Surface Groups in Doubles of F_{n}

Sang-hyun Kim (KAIST) with Sang-il Oum (KAIST)

based on a joint work with Henry Wilton (UCL)

Motivation

A hyperbolic surface group means $\pi_{1}\left(\mathrm{~S}_{\mathrm{g}}\right), \mathrm{g}>1$.

Q Does every one-ended word-hyperbolic group contain a hyperbolic surface group?

Gromov, Asymptotic Invariants of Infinite Groups, p.276:
of Thurston's narrow simplices.) Does a generic finitely presented group contain a non-free infinite subgroup of infinite index? Our discussion on groups presented by $A \subset C_{\ell}$ with dens $A=d<\frac{1}{2}$ indicate that these contain no surface groups of genus $\leq g$ for $g \rightarrow \infty$ with $\ell \rightarrow \infty$, but we do not know If some surface group of high genus is always present in a random (or every non-virtually free) hyperbolic group. Do generic groups with $q \gg p$ satisfy

Known Partial Results

- (Gordon-Long-Reid '04) Coxeter groups.
- (K.'12) Graph products (nontrivial \& directly indecomposable)
- (Calegari '08) Graphs of free gps with Z-edges and $\beta_{2} \neq 0$.
- (Kahn-Markovic '09) Closed hyperbolic 3-mfd groups.
- (Gordon-Wilton '09) Homological / geometric sufficient conditions for doubles $D(w)=F *<w>F$.
- (Baumslag-Rosenberger '11) $D(w)$ contains $\pi_{1}\left(S_{2}\right)$ iff $w \in\left[F_{n}, F_{n}\right]$.

Doubles of Free Groups D(w) = F * $<\mathrm{w}>\mathrm{F}$

Def (Canary) $U=\left\{w_{1}, w_{2}, \ldots\right\} \subseteq F$ is diskbusting if F cannot be written as $A * B$ such that each w_{i} is conjugate into A or B. Fact $D(U)$ is one-ended iff U is diskbusting.

So, how do we find surface subgroups?

Polygonality

Def $U \subseteq F$ is polygonal if there exists a closed surface $S=\amalg P_{i} / \sim$ equipped with $S^{(1)} \leftrightarrow C a y(F) / F=V S^{1}$ s.t.
(i) $\partial P_{i} \rightarrow S^{(1)} \rightarrow$ Cay(F)/F reads a power of an element in U;
(ii) $\mathrm{x}(\mathrm{S})<\mathrm{m}=$ (\# of disks)

π_{1}-injectively Immersed Surfaces

S with $x(S)<m(S)$
\Rightarrow Double $x(\mathrm{D}(\mathrm{S}))=2(x(\mathrm{~S})-\mathrm{m}(\mathrm{S}))<0$
\Rightarrow Complete to a cover of X(U)

Theorem (K.-Wilton '09)

If $U \subseteq F$ is polygonal, then $X(U)$ admits a π_{1}-injectively immersed hyperbolic surface.
$|U|:=$ sum of the lengths of the words in U.
U is minimal, if no automorphism of F reduces $|\mathrm{U}|$.

Tiling Conjecture (K.-Wilton '09)

A minimal diskbusting list of words is polygonal.

Detecting Polygonality

Recall $\pi_{1}(Z(U))=F /\langle U\rangle$.
Def $W(U)=\operatorname{Link}\left({ }^{*}, Z(U)\right)$ is the Whitehead graph of $U \subseteq F$.
Link of a vertex on $S \rightarrow$ Simple cycle on W(U)

Rank Two Case

Theorem (K.-Oum)

Tiling Conjecture is true for $\mathrm{n}=2$.

Corollary (K.-Oum) For U : set of words in F_{2}, TFAE:
(1) $D(U)$ is one-ended;
(2) $D(U)$ contains a hyperbolic surface group.

Regular/geometric Lists of Words

$\mathrm{U} \subseteq \mathrm{F}$ is geometric, if U is a multicurve on ∂ (handlebody).
(Gordon-Wilton) U: geometric $\Rightarrow \mathrm{D}(\mathrm{U})$ contains a surface gp.
Theorem (K '09)
A minimal, diskbusting, geometric list is polygonal.
We say $U \subseteq F$ is k-regular, if each generator appears k times. (Manning) A k-regular, non-planar, minimal (+a) list is not virtually geometric.

Theorem (K.-Oum)

A k-regular, minimal, diskbusting list is polygonal.

Graph Theoretic Formulatio ${ }^{\times}$

$k(u, v)=$ maxflow $(u, v)=\operatorname{mincut}(u, v)$ in a graph.
(Whitehead, Berge..) $U \subseteq F$ is minimal and diskbusting \Leftrightarrow $W(U)$ is connected and $k\left(x, x^{-1}\right)=\operatorname{deg}(x)$ for each vertex x.

Tiling Conjecture (Graph Theoretic Form)

Let $\Gamma=(\mathrm{V}, \mathrm{E})$ be a graph with ≥ 4 vertices, equipped with an involution $x \leftrightarrow \mathrm{x}^{-1}$ on V , and pairing $\mathrm{e} \in \delta(\mathrm{x}) \leftrightarrow \mathrm{e}^{\mathrm{x}} \in \delta\left(\mathrm{x}^{-1}\right)$.

Assume Γ is connected, and $k\left(x, x^{-1}\right)=\operatorname{deg}(x)$ for each x. Then there exist cycles $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{r}}$ such that for each pair of incident edges (e,f) at x:
\#of Ci's containing e and $f=$ \#of Ci's with e^{x} and f^{x}

Graph of Free Groups with Z-Edge groups

Proposition (K.-Wilton)

Assume Tiling Conjecture for any rank.
Suppose G is a one-ended graph of (v.) free groups with (v.) cyclic edge groups, such that $\mathrm{g}^{\mathrm{n}} \times \mathrm{g}^{\mathrm{m}}$ for $|\mathrm{n}| \neq|\mathrm{m}|$ and $\mathrm{g} \neq 1$.
Then either:
(1) G contains a hyperbolic surface group; or,
(2) G is virtually $Z X F_{n}$.

Example : U = \{aba²b-2 $\}$

Hence, $\mathrm{U}=\left\{\mathrm{aba}^{2} \mathrm{~b}^{-2}\right\}$ is polygonal.

Thank you.

