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Introduction

The Whitehead-Conjecture

Whitehead-Conjecture [1941]:

(WH): Let L be an aspherical 2-complex.
Then K ⊂ L is also aspherical.

Whitehead posed this 1941 as a question.
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Introduction

Labeled Oriented Trees

A LOG (labeled oriented graph) is a finite presentation (or the
corresponding 2-complex) of the form:
< x1, . . . , xn | xixj = xjxk , . . . >

Define an oriented graph:
Vertices←→ Generators, Edges←→ Relators
< a,b, c,d ,e | ac = cb,bd = dc,db = bc,da = ae >

encodes to

A LOT (labeled oriented tree) is a LOG which is a tree.
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Introduction

Labeled Oriented Trees

Theorem (Howie 1983): Let L be a finite 2-complex and e ⊂ L a 2-cell.

If L
3
�↘ ∗ ⇒ L− e

3
�↘ K and K is a LOT complex.

Andrews-Curtis Conjecture (AC): Let L be a finite, contractible

2-complex. Then L
3
�↘ ∗.

Corollary: (AC), LOTs are aspherical⇒ There is no finite
counterexample K ⊂ L, L contractible, to (WH).
(The finite case)

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs July 31., 2012 5 / 28



Introduction

Labeled Oriented Trees

Theorem (Howie 1983): Let L be a finite 2-complex and e ⊂ L a 2-cell.

If L
3
�↘ ∗ ⇒ L− e

3
�↘ K and K is a LOT complex.

Andrews-Curtis Conjecture (AC): Let L be a finite, contractible

2-complex. Then L
3
�↘ ∗.

Corollary: (AC), LOTs are aspherical⇒ There is no finite
counterexample K ⊂ L, L contractible, to (WH).
(The finite case)

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs July 31., 2012 5 / 28



Introduction

Labeled Oriented Trees

Theorem (Howie 1983): Let L be a finite 2-complex and e ⊂ L a 2-cell.

If L
3
�↘ ∗ ⇒ L− e

3
�↘ K and K is a LOT complex.

Andrews-Curtis Conjecture (AC): Let L be a finite, contractible

2-complex. Then L
3
�↘ ∗.

Corollary: (AC), LOTs are aspherical⇒ There is no finite
counterexample K ⊂ L, L contractible, to (WH).
(The finite case)

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs July 31., 2012 5 / 28



Introduction

Labeled Oriented Trees

A nonaspherical LOT is a counterexample to (WH):

Any LOT is a subcomplex of an aspherical 2-complex (add x1 = 1 as a
relator. Can then be 3-deformed to a point).

Hence: The asphericity of LOTs is interesting for (WH)!

Wirtinger presentations of knots are aspherical LOTs.
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Introduction

Spherical diagrams

f : C → K 2 is a spherical diagram, if C is a cell decomposition of the
2-sphere and open cells are mapped homeomorphically.

If K is non-aspherical then there exists a spherical diagram which
realizes a nontrivial element of π2(K ).

A spherical diagram f : C → K 2 is reducible, if there is a pair of 2-cells
in C with a common edge t , such that both 2-cells are mapped to K by
folding over t .

A 2-complex K is said to be diagrammatically reducible (DR), if each
spherical diagram over K is reducible.

K is DR⇒ K is aspherical.
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Introduction

Labeled Oriented Trees

A LOT is called injective if each generator occurs at most once as an
edge label (corresponds to alternating knots).

A LOT is called compressed if every relator contains 3 different
generators.

A LOT is called boundary-reducible if there is a generator that occurs
exactly once upon the set of relators. (A boundary vertex of a LOT
which does not appear as edge label.)

Any LOT can be homotoped into a compressed boundary-reduced
LOT.
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Introduction

A result

Let P be a LOT. A Sub-LOT Q of P is a subtree of P such that it is a
LOT itself (each edge label of Q is also a vertex label of Q).

Theorem 1 (Huck/Rosebrock 2001): If a compressed injective LOT P
does not contain a boundary-reducible Sub-LOT then K (P) (the
corresponding 2-complex) is DR.
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Introduction

Idea of Proof

Idea of Proof:

Let K (P) be a 2-complex corresponding to a presentation P. The
Whitehead-Graph W (P) is the boundary of a regular neighborhood of
the only vertex of K (P).

Consists of a pair of vertices x+
i (beginning) and x−i (end) for each

generator xi .

The left graph L ⊂W (P) is the full subgraph on the vertices
x+

1 , . . . , x
+
n , the right graph R ⊂W (P) is the full subgraph on the

vertices x−1 , . . . , x
−
n .
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Introduction

Idea of Proof

Let K (P) be a 2-complex corresponding to a presentation P. Let E be
the set of edges of the Whitehead-Graph W (P).

The weight test is satisfied for K (P) if there is a weight function
g : E → R, such that

1 the sum of the weights of every reduced cycle is ≥ 2 and
2 For every 2-cell D ∈ K (P) whose boundary consists of d edges

the sum of the weights of the corners of W (P) that correspond to
the corners of D is less than or equal to d − 2.

Theorem (Gersten) If the weight test is satisfied then K (P) is DR.
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Introduction

Idea of Proof

Let K (P) be a 2-complex corresponding to a presentation P. Let E be
the set of edges of the Whitehead-Graph W (P).

The weight test is satisfied for K (P) if there is a weight function
g : E → R, such that

1 the sum of the weights of every reduced cycle is ≥ 2 and
2 For every 2-cell D ∈ K (P) whose boundary consists of d edges

the sum of the weights of the corners of W (P) that correspond to
the corners of D is less than or equal to d − 2.

Theorem (Gersten) If the weight test is satisfied then K (P) is DR.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs July 31., 2012 11 / 28



Introduction

Idea of Proof

Let K (P) be a 2-complex corresponding to a presentation P. Let E be
the set of edges of the Whitehead-Graph W (P).

The weight test is satisfied for K (P) if there is a weight function
g : E → R, such that

1 the sum of the weights of every reduced cycle is ≥ 2 and
2 For every 2-cell D ∈ K (P) whose boundary consists of d edges

the sum of the weights of the corners of W (P) that correspond to
the corners of D is less than or equal to d − 2.

Theorem (Gersten) If the weight test is satisfied then K (P) is DR.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs July 31., 2012 11 / 28



Introduction

Idea of Proof

Let K (P) be a 2-complex corresponding to a presentation P. Let E be
the set of edges of the Whitehead-Graph W (P).

The weight test is satisfied for K (P) if there is a weight function
g : E → R, such that

1 the sum of the weights of every reduced cycle is ≥ 2 and
2 For every 2-cell D ∈ K (P) whose boundary consists of d edges

the sum of the weights of the corners of W (P) that correspond to
the corners of D is less than or equal to d − 2.

Theorem (Gersten) If the weight test is satisfied then K (P) is DR.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs July 31., 2012 11 / 28



Introduction

Idea of Proof

Let K (P) be a 2-complex corresponding to a presentation P. Let E be
the set of edges of the Whitehead-Graph W (P).

The weight test is satisfied for K (P) if there is a weight function
g : E → R, such that

1 the sum of the weights of every reduced cycle is ≥ 2 and
2 For every 2-cell D ∈ K (P) whose boundary consists of d edges

the sum of the weights of the corners of W (P) that correspond to
the corners of D is less than or equal to d − 2.

Theorem (Gersten) If the weight test is satisfied then K (P) is DR.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs July 31., 2012 11 / 28



Introduction

Idea of Proof

Let K (P) be a 2-complex corresponding to a presentation P. Let E be
the set of edges of the Whitehead-Graph W (P).

The weight test is satisfied for K (P) if there is a weight function
g : E → R, such that

1 the sum of the weights of every reduced cycle is ≥ 2 and
2 For every 2-cell D ∈ K (P) whose boundary consists of d edges

the sum of the weights of the corners of W (P) that correspond to
the corners of D is less than or equal to d − 2.

Theorem (Gersten) If the weight test is satisfied then K (P) is DR.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs July 31., 2012 11 / 28



Introduction

Idea of Proof

An orientation of a LOT P is a LOT Q that arises from P by changing
the orientation of a subset of the edges of P.

Lemma 2: If the left graph and the right graph of a compressed
injective LOT P are trees then any orientation of P is DR.

Idea of Proof: Changing the orientation does not change the
isomorphism-type of the Whiteheadgraph of an injective LOT. If the left
and the right graph are trees then the weight-test is satisfied which
implies DR. The weight-test depends on the Whiteheadgraph and on
the edges each 2-cell contributes to the Whiteheadgraph only. �
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Introduction

Idea of Proof

For a compressed injective LOT P which does not contain a
boundary-reducible Sub-LOT an orientation is found such that the left
and the right graph are trees.

Then Lemma 2 implies DR and Theorem 1 is shown. �
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Introduction

The asphericity of injective LOTs

Theorem 3 (Harlander/Rosebrock 2012): Let P be a compressed
injective LOT. Then K (P) is DR.

In fact we show:

Theorem 4 Let P be a compressed LOT with maximal proper
boundary-reducible sub-LOTs T1, . . . ,Tn. Let P ′ be the LOT where
each Ti is identified to a vertex ti (in the underlying tree). Assume that
each K (Ti) is DR and that P ′ is injective. Then K (P) is DR.

Theorem 3 follows by induction from Theorem 4 and Theorem 1.
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Introduction

The asphericity of injective LOTs

Idea of Proof of Theorem 4: We mimic the result of Huck/Rosebrock
and use relative techniques of Bogley/Pride.

We follow the proof with an example:

Is injective and contains a reducible sub-LOT. In fact it does not satisfy
the weight test (can be shown with software GRAPH).
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The asphericity of injective LOTs

We use the result of Huck/Rosebrock:

If P ′ is a compressed injective LOT which does not contain a boundary
reducible sub-LOT then there is an orientation of P ′ such that the left
and the right graph are trees.
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Introduction

The asphericity of injective LOTs

Given the LOT P with proper boundary-reducible sub-LOTs
T = {T1, . . . ,Tn} we identify T to a single vertex in K (P̄) to achieve the
relative complex K (P̄/T ).
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Introduction

The asphericity of injective LOTs

We label corners (edges of W (P̄/T )) by the corresponding generators
of T .
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Introduction

The asphericity of injective LOTs

Let H = π1(K (T )). If Gi = π1(K (Ti)), then H = G1 ∗ . . . ∗Gn.

A cycle c ∈W (P̄/T ) is called admissible if the word w(c) read from its
corners is trivial in H.

A diagram over K (P̄) relative to K (T ) is a spherical diagram
f : C → K (P̄/T ) where all cycles of C are mapped to admissible
cycles.
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Introduction

The asphericity of injective LOTs

K (P/T ) satisfies the relative weight test if there is a real number g(e),
the weight, assigned to each corner (edge) e ∈W (P/T ) such that

1 the sum of the weights of every reduced admissible cycle in
W (P/T ) is ≥ 2, and

2 for every 2-cell D ∈ K (P/T ) whose boundary consists of d edges
the sum of the weights of the corners of W (P/T ) that correspond
to the corners of D is less than or equal to d − 2.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs July 31., 2012 21 / 28



Introduction

The asphericity of injective LOTs

K (P/T ) satisfies the relative weight test if there is a real number g(e),
the weight, assigned to each corner (edge) e ∈W (P/T ) such that

1 the sum of the weights of every reduced admissible cycle in
W (P/T ) is ≥ 2, and

2 for every 2-cell D ∈ K (P/T ) whose boundary consists of d edges
the sum of the weights of the corners of W (P/T ) that correspond
to the corners of D is less than or equal to d − 2.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs July 31., 2012 21 / 28



Introduction

The asphericity of injective LOTs

K (P/T ) satisfies the relative weight test if there is a real number g(e),
the weight, assigned to each corner (edge) e ∈W (P/T ) such that

1 the sum of the weights of every reduced admissible cycle in
W (P/T ) is ≥ 2, and

2 for every 2-cell D ∈ K (P/T ) whose boundary consists of d edges
the sum of the weights of the corners of W (P/T ) that correspond
to the corners of D is less than or equal to d − 2.

Stephan Rosebrock (PH Karlsruhe) The Asphericity of Injective LOTs July 31., 2012 21 / 28



Introduction

The asphericity of injective LOTs

Shown by Bogley/Pride (more general):

Theorem 5 Let P be a LOT and T = {T1, . . . ,Tn} a set of disjoint
sub-LOTs of T (P). If K (P/T ) satisfies the relative weight test and all
the K (Ti) are DR then K (P) is DR.

(Idea of Proof: If K (P) is not DR then there is a reduced spherical
diagram f : C → K (P). This cannot map to K (T ) only because K (T ) is
DR. So it can be transformed into a spherical diagram
f# : C → K (P/T ) but this contradicts the weight test.)
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The asphericity of injective LOTs

We show that K (P̄/T ) satisfies the relative weight test.
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Introduction

The asphericity of injective LOTs

We assign weight 0 to the edges of L and R.

All edges of W (P̄/T ) between vertices of L and R get weight 1. (There
is a technical exception.)

First condition of the relative weight test is satisfied
(weight of admissible paths in W (P̄/T ) is ≥ 2).
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The asphericity of injective LOTs

Second condition of the relative weight test:
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Introduction

The asphericity of injective LOTs

So condition 2 of the relative weight test is satisfied also and the
relative weight test is satisfied for K (P̄/T ).

It remains to show:

Theorem 6 If K (P̄/T ) satisfies the relative weight test and all the Ti
are DR then after changing the orientation of some edges of T (P̄)− T
the resulting relative complex is DR.
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Introduction

The asphericity of injective LOTs

We change the orientation back and leave original weights.

Also here are certain difficulties in special situations.
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