}[w, b] a^{3}=c^{-3} b c^{3} \\
& a^{-(3+i)} x_{i} b a^{3+i}=c^{-(3+i)} b c^{3+i}, i \geqslant 1
\end{aligned}
$$

Lemma

1) If $w \neq u 1$ then U embeds in H_{w}.
2) If $w=u 1$ then $H_{w}=\{1\}$.
3) H_{w} is two generated (by b and ca-1).
[^0]The isomorphism problem, the triviality problem, the finite problem are all unsolvable.

A construction due to Gordon

Let $U=\left\langle x_{1}, \ldots, x_{n} \mid R\right\rangle$ be fin. pres. For $w=w\left(x_{1}, \ldots, x_{n}\right)$, consider

$$
\begin{aligned}
H_{w}=\langle X, a, b, c| & R \\
& a^{-1} b a=c^{-1} b^{-1} c b c \\
& a^{-2} b^{-1} a b a^{2}=c^{-2} b^{-1} c b c^{2} \\
& a^{-3}[w, b] a^{3}=c^{-3} b c^{3} \\
& a^{-(3+i)} x_{i} b a^{3+i}=c^{-(3+i)} b c^{3+i}, i \geqslant 1
\end{aligned}
$$

Lemma

1) If $w \neq u 1$ then U embeds in H_{w}.
2) If $w=u 1$ then $H_{w}=\{1\}$.
3) H_{w} is two generated (by b and ca-1).

Theorem (Adian-Rabin)

The isomorphism problem, the triviality problem, the finite problem are all unsolvable.

The generation problem

Take U with unsolvable WP (in particular $|\boldsymbol{U}|=\infty$), consider the presentations H_{w} as above, and consider the Mihailova group corresponding to H_{w} :

$$
L_{w}=M\left(H_{w}\right)=\left\{(u, v) \in F_{2} \times F_{2} \mid u=H_{w} v\right\} \leqslant F_{2} \times F_{2} .
$$

Observe that

Theorem (Miller 1971)

The generation problem in $F_{2} \times F_{2}$ is unsolvable.

The generation problem

Take U with unsolvable WP (in particular $|U|=\infty$), consider the presentations H_{w} as above, and consider the Mihailova group
corresponding to H_{w} :

$$
L_{w}=M\left(H_{w}\right)=\left\{(u, v) \in F_{2} \times F_{2} \mid u=H_{w} v\right\} \leqslant F_{2} \times F_{2} .
$$

Observe that

Theorem (Miller 1971)
The generation problem in $F_{2} \times F_{2}$ is unsolvable.

The generation problem

Take U with unsolvable WP (in particular $|U|=\infty$), consider the presentations H_{w} as above, and consider the Mihailova group corresponding to H_{w} :

$$
L_{w}=M\left(H_{w}\right)=\left\{(u, v) \in F_{2} \times F_{2} \mid u=H_{w} v\right\} \leqslant F_{2} \times F_{2} .
$$

Observe that

Theorem (Miller 1971)
The generation problem in $F_{2} \times F_{2}$ is unsolvable.

The generation problem

Take U with unsolvable WP (in particular $|U|=\infty$), consider the presentations H_{w} as above, and consider the Mihailova group corresponding to H_{w} :

$$
L_{w}=M\left(H_{w}\right)=\left\{(u, v) \in F_{2} \times F_{2} \mid u=H_{w} v\right\} \leqslant F_{2} \times F_{2} .
$$

Observe that

$$
\begin{aligned}
L_{w}=F_{2} \times F_{2} & \Leftrightarrow u=H_{w} v \quad \forall u, v \in F_{2} \\
& \Leftrightarrow H_{w}=\{1\} \\
& \Leftrightarrow w=u 1 .
\end{aligned}
$$

Theorem (Miller 1971)
The generation problem in $F_{2} \times F_{2}$ is unsolvable.

The generation problem

Take U with unsolvable WP (in particular $|U|=\infty$), consider the presentations H_{w} as above, and consider the Mihailova group corresponding to H_{w} :

$$
L_{w}=M\left(H_{w}\right)=\left\{(u, v) \in F_{2} \times F_{2} \mid u=H_{w} v\right\} \leqslant F_{2} \times F_{2} .
$$

Observe that

$$
\begin{aligned}
L_{w}=F_{2} \times F_{2} & \Leftrightarrow u=H_{w} v \quad \forall u, v \in F_{2} \\
& \Leftrightarrow H_{w}=\{1\} \\
& \Leftrightarrow w=u 1 .
\end{aligned}
$$

Theorem (Miller 1971)

The generation problem in $F_{2} \times F_{2}$ is unsolvable.

Towards IP...

- take $F_{2} \leqslant G L_{2}(\mathbb{Z})$, and $F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{2} \times F_{2} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$ and $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{2} \times F_{2}\right)$.
- Observe that

$$
\begin{gathered}
w=u 1 \Rightarrow L_{w}=F_{2} \times F_{2} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} \text { not f.p. }
\end{gathered}
$$

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \operatorname{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$.

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{2} \leqslant G L_{2}(\mathbb{Z})$, and $F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{2} \times F_{2} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$ and $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{2} \times F_{2}\right)$.
- Observe that

$$
W=U^{1} \Rightarrow L_{w}=F_{2} \times F_{2} \Rightarrow L_{w} f . p . \Rightarrow G_{w}=G_{1} f . p .
$$

$w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w}$ not f.p. $\Rightarrow G_{w}$ not f.p.

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \operatorname{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$.

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{2} \leqslant G L_{2}(\mathbb{Z})$, and $F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{2} \times F_{2} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$ and $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{2} \times F_{2}\right)$.
- Observe that

$$
w=u 1 \Rightarrow L_{w}=F_{2} \times F_{2} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. }
$$

$w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w}$ not f.p. $\Rightarrow G_{w}$ not f.p.

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{-}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{2} \leqslant G L_{2}(\mathbb{Z})$, and $F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{2} \times F_{2} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$ and $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{2} \times F_{2}\right)$.
- Observe that

$$
w=u 1 \Rightarrow L_{w}=F_{2} \times F_{2} \Rightarrow L_{w} f . p . \Rightarrow G_{w}=G_{1} f . p .
$$

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$.

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{2} \leqslant G L_{2}(\mathbb{Z})$, and $F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{2} \times F_{2} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$ and $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{2} \times F_{2}\right)$.
- Observe that

$$
w=u 1 \Rightarrow L_{w}=F_{2} \times F_{2} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} f . p .
$$

Theorem (Sunic-V.)

Given $\Gamma, \triangle \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{2} \leqslant G L_{2}(\mathbb{Z})$, and $F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{2} \times F_{2} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$ and $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{2} \times F_{2}\right)$.
- Observe that

$$
w=u 1 \Rightarrow L_{w}=F_{2} \times F_{2} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. }
$$

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{2} \leqslant G L_{2}(\mathbb{Z})$, and $F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{2} \times F_{2} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$ and $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{2} \times F_{2}\right)$.
- Observe that

$$
w=u 1 \Rightarrow L_{w}=F_{2} \times F_{2} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. }
$$

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{2} \leqslant G L_{2}(\mathbb{Z})$, and $F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{2} \times F_{2} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$ and $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{2} \times F_{2}\right)$.
- Observe that

$$
\begin{aligned}
& w=u 1 \Rightarrow L_{w}=F_{2} \times F_{2} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
& w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} \text { not f.p. }
\end{aligned}
$$

Theorem (Sunic-V.)
Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$.

Corollary (Sunic-V.)
The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{2} \leqslant G L_{2}(\mathbb{Z})$, and $F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{2} \times F_{2} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$ and $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{2} \times F_{2}\right)$.
- Observe that

$$
\begin{align*}
& w=u 1 \Rightarrow L_{w}=F_{2} \times F_{2} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
& w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} n c \tag{w}
\end{align*}
$$

Theorem (Sunic-V.)
Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$.
Corollary (Sunic-V.)
The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{2} \leqslant G L_{2}(\mathbb{Z})$, and $F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{2} \times F_{2} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$ and $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{2} \times F_{2}\right)$.
- Observe that

$$
\begin{align*}
& w=u 1 \Rightarrow L_{w}=F_{2} \times F_{2} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
& w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} n c \tag{w}
\end{align*}
$$

Theorem (Sunic-V.)
Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$.
Corollary (Sunic-V.)
The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{2} \leqslant G L_{2}(\mathbb{Z})$, and $F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{2} \times F_{2} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$ and $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{2} \times F_{2}\right)$.
- Observe that

$$
\begin{align*}
& w=u 1 \Rightarrow L_{w}=F_{2} \times F_{2} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
& w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} n c \tag{w}
\end{align*}
$$

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether \mathbb{Z}^{d}

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{2} \leqslant G L_{2}(\mathbb{Z})$, and $F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{2} \times F_{2} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$ and $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{2} \times F_{2}\right)$.
- Observe that

$$
\begin{gathered}
w=u 1 \Rightarrow L_{w}=F_{2} \times F_{2} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} \text { not f.p. }
\end{gathered}
$$

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether \mathbb{Z}^{d}

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{2} \leqslant G L_{2}(\mathbb{Z})$, and $F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{2} \times F_{2} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$ and $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{2} \times F_{2}\right)$.
- Observe that

$$
\begin{gathered}
w=u 1 \Rightarrow L_{w}=F_{2} \times F_{2} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} \text { not f.p. }
\end{gathered}
$$

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$.
Corollary (Sunic-V.)
The isomorphism problem is unsolvable within the family of

Towards IP...

- take $F_{2} \leqslant G L_{2}(\mathbb{Z})$, and $F_{2} \times F_{2} \leqslant G L_{2}(\mathbb{Z}) \times G L_{2}(\mathbb{Z}) \leqslant G L_{4}(\mathbb{Z})$.
- Take $L_{w} \leqslant F_{2} \times F_{2} \leqslant G L_{4}(\mathbb{Z})$.
- Consider $G_{w}=\mathbb{Z}^{d} \rtimes L_{w}$ and $G_{1}=\mathbb{Z}^{4} \rtimes\left(F_{2} \times F_{2}\right)$.
- Observe that

$$
\begin{gathered}
w=u 1 \Rightarrow L_{w}=F_{2} \times F_{2} \Rightarrow L_{w} \text { f.p. } \Rightarrow G_{w}=G_{1} \text { f.p. } \\
w \neq u 1 \Rightarrow U \hookrightarrow H_{w} \Rightarrow\left|H_{w}\right|=\infty \Rightarrow L_{w} \text { not f.p. } \Rightarrow G_{w} \text { not f.p. }
\end{gathered}
$$

Theorem (Sunic-V.)

Given $\Gamma, \Delta \leqslant \mathrm{GL}_{d}(\mathbb{Z})$ f.g., it is undecidable whether $\mathbb{Z}^{d} \rtimes \Gamma \simeq \mathbb{Z}^{d} \rtimes \Delta$.

Corollary (Sunic-V.)

The isomorphism problem is unsolvable within the family of automaton groups.

THANKS

[^0]: Theorem (Adian-Rabin)

