The Magnus embedding is a quasi-isometry

Svetla Vassileva
McGill University

Universität Düsseldorf, GAGTA 6, July 2012

Introduction

The Magnus embedding is the main tool for studying free solvable groups:

- The $n^{\text {th }}$ derived (commutator) subgroup of a group G is

where $G^{(1)}=G^{\prime}=[G, G]=\left\langle\left[g, g^{\prime}\right] \mid g, g^{\prime} \in G\right\rangle$.
- The free solvable group $S_{d, r}$ of degree d and rank r is given by

- The Magnus embedding is a map $\phi: S_{d, r} \hookrightarrow \mathbb{Z}^{r}$ \ $S_{d-1, r}$.

Introduction

The Magnus embedding is the main tool for studying free solvable groups:

- The $n^{\text {th }}$ derived (commutator) subgroup of a group G is

$$
G^{(n)}=\left[G^{(n-1)}, G^{(n-1)}\right],
$$

where $G^{(1)}=G^{\prime}=[G, G]=\left\langle\left[g, g^{\prime}\right] \mid g, g^{\prime} \in G\right\rangle$.

- The free solvable group $S_{d, r}$ of degree d and rank r is given by

$$
S_{d, r}=F_{r} / F_{r}^{(d)}
$$

- The Magnus embedding is a map $\phi: S_{d, r} \hookrightarrow \mathbb{Z}^{r}$ \ $S_{d-1, r}$.

Quasi-isometries

- A quasi-isometric embedding f between two metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ is an injective map $f: X \rightarrow Y$ such that there exist constants $C_{1}, \ldots, C_{4}>0$ for which

$$
C_{1} d_{X}\left(x_{1}, x_{2}\right)-C_{2} \leq d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq C_{3} d_{X}\left(x_{1}, x_{2}\right)+C_{4}
$$

for any $x_{1}, x_{2} \in X$.

- For us, X, Y are groups and d_{X}, d_{Y} are the corresponding word metrics.
- Wlog, $f: G \rightarrow H$ is a quasi-isometry if it preserves geodesic length "up to linearity".

Set-up and notation

- $F=\left\langle x_{1}, \ldots, x_{r}\right\rangle$
- $N \triangleleft F$
- $N^{\prime}=[N, N]=\langle[x, y] \mid x, y \in N\rangle$
- $A=\left\langle a_{1}, \ldots, a_{r}\right\rangle$ - free abelian
- $B=F / N$

- Show that ϕ is a quasi-isometry.

Geodesics in A \ B

Wreath products

The restricted wreath product is the group:

$$
A \imath B=\left\{b f \mid b \in B, f \in A^{(B)}\right\},
$$

with multiplication defined by

$$
b f \cdot c g=b c f^{c} g
$$

where

- $f^{c}(x)=f\left(x c^{-1}\right)$ for $x \in B$.
- $A^{(B)}$ is the set of all functions from B to A of finite support
- Multiplication in $A^{(B)}$ is given by $f \cdot g(x)=f(x) g(x)$
- $1_{A^{(B)}}$ is the function $1: B \rightarrow 1_{A}$.

Remark. B acts on $A^{(B)}$, so $A \ B \simeq B \ltimes A^{(B)}$

A presentation for A l B

Let $A=\left\langle X \mid R_{A}\right\rangle, B=\left\langle Y \mid R_{B}\right\rangle$. Then

$$
A \imath B=\left\langle X \cup Y \mid R_{A}, R_{B},\left[a_{1}^{b_{1}}, a_{2}^{b_{2}}\right]\right\rangle,
$$

where $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$.

- Define $f_{a, b}(x)= \begin{cases}a & \text { if } x=b \\ 1 & \text { otherwise }\end{cases}$
- Then $A \hookrightarrow A$ 亿 B (via $a \mapsto f_{a, 1}$)
- Any function $f \in A^{(B)}$ can be given as $\left\{\left(b_{1}, a_{1}\right), \ldots,\left(b_{n}, a_{n}\right)\right\}$
- Equivalently, $f=f_{a_{1}, b_{1}} \ldots f_{a_{n}, b_{n}}=f_{a_{1}, 1}^{b_{1}} \ldots f_{a_{n}, 1}^{b_{n}} \leadsto a_{1}^{b_{1}} \ldots a_{n}^{b_{n}}$

Geodesics in A \B

- Let w be a word in the generators of A and B. Rewrite it as

$$
w=b A_{1}^{B_{1}} \ldots A_{k}^{B_{k}},
$$

$A_{1}, \ldots, A_{k} \neq 1$ and B_{1}, \ldots, B_{k} are distinct.
Theorem (Parry)

$$
\|w\|_{A \backslash B}=\|b\|_{B}+\sum_{i=1}^{k}\left\|A_{i}\right\|_{A}+\mathcal{L}_{\mathrm{Cay}(B)}\left(B_{1}, \ldots, B_{k}\right) .
$$

- $\mathcal{L}_{\text {Cay }(B)}\left(B_{1}, \ldots, B_{k}\right)$ is the length of a minimum length cycle: the shortest circuit in $\mathrm{Cay}(\mathrm{B})$ passing through $\left\{1, B_{1}, \ldots, B_{k}\right\}$.

Two views of Fox derivatives

The Magnus embedding

- The Magnus embedding was originally defined as $\phi: F \rightarrow M$, where M is a matrix group with entries in a group ring.
- For a word w in generators $X=\left\{x_{1}, \ldots, x_{r}\right\}$,

$$
\phi: F / N^{\prime} \hookrightarrow A \imath F / N
$$

is given by

$$
\phi(w)=\bar{w} \cdot a_{1}^{\overline{\partial w / \partial x_{1}}} \ldots a_{r}^{\overline{\partial w / \partial x_{r}}} .
$$

- Here, $\frac{\partial w}{\partial x_{1}}, \ldots, \frac{\partial w}{\partial x_{r}}$ are the Fox derivatives of w.

Fox derivatives

For any $x, y \in X$ the delta-function

$$
\frac{\partial y}{\partial x}= \begin{cases}1 & \text { if } y=x \\ 0 & \text { otherwise }\end{cases}
$$

extends linearly to a derivation $\frac{\partial}{\partial x}: \mathbb{Z} F \rightarrow \mathbb{Z} F$, called the Fox partial derivative.

Properties:

- Product Rule.
- Power Rule.

Fox derivatives

For any $x, y \in X$ the delta-function

$$
\frac{\partial y}{\partial x}= \begin{cases}1 & \text { if } y=x \\ 0 & \text { otherwise }\end{cases}
$$

extends linearly to a derivation $\frac{\partial}{\partial x}: \mathbb{Z} F \rightarrow \mathbb{Z} F$, called the Fox partial derivative.

Properties:

- Product Rule. $\frac{\partial u v}{\partial x}=\frac{\partial u}{\partial x}+u \frac{\partial v}{\partial x}$
- Power Rule. $\frac{\partial u^{-1}}{\partial x}=u^{-1} \frac{\partial u}{\partial x}$

Example

Let $F=F\left(x_{1}, x_{2}\right)$ and $w=x_{2}^{-1} x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}$.

$$
\frac{\partial w}{\partial x_{1}}=\frac{\partial x_{2}^{-1}}{\partial x_{1}}+x_{2}^{-1} \frac{\partial x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}}
$$

Example

Let $F=F\left(x_{1}, x_{2}\right)$ and $w=x_{2}^{-1} x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}$.

$$
\frac{\partial w}{\partial x_{1}}=\frac{\partial x_{2}^{-\gamma}}{\partial x_{1}}+x_{2}^{-1} \frac{\partial x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}}
$$

Example

Let $F=F\left(x_{1}, x_{2}\right)$ and $w=x_{2}^{-1} x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}$.

$$
\begin{aligned}
\frac{\partial w}{\partial x_{1}} & =\frac{\partial x_{2}^{-y}}{\partial x_{1}}+x_{2}^{-1} \frac{\partial x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}} \\
& =x_{2}^{-1}\left(\frac{\partial x_{1}}{\partial x_{1}}+x_{1} \frac{\partial x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}}\right)
\end{aligned}
$$

Example

Let $F=F\left(x_{1}, x_{2}\right)$ and $w=x_{2}^{-1} x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}$.

$$
\begin{aligned}
\frac{\partial w}{\partial x_{1}} & =\frac{\partial x_{2}^{-\lambda}}{\partial x_{1}}+x_{2}^{-1} \frac{\partial x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}} \\
& =x_{2}^{-1}\left(\frac{\partial x_{1}^{1}}{\partial x_{1}}+x_{1} \frac{\partial x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}}\right)
\end{aligned}
$$

Example

Let $F=F\left(x_{1}, x_{2}\right)$ and $w=x_{2}^{-1} x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}$.

$$
\begin{aligned}
\frac{\partial w}{\partial x_{1}} & =\frac{\partial x_{2}^{-X}}{\partial x_{1}}+x_{2}^{-1} \frac{\partial x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}} \\
& =x_{2}^{-1}\left(\frac{\partial x_{1}^{1}}{\partial x_{1}}+x_{1} \frac{\partial x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}}\right) \\
& =x_{2}^{-1}+x_{2}^{-1} x_{1}\left(\frac{\partial x_{2}}{\partial x_{1}}+x_{2} \frac{\partial x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}}\right)
\end{aligned}
$$

Example

Let $F=F\left(x_{1}, x_{2}\right)$ and $w=x_{2}^{-1} x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}$.

$$
\begin{aligned}
\frac{\partial w}{\partial x_{1}} & =\frac{\partial x_{2}^{-X}}{\partial x_{1}}+x_{2}^{-1} \frac{\partial x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}} \\
& =x_{2}^{-1}\left(\frac{\partial x_{1}^{1}}{\partial x_{1}}+x_{1} \frac{\partial x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}}\right) \\
& =x_{2}^{-1}+x_{2}^{-1} x_{1}\left(\frac{\partial x_{2}}{\partial x_{1}}+x_{2} \frac{\partial x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}}\right)
\end{aligned}
$$

Example

Let $F=F\left(x_{1}, x_{2}\right)$ and $w=x_{2}^{-1} x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}$.

$$
\begin{aligned}
\frac{\partial w}{\partial x_{1}}= & \frac{\partial x_{2}^{-\gamma}}{\partial x_{1}}+x_{2}^{-1} \frac{\partial x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}} \\
= & x_{2}^{-1}\left(\frac{\partial x_{1}^{1}}{\partial x_{1}}+x_{1} \frac{\partial x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}}\right) \\
= & x_{2}^{-1}+x_{2}^{-1} x_{1}\left(\frac{\partial x_{2}}{\partial x_{1}}+x_{2} \frac{\partial x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}}{\partial x_{1}}\right) \\
= & \cdots \\
= & x_{2}^{-1}+x_{2}^{-1} x_{1} x_{2}+x_{2}^{-1} x_{1} x_{2} x_{1}-x_{2}^{-1} x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} \\
& -x_{2}^{-1} x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1}
\end{aligned}
$$

Flows in a Cayley graph

Consider the Cayley graph $\Gamma(G, X)$ as a digraph. Let $p=e_{1} \ldots e_{n}$ be a path in Γ and define a flow π_{p} as follows:
$\pi_{p}(e)=$ algebraic number of times that p traverses e.

Example of flows on $\Gamma(G, X)$

Example. Consider $G=F / F^{\prime} \simeq \mathbb{Z} \times \mathbb{Z}$ with $X=\left\{x_{1}, x_{2}\right\}$. Find π_{w} for $w=x_{2}^{-1} x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2}$.

Geometric interpretation of Fox derivatives

Edges in $\Gamma(F / N, X)$ have the form $e=\left(g, g x_{i}\right)$ for $g \in F / N$ and $i=1, \ldots, r$.

Theorem (Miasnikov, Roman'kov, Ushakov, Vershik)
Let $w \in F$. Then

$$
\overline{\overline{\partial w}}=\sum_{g \in F / N} \pi_{w}((g, g x)) g
$$

Example of Fox derivatives and flows

$$
\begin{aligned}
\frac{\partial w}{\partial x_{1}}= & x_{2}^{-1}+x_{2}^{-1} x_{1} x_{2}+x_{2}^{-1} x_{1} x_{2} x_{1}-x_{2}^{-1} x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} \\
& -x_{2}^{-1} x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} \\
\frac{\overline{\partial w}}{\partial x_{1}}= & x_{2}^{-1}+x_{1}+x_{1}^{2}-x_{1}^{2} x_{2}-\not x_{1}=x_{2}^{-1}+x_{1}^{2}-x_{1}^{2} x_{2}
\end{aligned}
$$

Geodesics in F / N^{\prime}

Finding geodesics

Goal. For a word $w \in F / N^{\prime}$ given as a product of generators X, find a geodesic for w.

- Read w as a path p_{w} in $\operatorname{Cay}(F / N, X)$. (This is not a typo! N, not N^{\prime}.)
- This path defines a flow, π_{w}.
- Consider the subgraph Γ of $\operatorname{Cay}(F / N, X)$ which consists of edges of non-zero flow.

Γ and the minimal forest

- C_{1}, \ldots, C_{l} - connected components of Γ
- Q - minimal forest connecting C_{1}, \ldots, C_{l}
- $\Delta=Q \cup C_{1} \ldots \cup C_{l}$

Note. There may be more than one choice for Q.

From Δ to Δ^{*} and back

Consider $\mathbb{Z} \times \mathbb{Z}=\langle x, y\rangle$.

From Δ to Δ^{*} and back

Consider $\mathbb{Z} \times \mathbb{Z}=\langle x, y\rangle$.
$w=y x y^{-1} x^{-1} y x y x^{2} y^{-1} x y x^{-3} y^{-2}$

From Δ to Δ^{*} and back

Consider $\mathbb{Z} \times \mathbb{Z}=\langle x, y\rangle$.
$w=y x y^{-1} x^{-1} y x y x^{2} y^{-1} x y x^{-3} y^{-2}$

From Δ to Δ^{*} and back

Consider $\mathbb{Z} \times \mathbb{Z}=\langle x, y\rangle$.
$w=y x y^{-1} x^{-1} y x y x^{2} y^{-1} x y x^{-3} y^{-2}$

From Δ to Δ^{*} and back

Consider $\mathbb{Z} \times \mathbb{Z}=\langle x, y\rangle$.
$w=y x y^{-1} x^{-1} y x y x^{2} y^{-1} x y x^{-3} y^{-2}$

From Δ to Δ^{*} and back

Consider $\mathbb{Z} \times \mathbb{Z}=\langle x, y\rangle$.
$w=y x y^{-1} x^{-1} y x y x^{2} y^{-1} x y x^{-3} y^{-2}$

Δ^{*}

Geodesics in F / N^{\prime}

An Euler tour on the vertices of Δ^{*} corresponds to a geodesic for w in F / N^{\prime}.

Theorem. (Miasnikov, Roman'kov, Ushakov, Vershik)

$$
\|w\|_{F / N^{\prime}}=\sum_{e \in \operatorname{supp}\left(p_{w}\right)}\left|\pi_{w}(e)\right|+2|E(Q)| .
$$

The Magnus embedding is a quasi-isometry

Main Theorem

Theorem (V)

Let w be an element of F / N^{\prime} given as a product of generators x_{1}, \ldots, x_{r}. Then

$$
\frac{1}{2(r+1)}\|w\|_{F / N^{\prime}} \leq\|\phi(w)\|_{A \backslash B} \leq 3\|w\|_{F / N^{\prime}}
$$

Example

- $F=F(x, y), N=F^{\prime}$
- $F / N^{\prime} \simeq M_{2}$, free metabelian group
- $B=F / N \simeq \mathbb{Z} \times \mathbb{Z}$
- $A=\left\langle a_{1}, a_{2}\right\rangle$ - free abelian group
- $w=y x y^{-1} x^{-1} y x y x^{2} y^{-1} x y x^{-3} y^{-2}$
- $\overline{\partial w / \partial x}=-1+2 y+x^{3} y-x^{3} y^{2}, \overline{\partial w / \partial y}=2-2 x-x^{3} y+x^{4} y$
- $\phi(w)=\bar{w} \cdot a_{1}^{\overline{\partial w / \partial x}} a_{2}^{\overline{\partial w / \partial y}}=x \cdot a_{1}^{-1+2 y+x^{3} y-x^{3} y^{2}} a_{2}^{2-2 x-x^{3} y+x^{4} y}$ $=x \cdot\left(a_{1}^{-1} a_{2}^{2}\right)\left(a_{1}^{2}\right)^{y}\left(a_{2}^{-2}\right)^{x}\left(a_{1} a_{2}^{-1}\right)^{x^{3} y}\left(a_{1}^{-1}\right)^{x^{3} y^{2}}\left(a_{2}\right)^{x^{4} y}$

A crucial lemma

- $\phi(w)=\bar{w} \cdot A_{1}^{B_{1}} \ldots A_{k}^{B_{k}}$.
- $\sum_{i}\left\|A_{i}\right\|_{A}$ is the sum of absolute values of the coefficients in the Fox derivatives

Lemma

$$
\sum_{i}\left\|A_{i}\right\|_{A}=\sum_{e \in \operatorname{supp}\left(p_{w}\right)}\left|\pi_{w}(e)\right| .
$$

Proof by example

- $w=y x y^{-1} x^{-1} y x y x^{2} y^{-1} x y x^{-3} y^{-2}$
- $\overline{\partial w / \partial x}=-1+2 y+x^{3} y-x^{3} y^{2}$,
- $\overline{\partial w / \partial y}=2-2 x-x^{3} y+x^{4} y$
- $\phi(w)=x \cdot \underbrace{\left(a_{1}^{-1} a_{2}^{2}\right)}_{A_{1}^{B_{1}}} \underbrace{\left(a_{1}^{2}\right)^{y}}_{A_{2}^{B_{2}}} \underbrace{\left(a_{2}^{-2}\right)^{x}}_{A_{3}^{B_{3}}} \underbrace{\left(a_{1} a_{2}^{-1}\right)^{x^{3} y}}_{A_{4}^{B_{4}}} \underbrace{\left(a_{1}^{-1}\right)^{x^{3} y^{2}}}_{A_{5}^{B_{5}}} \underbrace{\left(a_{2}\right)^{x^{4} y}}_{A_{6}^{B_{6}}}$
- $\sum_{i=1}^{6}\left\|A_{i}\right\|_{A}=(1+2)+2+2+(1+1)+1+1=\sum_{e \in \operatorname{supp}\left(p_{w}\right)}\left|\pi_{w}(e)\right|$

Comparing graphs - first look

- $g \in F / N$ such that $\left\{\begin{array}{c}\pi_{w}(g, g x) \neq 0 \\ \text { or } \\ \pi_{w}(g, g y) \neq 0\end{array} \longleftrightarrow B_{i}\right.$ for some i.

Comparing graphs - first look

- $g \in F / N$ such that $\left\{\begin{array}{c}\pi_{w}(g, g x) \neq 0 \\ \text { or } \\ \pi_{w}(g, g y) \neq 0\end{array} \longleftrightarrow B_{i}\right.$ for some i.

Comparing graphs - first look

- $g \in F / N$ such that $\left\{\begin{array}{c}\pi_{w}(g, g x) \neq 0 \\ \text { or } \\ \pi_{w}(g, g y) \neq 0\end{array} \longleftrightarrow B_{i}\right.$ for some i.

$$
\begin{gathered}
\|\phi(w)\|_{A \imath B} \leq 3\|w\|_{F / N^{\prime}} \\
\|w\|_{F / N^{\prime}}=\sum_{l}\left|\pi_{w}(e)\right|+2|E(Q)| \quad\|\phi(w)\|_{A \imath B}=\|\bar{w}\|_{F / N}+\sum\left\|A_{i}\right\|+\| \mathcal{T} \mid \\
=\sum_{i=1}^{l}\left|E\left(C_{i}\right)\right|+2|E(Q)|
\end{gathered}
$$

- Any tour on $V(\Delta)$ is longer than a minimal tour \mathcal{T} on $\left\{1, B_{1}, \ldots, B_{k}\right\}$, so

$$
|\mathcal{T}| \leq\|w\|_{F / N^{\prime}}
$$

- $\sum\left\|A_{i}\right\|=\sum\left|\pi_{w}(e)\right|$, so

$$
\sum\left\|A_{i}\right\| \leq\|w\|_{F / N^{\prime}}
$$

- $\|\bar{w}\|_{F / N} \leq\|w\|_{F / N^{\prime}}$
- $\Longrightarrow\|\phi(w)\|_{A \backslash B} \leq 3\|w\|_{F / N^{\prime}}$

$$
\|w\|_{F / N^{\prime}} \leq(2 r+1)\|\phi(w)\|_{A \backslash B}
$$

$$
\begin{aligned}
\|w\|_{F / N^{\prime}}=\sum_{l}\left|\pi_{w}(e)\right|+2|E(Q)| & \|\phi(w)\|_{A \imath B} & =\|\bar{w}\|_{F / N}+\sum\left\|A_{i}\right\|+|\mathcal{T}| \\
=\sum_{i=1}^{l}\left|E\left(C_{i}\right)\right|+2|E(Q)| & & =\sum \pi_{w}(e)+|\mathcal{T}|
\end{aligned}
$$

$$
\|w\|_{F / N^{\prime}} \leq(2 r+1)\|\phi(w)\|_{A \backslash B}
$$

$$
\begin{aligned}
\|w\|_{F / N^{\prime}}=\sum_{l}\left|\pi_{w}(e)\right|+2|E(Q)| & \|\phi(w)\|_{A \imath B} & =\|\bar{w}\|_{F / N}+\sum\left\|A_{i}\right\|+|\mathcal{T}| \\
=\sum_{i=1}^{l}\left|E\left(C_{i}\right)\right|+2|E(Q)| & & =\sum \pi_{w}(e)+|\mathcal{T}|
\end{aligned}
$$

$$
\|w\|_{F / N^{\prime}} \leq(2 r+1)\|\phi(w)\|_{A \backslash B}
$$

$$
\begin{aligned}
\|w\|_{F / N^{\prime}}=\sum_{l}\left|\pi_{w}(e)\right|+2|E(Q)| & \|\phi(w)\|_{A \imath B} & =\|\bar{w}\|_{F / N}+\sum\left\|A_{i}\right\|+|\mathcal{T}| \\
=\sum_{i=1}^{l}\left|E\left(C_{i}\right)\right|+2|E(Q)| & & =\sum \pi_{w}(e)+|\mathcal{T}|
\end{aligned}
$$

$$
\|w\|_{F / N^{\prime}} \leq(2 r+1)\|\phi(w)\|_{A \backslash B}
$$

$$
\begin{aligned}
\|w\|_{F / N^{\prime}}=\sum_{l}\left|\pi_{w}(e)\right|+2|E(Q)| & \|\phi(w)\|_{A \imath B} & =\|\bar{w}\|_{F / N}+\sum\left\|A_{i}\right\|+|\mathcal{T}| \\
=\sum_{i=1}^{l}\left|E\left(C_{i}\right)\right|+2|E(Q)| & & =\sum \pi_{w}(e)+|\mathcal{T}|
\end{aligned}
$$

