Surface Groups in Doubles of Fn

Sang-hyun Kim (KAIST) with Sang-il Oum (KAIST) based on a joint work with Henry Wilton (UCL)

Wednesday, August 1, 12

A hyperbolic surface group means $\pi_1(S_g)$, g>1.

Q Does every one-ended word-hyperbolic group contain a hyperbolic surface group?

Gromov, Asymptotic Invariants of Infinite Groups, p.276: of Thurston's narrow simplices.) Does a generic finitely presented group contain a non-free infinite subgroup of infinite index? Our discussion on groups presented by $A \subset C_{\ell}$ with dens $A = d < \frac{1}{2}$ indicate that these contain no surface groups of genus $\leq g$ for $g \to \infty$ with $\ell \to \infty$, but we do not know if some surface group of high genus is always present in a random (or every non-virtually free) hyperbolic group. Do generic groups with $q \gg p$ satisfy

Known Partial Results

- (Gordon–Long–Reid '04) Coxeter groups.
- (K.'12) Graph products (nontrivial & directly indecomposable)
- (Calegari '08) Graphs of free gps with **Z**-edges and $B_2 \neq 0$.
- (Kahn–Markovic '09) Closed hyperbolic 3–mfd groups.
- (Gordon–Wilton '09) Homological / geometric sufficient conditions for doubles $D(w) = F * \langle w \rangle F$.
- (Baumslag–Rosenberger '11) D(w) contains $\pi_1(S_2)$ iff $w \in [F_n, F_n]$.

Doubles of Free Groups D(w) = F * < w > F

Def (Canary) $U = \{w_1, w_2, ...\} \subseteq F$ is *diskbusting* if F cannot be written as $A \rtimes B$ such that each w_i is conjugate into A or B. **Fact** D(U) is one-ended iff U is diskbusting.

So, how do we find surface subgroups?

Polygonality

Def U ⊆ F is *polygonal* if there exists a closed surface S = \coprod P_i / ~ equipped with S⁽¹⁾ ↔ Cay(F)/F = V S¹ s.t. (i) ∂P_i → S⁽¹⁾ → Cay(F)/F reads a power of an element in U; (ii) x(S) < m = (# of disks)

π₁-injectively Immersed Surfaces

- S with x(S)<m(S)
- \Rightarrow Double x(D(S))=2(x(S)-m(S))<0
- \Rightarrow Complete to a cover of X(U)

Theorem (K.–Wilton '09)

If $U \subseteq F$ is *polygonal*, then X(U) admits a π_1 -injectively immersed hyperbolic surface.

|U| := sum of the lengths of the words in U.

U is minimal, if no automorphism of F reduces |U|.

Tiling Conjecture (K.–Wilton '09) A minimal diskbusting list of words is polygonal.

Detecting Polygonality

Recall $\pi_1(Z(U)) = F/\langle U \rangle$.

Def W(U) = Link(*, Z(U)) is the *Whitehead graph* of U ⊆ F. Link of a vertex on S → Simple cycle on W(U)

Wednesday, August 1, 12

Rank Two Case

Theorem (K.–Oum) Tiling Conjecture is true for n = 2.

Corollary (K.-Oum) For U : set of words in F₂, TFAE: (1) D(U) is one-ended; (2) D(U) contains a hyperbolic surface group.

Regular/geometric Lists of Words

 $U \subseteq F$ is geometric, if U is a multicurve on ∂ (handlebody).

(Gordon–Wilton) U: geometric \Rightarrow D(U) contains a surface gp.

Theorem (K '09)

A minimal, diskbusting, geometric list is polygonal.

We say $U \subseteq F$ is *k*-regular, if each generator appears k times. (Manning) A k-regular, non-planar, minimal (+ α) list is **not** virtually geometric.

Theorem (K.–Oum)

A k-regular, minimal, diskbusting list is polygonal.

Graph Theoretic Formulation

k(u,v)=maxflow(u,v)=mincut(u,v) in a graph.

(Whitehead, Berge..) U \subseteq F is minimal and diskbusting \Leftrightarrow

W(U) is connected and $k(x,x^{-1})=deg(x)$ for each vertex x.

Tiling Conjecture (Graph Theoretic Form) Let $\Gamma=(V,E)$ be a graph with ≥ 4 vertices, equipped with an involution $x \leftrightarrow x^{-1}$ on V, and pairing $e \in \delta(x) \leftrightarrow e^x \in \delta(x^{-1})$.

Assume Γ is connected, and $k(x,x^{-1})=deg(x)$ for each x. Then there exist cycles C_1 , C_2 ,..., C_r such that for each pair of incident edges (e,f) at x:

#of C_i 's containing e and f = #of C_i 's with e^x and f^x

Graph of Free Groups with **Z**–Edge groups

Proposition (K.–Wilton)

Assume Tiling Conjecture for any rank.

Suppose G is a one-ended graph of (v.) free groups with (v.) cyclic edge groups, such that $g^n \not\sim g^m$ for $|n|\neq |m|$ and $g\neq 1$.

Then either:

(1) G contains a hyperbolic surface group; or, (2) G is virtually Z X F_n .

Example : $U = {aba^2b^{-2}}$

Hence, $U = \{aba^2b^{-2}\}$ is polygonal.

Thank you.