Ashot Minasyan (Joint work with Yago Antolín)

University of Southampton

Düsseldorf, 30.07.2012

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of $GL_n(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of $GL_n(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of $GL_n(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of $GL_n(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of $\mathrm{GL}_n(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Similar results have later been proved for other classes of groups. We were motivated by

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of $\mathrm{GL}_n(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Similar results have later been proved for other classes of groups. We were motivated by

Theorem (Noskov-Vinberg, 2002)

Every subgroup of a finitely generated Coxeter group is either virtually abelian or large.

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of $\mathrm{GL}_n(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Similar results have later been proved for other classes of groups. We were motivated by

Theorem (Noskov-Vinberg, 2002)

Every subgroup of a finitely generated Coxeter group is either virtually abelian or large.

Recall: a group G is large is there is a finite index subgroup $K \leqslant G$ s.t. K maps onto \mathbb{F}_2 .

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leq G$ either $H \in \mathcal{C}$ or H contains a copy of \mathbb{F}_2 .

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leq G$ either $H \in \mathcal{C}$ or H contains a copy of \mathbb{F}_2 .

Thus Tits's result tells us that $GL_n(F)$ satisfies the Tits Alternative rel. to C_{vsol} .

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leq G$ either $H \in \mathcal{C}$ or H contains a copy of \mathbb{F}_2 .

Thus Tits's result tells us that $GL_n(F)$ satisfies the Tits Alternative rel. to C_{vsol} .

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Strong Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H is large.

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leq G$ either $H \in \mathcal{C}$ or H contains a copy of \mathbb{F}_2 .

Thus Tits's result tells us that $GL_n(F)$ satisfies the Tits Alternative rel. to C_{vsol} .

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Strong Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H is large.

The thm. of Noskov-Vinberg claims that Coxeter gps. satisfy the Strong Tits Alternative rel. to C_{vab} .

Graph products naturally generalize free and direct products.

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{G_{\nu} \mid \nu \in V\Gamma\}$ be a family of gps.

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{G_v \mid v \in V\Gamma\}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

$$[a,b]=1 \ \forall a \in G_u, \forall b \in G_v \ \text{whenever} \ (u,v) \in E\Gamma.$$

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{G_v \mid v \in V\Gamma\}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

$$[a,b]=1 \ \forall a \in G_u, \forall b \in G_v \ \text{whenever} \ (u,v) \in E\Gamma.$$

Basic examples of graph products are

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{G_v \mid v \in V\Gamma\}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

$$[a,b]=1 \ \forall a \in G_u, \forall b \in G_v \ \text{whenever} \ (u,v) \in E\Gamma.$$

Basic examples of graph products are

right angled Artin gps. [RAAGs]

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{G_v \mid v \in V\Gamma\}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

$$[a,b]=1 \ \forall a \in G_u, \forall b \in G_v \ \text{whenever} \ (u,v) \in E\Gamma.$$

Basic examples of graph products are

right angled Artin gps. [RAAGs], if all vertex gps. are Z;

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{G_v \mid v \in V\Gamma\}$ be a family of gps.

The graph product $\Gamma\mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma}G_v$ by adding the relations

$$[a,b] = 1 \ \forall a \in G_u, \forall b \in G_v \text{ whenever } (u,v) \in E\Gamma.$$

Basic examples of graph products are

- right angled Artin gps. [RAAGs], if all vertex gps. are Z;
- right angled Coxeter gps.

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{G_v \mid v \in V\Gamma\}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

$$[a,b] = 1 \ \forall a \in G_u, \forall b \in G_v \text{ whenever } (u,v) \in E\Gamma.$$

Basic examples of graph products are

- right angled Artin gps. [RAAGs], if all vertex gps. are Z;
- right angled Coxeter gps., if all vertex gps. are Z/2Z;

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{G_v \mid v \in V\Gamma\}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

$$[a,b] = 1 \ \forall a \in G_u, \forall b \in G_v \text{ whenever } (u,v) \in E\Gamma.$$

Basic examples of graph products are

- right angled Artin gps. [RAAGs], if all vertex gps. are Z;
- right angled Coxeter gps., if all vertex gps. are Z/2Z;

If $A \subseteq V\Gamma$ and Γ_A is the full subgraph of Γ spanned by A then $\mathfrak{G}_A := \{G_v \mid v \in A\}$ generates a special subgroup G_A of $G = \Gamma\mathfrak{G}$ which is naturally isomorphic to $\Gamma_A\mathfrak{G}_A$.

Consider the following properties of the class of groups $\ensuremath{\mathcal{C}}$:

Consider the following properties of the class of groups $\ensuremath{\mathcal{C}}$:

(P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;

Consider the following properties of the class of groups \mathcal{C} :

```
(P0) if L \in \mathcal{C} and M \cong L then M \in \mathcal{C};
```

(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;

Consider the following properties of the class of groups \mathcal{C} :

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;

Consider the following properties of the class of groups \mathcal{C} :

```
(P0) if L \in \mathcal{C} and M \cong L then M \in \mathcal{C};
```

- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;

Consider the following properties of the class of groups \mathcal{C} :

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$.

Consider the following properties of the class of groups \mathcal{C} :

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$.

Theorem A (Antolín-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P4). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Consider the following properties of the class of groups \mathcal{C} :

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$.

Theorem A (Antolín-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P4). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Evidently the conditions (P0)-(P4) are necessary.

Consider the following properties of the class of groups \mathcal{C} :

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$.

Theorem A (Antolín-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P4). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Corollary

If all vertex gps. are linear then $G = \Gamma \mathfrak{G}$ satisfies the Tits Alternative rel. to \mathcal{C}_{vsol} .


```
(P0) if L \in \mathcal{C} and M \cong L then M \in \mathcal{C};

(P1) if L \in \mathcal{C} and M \leqslant L is f.g. then M \in \mathcal{C};

(P2) if L, M \in \mathcal{C} are f.g. then L \times M \in \mathcal{C};

(P3) \mathbb{Z} \in \mathcal{C};

(P4) if \mathbb{Z}/2\mathbb{Z} \in \mathcal{C} then \mathbb{D}_{\infty} \in \mathcal{C};
```

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strong Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strong Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

(P5) is necessary, b/c if $L \neq \{1\}$ has no proper f.i. sbgps., then L*L cannot be large.

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strong Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P5):

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strong Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps,

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strong Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclic gps.,

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strong Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclic gps., virt. nilpotent gps.,

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strong Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclic gps., virt. nilpotent gps., (virt.) solvable gps.,

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strong Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclic gps., virt. nilpotent gps., (virt.) solvable gps., elementary amenable gps.

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strong Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Corollary

Suppose $C = C_{sol-m}$ for some $m \ge 2$ or $C = C_{vsol-n}$ for some $n \ge 1$. Let G be a graph product of gps. from C. Then any f.g. sbgp. of G either belongs to C or is large.

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Strongest Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H maps onto \mathbb{F}_2 .

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Strongest Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H maps onto \mathbb{F}_2 .

Example

The gp. $G := \langle a, b, c \mid a^2b^2 = c^2 \rangle$ is t.-f. and large but does not map onto \mathbb{F}_2 .

Definition

Let $\mathcal C$ be a class of gps. A gp. G satisfies the Strongest Tits Alternative rel. to $\mathcal C$ if for any f.g. sbgp. $H\leqslant G$ either $H\in \mathcal C$ or H maps onto $\mathbb F_2$.

Example

The gp. $G := \langle a, b, c \mid a^2b^2 = c^2 \rangle$ is t.-f. and large but does not map onto \mathbb{F}_2 .

Example

Any residually free gp. satisfies the Strongest Tits Alternative rel. to \mathcal{C}_{ab} .

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Strongest Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H maps onto \mathbb{F}_2 .

Example

The gp. $G := \langle a, b, c \mid a^2b^2 = c^2 \rangle$ is t.-f. and large but does not map onto \mathbb{F}_2 .

Example

Any residually free gp. satisfies the Strongest Tits Alternative rel. to C_{ab} .

Observe that if L*L maps onto \mathbb{F}_2 then L must have an epimorphism onto \mathbb{Z} .


```
(P0) if L \in \mathcal{C} and M \cong L then M \in \mathcal{C};

(P1) if L \in \mathcal{C} and M \leqslant L is f.g. then M \in \mathcal{C};

(P2) if L, M \in \mathcal{C} are f.g. then L \times M \in \mathcal{C};

(P3) \mathbb{Z} \in \mathcal{C};
```

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

Theorem C (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P3) and (P6). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strongest Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

Theorem C (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P3) and (P6). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strongest Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)-(P3) and (P6):

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

Theorem C (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P3) and (P6). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strongest Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6): t.-f. abelian gps,

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

Theorem C (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P3) and (P6). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strongest Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6): t.-f. abelian gps, t.-f. nilpotent gps.

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

Theorem C (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P3) and (P6). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strongest Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6): t.-f. abelian gps, t.-f. nilpotent gps.

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

- (P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
- (P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
- (P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
- (P3) $\mathbb{Z} \in \mathcal{C}$;
- (P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

Theorem C (Antolin-M.)

Let $\mathcal C$ be a class of gps. with (P0)–(P3) and (P6). Then a graph product $G = \Gamma \mathfrak G$ satisfies the Strongest Tits Alternative rel. to $\mathcal C$ iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6): t.-f. abelian gps, t.-f. nilpotent gps.

Corollary

Any non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

Applications of Theorem C

Corollary

Any non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

Applications of Theorem C

Corollary

Any non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

One can use this to recover

Theorem (Baudisch, 1981)

A 2-generator sbgp. of a RAAG is either free or free abelian.

Applications of Theorem C

Corollary

Any non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

One can use this to recover

Theorem (Baudisch, 1981)

A 2-generator sbgp. of a RAAG is either free or free abelian.

Combining with a result of Lyndon-Schützenberger we also get

Corollary

If G is a RAAG and a, b, $c \in G$ satisfy $a^m b^n = c^p$, for $m, n, p \ge 2$, then a, b, c pairwise commute.

