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First-order logic

First-order language of groups L

a symbol for multiplication ‘·’;
a symbol for inversion ‘−1’;
and a symbol for the identity ‘1’.

Formula
Formula Φ with free variables Z = {z1, . . . , zk} is

Q1x1Q2x2 . . .Qlxl Ψ(X ,Z ),

where Qi ∈ {∀,∃}, and Ψ(X ,Z ) is a Boolean combination of
equations and inequations in variables X ∪ Z . Formula Φ is called a
sentence, if Φ does not contain free variables.
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Examples

Using L one can say that

A group is (non-)abelian or (non-)nilpotent or (non-)solvable;
A group does not have p-torsion;
A group is torsion free;
A group is a given finite group;
∀x ,∀y ,∀z xky lzm = 1→ ([x , y ] = 1 ∧ [y , z ] = 1 ∧ [x , z ] = 1)

Using L one can not say that

A group is finitely generated (presented) or countable;
A group is free or free abelian or cyclic.
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Formulas and Sentences

Φ(Z ) : Q1x1Q2x2 . . .Qlxl Ψ(X ,Z ),

Φ : ∀x∀y xyx−1y−1 = 1;
Φ(y) : ∀x xyx−1y−1 = 1.

A truth set of a formula is called definable.



Elementary equivalence

The elementary theory Th(G ) of a group is the set of all sentences
which hold in G . Two groups G and H are called elementarily
equivalent if Th(G ) = Th(H).

ALGEBRA
ISOMORPHISM

!
MODEL THEORY

ELEMENTARY EQUIVALENCE

Problem
Classify groups (in a given class) up to elementary equivalence.
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Keislar-Shelah Theorem

An ultrafilter U on N is a 0-1 probability measure. The ultrafilter is
non-principal if the measure of every finite set is 0.
Consider the unrestricted direct product

∏
G of copies of G .

Identify two sequence (gi ) and (hi ) if they coincide on a set of
measure 1. The obtained object is a group called the ultrapower of
G .

Theorem (Keislar-Shelah)
Let H and K be groups. The groups H and K are elementarily
equivalent if and only if there exists a non-principal ultrafilter U so
that the ultrapowers H∗ and K ∗ are isomorphic.
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Results of Malcev

Theorem (Malcev, 1961)
Let G = GL (or PGL, SL,PSL), let n,m ≥ 3, and let K and F be
fields of characteristic zero, then Gm(F ) ≡ Gn(K ) if and only if
m = n and F ≡ K.

Proof
If Gm(F ) ≡ Gn(K ), then G ∗m(F ) ' G ∗n (K ). Since G ∗m(F ) and
G ∗n (K ) are Gm(F ∗) and Gn(K ∗), the result follows from the
description of abstract isomorphisms of such groups (which are
semi-algebraic, so they preserve the algebraic scheme and the field).
In fact, in the case of GL and PGL the result holds for n,m ≥ 2.



Classical linear groups over Z

Theorem (Malcev, 1961)
Let G = GL (or PGL, SL,PSL), let n,m ≥ 3, and let R and S be
commutative rings of characteristic zero, then Gm(R) ≡ Gn(S) if
and only if m = n and R ≡ S.
In the case of GL and PGL the result holds for n,m ≥ 2.

Malcev stresses the importance of the case when R = Z, and
n = 2.



Results of Durnev, 1995

Theorem
The ∀2-theories of the groups GL(n,Z) and GL(m,Z) (PGL(n,Z)
and PGL(m,Z), SL(n,Z) and SL(m,Z), or PSL(n,Z) and
PSL(m,Z)) are distinct, n > m > 1. If n is even or n is odd and
m ≤ n − 2, then even the corresponding ∀1-theories are distinct.

Theorem
There exists m so that for every n ≥ 3, the ∀2∃m-theory of
GL(n,Z) is undecidable. Similarly, for every n ≥ 3, n 6= 4, the
∀2∃m-theory of SL(n,Z) is undecidable.
That is, there exists m so that for any n there is no algorithm that,
given a ∀2∃m-sentence decides whether or not it is true in GL(n,Z)
(or SL(n,Z))



Results of Durnev, 1995

Theorem
The ∀2-theories of the groups GL(n,Z) and GL(m,Z) (PGL(n,Z)
and PGL(m,Z), SL(n,Z) and SL(m,Z), or PSL(n,Z) and
PSL(m,Z)) are distinct, n > m > 1. If n is even or n is odd and
m ≤ n − 2, then even the corresponding ∀1-theories are distinct.

Theorem
There exists m so that for every n ≥ 3, the ∀2∃m-theory of
GL(n,Z) is undecidable. Similarly, for every n ≥ 3, n 6= 4, the
∀2∃m-theory of SL(n,Z) is undecidable.
That is, there exists m so that for any n there is no algorithm that,
given a ∀2∃m-sentence decides whether or not it is true in GL(n,Z)
(or SL(n,Z))



Lifting elementary equivalence

Let 1→ N → G → Q → 1 be a group extension.
Use Q and N to understand Th(G ).
Suppose that we know which groups are elementarily
equivalent to N and Q.
Then if the action of Q on N can be described using
first-order language and if N is definable in G , then we may be
able to describe groups elementarily equivalent to G .

Example

Linear groups.
Soluble groups.
Nilpotent groups.
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Finitely generated groups elementarily equivalent
to PSL(2,Z), SL(2,Z),GL(2,Z) and PGL(2,Z)

1

��

1

��
1 // Z2 // SL(2,Z) //

��

PSL(2,Z) //

��

1

1 // Z2 // GL(2,Z) //

��

PGL(2,Z) //

��

1

Z2

��

Z2

��
1 1



Finitely generated groups elementarily equivalent
to PSL(2,Z)

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
generate SL(2,Z).

S has order 4, ST has order 6, S2 = (ST )3 = −I2,

SL(2,Z) ' Z4 ∗Z2 Z6 and PSL(2,Z) = Z2 ∗ Z3 = SL(2,Z)/Z (SL(2,Z)).
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Theorem (Sela, 2011)
A finitely generated group G is elementary equivalent to PSL(2,Z)
if and only if G is a hyperbolic tower (over PSL(2,Z)).
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Hyperbolic towers over PSL(2,Z)

Induction on height of tower.
Any hyperbolic tower T 0 of height 0 is a free product of
PSL(2,Z) with some (possibly none) free groups and
fundamental groups of hyperbolic surfaces of Euler
characteristic at most −2.
A hyperbolic tower T n is built from a tower T n−1 by taking
free product of T n−1 with free groups and surface groups and
then attaching finitely many hyperbolic surface groups or
punctured 2-tori along boundary subgroups in such a way that
T n retracts to T n−1 and the restriction of this retraction onto
any of the surfaces has nonabelian image in T n−1



Hyperbolic towers over PSL(2,Z)

F



Finitely generated groups elementarily equivalent
to SL(2,Z)

We have 1→ Z2 → SL(2,Z)→ PSL(2,Z)→ 1.
Let G ≡ SL(2,Z), then Z (G ) ≡ Z (SL(2,Z)), hence
Z (G ) = Z2.
Since Z (G ) is definable and G is f.g.,
Q = G/Z (G ) ≡ PSL(2,Z) is a hyperbolic tower.

Hence, G is a central extension of a tower by Z2.
Central extensions are described using the second cohomology
group H2(Q,Z (G )).

1 Use the explicit description of towers and compute the
cohomology.

2 Do a trick.
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Finitely generated groups elementarily equivalent
to SL(2,Z)

1→ Z2 → SL(2,Z)∗ → PSL(2,Z)∗ → 1

' ' '

1→ Z2 → G ∗ → Q∗ → 1
' ↪→ ↪→

1→ Z2 → G → Q → 1

Z (G ∗) ' Z (G )∗ and G ∗ is the central extension of Q∗ by
Z (G )∗. The corresponding cocycle f ∗ : Q∗ × Q∗ → A∗ is
defined coordinate-wise, i.e. f ∗ = (f ).
The cocycle h : PSL(2,Z)× PSL(2,Z)→ Z2 satisfies:
h(x , x) = 1 for all x of order 2, and h(y , z) = 0 otherwise.
By the properties of ultrafilters, the same holds the cocycle
h∗ = (h) which defines SL(2,Z)∗ as the extension of
PSL(2,Z)∗.
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Finitely generated groups elementarily equivalent
to SL(2,Z)

Theorem
A finitely generated group G is elementarily equivalent to SL(2,Z)
if and only if G is the central extension of a hyperbolic tower over
PSL(2,Z) by Z2 with the cocycle f : PSL(2,Z)× PSL(2,Z)→ Z2,
where f (x , x) = 1 for all x ∈ PSL(2,Z) of order 2 and f (x , y) = 0
otherwise.

Conjecture
There are commutative rings R and S so that R ≡ S , but
SL(2,R) 6≡ SL(2, S)
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Baumslag-Solitar groups

Recall that
BS(m, n) = 〈a, b | a−1bma = bn〉



Baumslag-Solitar groups

1 In BS(1, n), one has C (b) = BS(1, n)′ is a normal, abelian
n-divisible subgroup (and contains BS(1, n)′).

2 It follows that if G ≡ BS(1, n), then there is A / G ,
A ≡ BS(1, n)′ and Q = G/A ≡ BS(1, n)/BS(1, n)′.

3 G is f.g. iff Q is f.g. and A is f.g. as Q-module.
4 Using Szmielew’s theorem and the structure theorem for

divisible abelian groups, we get: Q ' Z and A ' Z[ 1
n ].

5 It is now left to understand the action of Q on A. The
corresponding groups are classified and one can exhibit a
formula that distinguishes BS(1, n) from any other such group.

Theorem (Nies 2007, Casals-Ruiz and K. 2010)
Let G f.g. Then G ≡ BS(1, n) iff G ' BS(1, n).



Baumslag-Solitar groups

1 In BS(1, n), one has C (b) = BS(1, n)′ is a normal, abelian
n-divisible subgroup (and contains BS(1, n)′).

2 It follows that if G ≡ BS(1, n), then there is A / G ,
A ≡ BS(1, n)′ and Q = G/A ≡ BS(1, n)/BS(1, n)′.

3 G is f.g. iff Q is f.g. and A is f.g. as Q-module.
4 Using Szmielew’s theorem and the structure theorem for

divisible abelian groups, we get: Q ' Z and A ' Z[ 1
n ].

5 It is now left to understand the action of Q on A. The
corresponding groups are classified and one can exhibit a
formula that distinguishes BS(1, n) from any other such group.

Theorem (Nies 2007, Casals-Ruiz and K. 2010)
Let G f.g. Then G ≡ BS(1, n) iff G ' BS(1, n).



Baumslag-Solitar groups

1 In BS(1, n), one has C (b) = BS(1, n)′ is a normal, abelian
n-divisible subgroup (and contains BS(1, n)′).

2 It follows that if G ≡ BS(1, n), then there is A / G ,
A ≡ BS(1, n)′ and Q = G/A ≡ BS(1, n)/BS(1, n)′.

3 G is f.g. iff Q is f.g. and A is f.g. as Q-module.
4 Using Szmielew’s theorem and the structure theorem for

divisible abelian groups, we get: Q ' Z and A ' Z[ 1
n ].

5 It is now left to understand the action of Q on A. The
corresponding groups are classified and one can exhibit a
formula that distinguishes BS(1, n) from any other such group.

Theorem (Nies 2007, Casals-Ruiz and K. 2010)
Let G f.g. Then G ≡ BS(1, n) iff G ' BS(1, n).



Baumslag-Solitar groups

1 In BS(1, n), one has C (b) = BS(1, n)′ is a normal, abelian
n-divisible subgroup (and contains BS(1, n)′).

2 It follows that if G ≡ BS(1, n), then there is A / G ,
A ≡ BS(1, n)′ and Q = G/A ≡ BS(1, n)/BS(1, n)′.

3 G is f.g. iff Q is f.g. and A is f.g. as Q-module.
4 Using Szmielew’s theorem and the structure theorem for

divisible abelian groups, we get: Q ' Z and A ' Z[ 1
n ].

5 It is now left to understand the action of Q on A. The
corresponding groups are classified and one can exhibit a
formula that distinguishes BS(1, n) from any other such group.

Theorem (Nies 2007, Casals-Ruiz and K. 2010)
Let G f.g. Then G ≡ BS(1, n) iff G ' BS(1, n).



Baumslag-Solitar groups

1 In BS(1, n), one has C (b) = BS(1, n)′ is a normal, abelian
n-divisible subgroup (and contains BS(1, n)′).

2 It follows that if G ≡ BS(1, n), then there is A / G ,
A ≡ BS(1, n)′ and Q = G/A ≡ BS(1, n)/BS(1, n)′.

3 G is f.g. iff Q is f.g. and A is f.g. as Q-module.
4 Using Szmielew’s theorem and the structure theorem for

divisible abelian groups, we get: Q ' Z and A ' Z[ 1
n ].

5 It is now left to understand the action of Q on A. The
corresponding groups are classified and one can exhibit a
formula that distinguishes BS(1, n) from any other such group.

Theorem (Nies 2007, Casals-Ruiz and K. 2010)
Let G f.g. Then G ≡ BS(1, n) iff G ' BS(1, n).



Nilpotent groups: elementary equivalence

Free nilpotent group UT3(Z) of class 2 and rank 2:

1→ Z = Z (UT3(Z))→ UT3(Z)→ Z2 → 1

Theorem (Oger)
Two f.g. nilpotent groups G and H are elementarily equivalent iff
G × Z ' H × Z.
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Groups elementarily equivalent to UT3(R)

Theorem (Belegradek)
G ≡ UT3(R) iff G ' UT3(S , f1, f2) and S ≡ R.

UT3(R) =
{(1 α γ

0 1 β
0 0 1

)}
, with the multiplication:

(α, β, γ)(α′, β′, γ′) = (α + α′, β + β′, γ + γ′ + αβ′).

Let f1, f2 : R+ × R+ → R be two symmetric 2-cocycles. New
operation on UT3(R):

(α, β, γ)◦(α′, β′, γ′) = (α+α′, β+β′, γ+γ′+αβ′+f1(α, α′)+f2(β, β′)).

1→ Z → UT3(R)→ UT3/Z → 1



Groups elementarily equivalent to UT3(R)

Theorem (Belegradek)
G ≡ UT3(R) iff G ' UT3(S , f1, f2) and S ≡ R.

UT3(R) =
{(1 α γ

0 1 β
0 0 1

)}
, with the multiplication:

(α, β, γ)(α′, β′, γ′) = (α + α′, β + β′, γ + γ′ + αβ′).

Let f1, f2 : R+ × R+ → R be two symmetric 2-cocycles. New
operation on UT3(R):

(α, β, γ)◦(α′, β′, γ′) = (α+α′, β+β′, γ+γ′+αβ′+f1(α, α′)+f2(β, β′)).

1→ Z → UT3(R)→ UT3/Z → 1



Groups elementarily equivalent to UT3(R)

Theorem (Belegradek)
G ≡ UT3(R) iff G ' UT3(S , f1, f2) and S ≡ R.

UT3(R) =
{(1 α γ

0 1 β
0 0 1

)}
, with the multiplication:

(α, β, γ)(α′, β′, γ′) = (α + α′, β + β′, γ + γ′ + αβ′).

Let f1, f2 : R+ × R+ → R be two symmetric 2-cocycles. New
operation on UT3(R):

(α, β, γ)◦(α′, β′, γ′) = (α+α′, β+β′, γ+γ′+αβ′+f1(α, α′)+f2(β, β′)).

1→ Z → UT3(R)→ UT3/Z → 1



The ring R inside UT3(R)

As a set Z (UT3(R)) = R .
If c1, c2 ∈ Z (UT3(R)), then we can “interpret” addition in R
as: “c1 + c2 = c1 · c2”.
Furthermore, we can “interpret” multiplication in R as:
z1 × z2 = [x1, x2], where [x1, a] = z1, [x2, b] = z2.
0R is 1 and 1R is [a, b].

Theorem (Malcev)
R is interpretable in UT3(R). It follows that the elementary theory
of UT3(Z) (=free 2-nilpotent 2-generated) is undecidable.

1→ R → UT3(R) → R2 → 1
1→ S → G → S2 → 1
1→ R∗ → UT3(R)∗ → R2∗ → 1
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Lie ring/algebra of a nilpotent group

Let G be t.f. nilpotent. Define Lie(G ) as follows:
Lie(G ) = ⊕∞i=1Γi/Γi+1, as an abelian group;
Let x =

∑∞
i=1 xiΓi+1 and y =

∑∞
i=1 yiΓi+1, where xi , yi ∈ Γi

be elements of Lie(G ). Define a product ◦ on Lie(G ) by

x ◦ y =
∞∑

k=2

k∑
i+j=2

[xi , yj ]Γi+j+1.

Since Γi are definable in G , understanding groups ≡ to G is closely
related to understanding rings ≡ to Lie(G ).
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R-groups

Example

For a free nilpotent group, Lie(G ) is a free nilpotent Lie ring.
For a nilpotent pc group, Lie(G ) is a pc nilpotent Lie algebra.
Consider R-algebra and “go back” to the group.

If we are to understand groups ≡ to an R-group G , we should
understand rings ≡ to the Lie R-algebra Lie(G ).
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Nilpotent groups and R-groups

Let R be an associative domain. The ring R gives rise to the
category of R-groups. Enrich the language L with new unary
operations fr (x), one for any r ∈ R . For g ∈ G and α ∈ R denote
fα(g) = gα.

Definition
An structure G of the language L(R) is an R-group if:

G is a group;
g0 = 1, gα+β = gαgβ, gαβ = gαβ .

As the class of R-groups is a variety, so one has R-subgroups,
R-homomorphisms, free R-groups, nilpotent R-groups etc.

Example
R-modules are R-groups.



Hall R-groups

P. Hall introduced a subclass or R-groups, so called Hall R-groups.

Definition
Let R be a binomial ring. A nilpotent group G of a class m is
called a Hall R-group if for all x , y , x1, . . . , xn ∈ G and any
λ, µ ∈ R one has:

G is a nilpotent R-group of class m;
(y−1xy)λ = (y−1xy)λ;
xλ1 · · · xλn = (x1 · · · xn)λτ2(x)Cλ

2 · · · τm(x)Cλ
m , where τi (x) is the

i-th Petrescu word defined in the free group F (x) by
x i
1 · · · x i

n = τ1(x)Cλ
1 τ2(x)Cλ

2 · · · τi (x)Cλ
i .

Proposition (Hall)
Let R be a binomial ring. Then the unitriangular group UTn(R)
and, therefore, all its subgroups are Hall R-groups.
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Idea of Miasnikov (late 1980’s)

1 With an R-algebra A, associate a nice bilinear map
fA : A/Ann(A)× A/Ann(A)→ A2.

2 A ring P(fA) ⊇ R , and the P(fA)-modules A2 and A/Ann(A)
are interpretable in A in the language of rings.



Algebras elementarily equivalet to well-structured algebras

Let A be well-structured and Ann(A) = A2. Let B be a ring ≡ to
A.

1→ A2 → A→ A/A2 → 1
1→ B2 → B → B/B2 → 1
1→ A2∗ → A∗ → A/A2∗ → 1



Well-structured algebras
Definition
A is called well-structured if

R = P(fA) and Ann(A) < A2;

the modules A2, A/Ann(A), Ann(A), A
/
A2 and A2/

Ann(A) are
free; in this case, the algebra A, as an R-module, admits the
following decomposition

A ' A/
A2 ⊕ A2/

Ann(A)⊕ Ann(A);

Let U = {u1, . . . , uk}, V = {v1, . . . , vl} and
W = {w1, . . . ,wm} be basis of the free modules A

/
A2,

A2/
Ann(A) and Ann(A), respectively. Then the structural

constants of A in the basis U ∪ V ∪W are integer. In other
words,

xy =
k∑

s=1

αxysus +
l∑

s=1

βxysvs +
m∑

s=1

γxysws ,

where x , y ∈ U ∪ V ∪W and αxys , βxys , γxys ∈ Z.



Characterisation theorem for well-structured algebras

Theorem (Casals-Ruiz, Fernandez-Alcober, K., Remeslennikov)
Let A be a well structured R-algebra and B be a ring. Then

B ≡ A if and only if B ' QA(S , s)

for some ring S, S ≡ R and some symmetric 2-cocycle
s ∈ S2(QA

/
QA2,Ann(QA)).



Abelian deformations

Definition
Let A be a well-structured P(fA)-algebra. Define the ring
QA = QA(S , s), called abelian deformation of A, as follows.

Let S be a commutative unital ring of characteristic zero. Let
K , L, and M be free S-modules of ranks rank(A

/
A2),

rank(A
2/
Ann(A)) and rank(Ann(A)), respectively.

The ring QA, as an abelian group, is defined as an abelian
extension of M by K ⊕ L via a symmetric 2-cocycle: let
x1, y1 ∈ K , x2, y2 ∈ L, x3, y3 ∈ M and s ∈ S2(K ,M), set

(x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 + s(x1, y1)).

The multiplication in QA is defined on the elements of the
basis of K , L and M using the structural constants of A and
extended by linearity to the ring QA.



Lie algebras of some groups

Theorem
Let R be an integral domain of characteristic zero. And let G be
one of the following groups:

free nilpotent R-group;
UT (n,R);
directly indecomposable partially commutative nilpotent
R-group.

Then Lie(G ) is well-structured.



Characterisation theorem for groups

Theorem (Casals-Ruiz, Fernandez-Alcober, K., Remeslennikov)
Let G and R be as above and let H be a group, H ≡ G. Then H is
QG (S) over some ring S such that S ≡ R as rings.


