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First-order language of groups £

@ a symbol for multiplication *';
@ a symbol for inversion ‘1";

@ and a symbol for the identity ‘1'.

Formula
Formula ® with free variables Z = {z,...,z} is

Qix1Qoxa ... Qx V(X Z),

where Q; € {V,3}, and W(X, Z) is a Boolean combination of
equations and inequations in variables X U Z. Formula @ is called a
sentence, if ® does not contain free variables.
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Using L one can say that

@ A group is (non-)abelian or (non-)nilpotent or (non-)solvable;
@ A group does not have p-torsion;

@ A group is torsion free;

@ A group is a given finite group;

o Vx,Vy,Vz xkKylzm =1 = ([x,y] =1 A[y,z] =1 A[x,z] = 1)



Examples

Using L one can say that

@ A group is (non-)abelian or (non-)nilpotent or (non-)solvable;
@ A group does not have p-torsion;

@ A group is torsion free;

@ A group is a given finite group;

o Vx,Vy,Vz xkKylzm =1 = ([x,y] =1 A[y,z] =1 A[x,z] = 1)

Using £ one can not say that

@ A group is finitely generated (presented) or countable;

@ A group is free or free abelian or cyclic.



Formulas and Sentences

CD(Z) . lel Q2X2 e Q/X/ \U(X, Z),

o & VxVy xyxly t=1;
o O(y): Vx xyxly =1

A truth set of a formula is called definable.
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which hold in G. Two groups G and H are called elementarily
equivalent if Th(G) = Th(H).



Elementary equivalence

The elementary theory Th(G) of a group is the set of all sentences
which hold in G. Two groups G and H are called elementarily
equivalent if Th(G) = Th(H).

ALGEBRA MODEL THEORY
e aad
ISOMORPHISM ELEMENTARY EQUIVALENCE




Elementary equivalence

The elementary theory Th(G) of a group is the set of all sentences
which hold in G. Two groups G and H are called elementarily
equivalent if Th(G) = Th(H).
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Problem

Classify groups (in a given class) up to elementary equivalence.



Keislar-Shelah Theorem

An ultrafilter 4 on N is a 0-1 probability measure. The ultrafilter is
non-principal if the measure of every finite set is 0.

Consider the unrestricted direct product [[ G of copies of G.
Identify two sequence (g;) and (h;) if they coincide on a set of
measure 1. The obtained object is a group called the ultrapower of

G.



Keislar-Shelah Theorem

An ultrafilter 4 on N is a 0-1 probability measure. The ultrafilter is
non-principal if the measure of every finite set is 0.

Consider the unrestricted direct product [[ G of copies of G.
Identify two sequence (g;) and (h;) if they coincide on a set of
measure 1. The obtained object is a group called the ultrapower of

G.

Theorem (Keislar-Shelah)

Let H and K be groups. The groups H and K are elementarily
equivalent if and only if there exists a non-principal ultrafilter 4l so
that the ultrapowers H* and K* are isomorphic.



Results of Malcev

Theorem (Malcev, 1961)
Let G = GL (or PGL,SL, PSL), let n,m > 3, and let K and F be

fields of characteristic zero, then Gp,(F) = Go(K) if and only if
m=nand F =K.

Proof

If Gm(F) = Gp(K), then G (F) ~ G;(K). Since G;,(F) and

G} (K) are Gn(F*) and G,(K™), the result follows from the
description of abstract isomorphisms of such groups (which are
semi-algebraic, so they preserve the algebraic scheme and the field).

In fact, in the case of GL and PGL the result holds for n, m > 2.



Classical linear groups over 7Z

Theorem (Malcev, 1961)

Let G = GL (or PGL,SL, PSL), let n,m > 3, and let R and S be
commutative rings of characteristic zero, then Gp,(R) = G,(S) if
and only if m=nand R=S.

In the case of GL and PGL the result holds for n,m > 2.

@ Malcev stresses the importance of the case when R = Z, and
n=2.



Results of Durnev, 1995

Theorem

The /?-theories of the groups GL(n,Z) and GL(m,Z) (PGL(n,Z)
and PGL(m,Z), SL(n,Z) and SL(m,Z), or PSL(n,Z) and
PSL(m,Z)) are distinct, n > m > 1. If n is even or n is odd and
m < n — 2, then even the corresponding \/*-theories are distinct.



Results of Durnev, 1995

Theorem

The /?-theories of the groups GL(n,Z) and GL(m,Z) (PGL(n,Z)
and PGL(m,Z), SL(n,Z) and SL(m,Z), or PSL(n,Z) and
PSL(m,Z)) are distinct, n > m > 1. If n is even or n is odd and
m < n — 2, then even the corresponding \/*-theories are distinct.

Theorem

There exists m so that for every n > 3, the V>3™-theory of
GL(n,Z) is undecidable. Similarly, for every n > 3, n # 4, the
23™_theory of SL(n,Z) is undecidable.

That is, there exists m so that for any n there is no algorithm that,

given a V23M-sentence decides whether or not it is true in GL(n,Z)
(or SL(n,Z))
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Lifting elementary equivalence

o Let1 - N— G — Q — 1 be a group extension.
e Use Q and N to understand Th(G).

@ Suppose that we know which groups are elementarily
equivalent to N and Q.

@ Then if the action of Q on N can be described using
first-order language and if N is definable in G, then we may be
able to describe groups elementarily equivalent to G.

Example

@ Linear groups.
@ Soluble groups.

o Nilpotent groups.



Finitely generated groups elementarily equivalent
to PSL(2,7Z),5L(2,Z),GL(2,7Z) and PGL(2,7Z)

1——>Zyp ——SL(2,Z) ——= PSL(2,Z) ——1

1— 7y —> GL(2,Z) — PGL(2,Z) —=1
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0 -1 11
S = (1 0 > and T = (0 1) generate SL(2,7Z).
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0 -1 11
S= <1 0 > and T = (0 1> generate SL(2,7Z).
S has order 4, ST has order 6, S? = (ST)3 = — 1,

SL(2,7) ~ Z4 #7, T and PSL(2,7) = Zy * 73 = SL(2; Z)/Z(SL(Q, 7))

Theorem (Sela, 2011)

A finitely generated group G is elementary equivalent to PSL(2,7Z)
if and only if G is a hyperbolic tower (over PSL(2,7.)).
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Finitely generated groups elementarily equivalent
to PSL(2,7Z)

0 -1 11
S= (1 0 ) and T = <O 1) generate SL(2,Z).

S has order 4, ST has order 6, S = (ST)3 = —h,

SL(Q,Z) ~ Z4 *Z Z6 and PSL(2,Z) = Z2 * Z3 = 5L(27Z)/Z(5L(2, Z))

e 1— Fp,=PSL(2,Z) — PSL(2,Z) — 7y x Z3 — 1
@ Axiomatisation of PSL(2,Z) and decidability



Hyperbolic towers over PSL(2,7)

@ Induction on height of tower.

o Any hyperbolic tower T of height 0 is a free product of
PSL(2,7Z) with some (possibly none) free groups and
fundamental groups of hyperbolic surfaces of Euler
characteristic at most —2.

o A hyperbolic tower T" is built from a tower T"~! by taking
free product of T"~1 with free groups and surface groups and
then attaching finitely many hyperbolic surface groups or
punctured 2-tori along boundary subgroups in such a way that
T" retracts to T"~! and the restriction of this retraction onto
any of the surfaces has nonabelian image in 7"~1



Hyperbolic towers over PSL(2,7)

n@

PSL(2,7)
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Finitely generated groups elementarily equivalent
to SL(2,7)

e We have 1 — Zy — SL(2,Z) — PSL(2,Z) — 1.

o Let G =SL(2,Z), then Z(G) = Z(SL(2,Z)), hence
Z(G) = Zs.

e Since Z(G) is definable and G is f.g.,
Q= G/Z(G) = PSL(2,7) is a hyperbolic tower.

@ Hence, G is a central extension of a tower by Z,.

@ Central extensions are described using the second cohomology
group H?(Q, Z(G)).

@ Use the explicit description of towers and compute the
cohomology.

@ Do a trick.



Finitely generated groups elementarily equivalent
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2 2 2
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2 T T

1= Zp, — G — Q —1
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Finitely generated groups elementarily equivalent
to SL(2,7)

1— Zo — SL(2,Z)* — PSL(2,Z2)* —1
| 2 |

1— Z, — G* — Q* —1
2 T T
1— Z, — G — Q —1

e Z(G*) ~ Z(G)* and G* is the central extension of Q* by
Z(G)*. The corresponding cocycle f* : Q* x Q* — A* is
defined coordinate-wise, i.e. f* = (f).

@ The cocycle h: PSL(2,7Z) x PSL(2,7) — Z, satisfies:
h(x,x) =1 for all x of order 2, and h(y, z) = 0 otherwise.

@ By the properties of ultrafilters, the same holds the cocycle
h* = (h) which defines SL(2,7)* as the extension of
PSL(2,Z)*.



Finitely generated groups elementarily equivalent
to SL(2,7)

Theorem
A finitely generated group G is elementarily equivalent to SL(2,7)
if and only if G is the central extension of a hyperbolic tower over
PSL(2,7Z) by Zy with the cocycle f : PSL(2,7) x PSL(2,Z) — Za,,
where f(x,x) =1 for all x € PSL(2,Z) of order 2 and f(x,y) =0
otherwise.



Finitely generated groups elementarily equivalent
to SL(2,7)

Theorem
A finitely generated group G is elementarily equivalent to SL(2,7)
if and only if G is the central extension of a hyperbolic tower over
PSL(2,7Z) by Zy with the cocycle f : PSL(2,7) x PSL(2,Z) — Za,,
where f(x,x) =1 for all x € PSL(2,Z) of order 2 and f(x,y) =0
otherwise.

Conjecture

There are commutative rings R and S so that R = S, but
SL(2,R) # SL(2,S)



Finitely generated groups elementarily equivalent
to PSL(2,7Z),5L(2,Z),GL(2,7Z) and PGL(2,7Z)

1——>Zyp ——SL(2,Z) ——= PSL(2,Z) ——1

1— 7y —> GL(2,Z) — PGL(2,Z) —=1




Baumslag-Solitar groups

Recall that
BS(m,n) = (a,b| a bma = b")
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Baumslag-Solitar groups

@ In BS(1,n), one has C(b) = BS(1,n)" is a normal, abelian
n-divisible subgroup (and contains BS(1, n)").

@ It follows that if G = BS(1, n), then there is A< G,
A= BS(1,n) and Q = G/A = B5(1, ”)/35(17 n)'-

© Gisfg iff Qisf.g and Aisf.g. as Q-module.

@ Using Szmielew's theorem and the structure theorem for
divisible abelian groups, we get: Q ~Z and A ~ Z[2].

@ It is now left to understand the action of Q on A. The

corresponding groups are classified and one can exhibit a
formula that distinguishes BS(1, n) from any other such group.

Theorem (Nies 2007, Casals-Ruiz and K. 2010)
Let G f.g. Then G = BS(1,n) iff G ~ BS(1, n).
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Nilpotent groups: elementary equivalence

Free nilpotent group UT3(Z) of class 2 and rank 2:

1= 7Z=2Z(UT3(Z) — UT3(Z) - 7> — 1

Theorem (Oger)

Two f.g. nilpotent groups G and H are elementarily equivalent iff
G XxXZ~HXxZ.
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G =UT3(R) iff G ~ UT3(S,f,fH) and S = R.
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Groups elementarily equivalent to UT3(R)

Theorem (Belegradek)
G =UT3(R) iff G ~ UT3(S,f,fH) and S = R.

1

UT3(R) = {(g z %) } with the multiplication:

(o, B,7)(, 8',9") = (@ + ', B+ ' ,7++ + af).

Let f1,f : Rt x R™ — R be two symmetric 2-cocycles. New
operation on UT3(R):

(o, B,7)o(, B',7) = (a+d, B+, v+ +af + (o, o' )+h(B, B)).

1—-2Z—UT3(R)— UT3/Z — 1
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The ring R inside UT3(R)

e Asaset Z(UT3(R)) =R.
o If a1, € Z(UT3(R)), then we can “interpret” addition in R
as: ‘qt+o=c-o"

o Furthermore, we can “interpret” multiplication in R as:
71 X zp = [x1, x2], where [x1, a] = z1, [x2, b] = 2.

@ Ogis1and 1g is [a, b].

Theorem (Malcev)

R is interpretable in UT3(R). It follows that the elementary theory
of UT3(Z) (=free 2-nilpotent 2-generated) is undecidable.

l1-R— UT3R) —R*—1
1—S— G -5 1
1 - R — UT3(R)* —R* =1



Lie ring/algebra of a nilpotent group

Let G be t.f. nilpotent. Define Lie(G) as follows:
o Lie(G) = ®%4I;/Tit1, as an abelian group;

o Let x => 72 xilip1 and y =572, yiliy1, where x;,y; € T
be elements of Lie(G). Define a product o on Lie(G) by

0o k
xoy = Z Z [xi, Yl itjr1-

k=2 i+j=2



Lie ring/algebra of a nilpotent group

Let G be t.f. nilpotent. Define Lie(G) as follows:
o Lie(G) = ®%4I;/Tit1, as an abelian group;

o Let x => 72 xilip1 and y =572, yiliy1, where x;,y; € T
be elements of Lie(G). Define a product o on Lie(G) by

0o k
xoy = Z Z [xi, Yl itjr1-

k=2 i+j=2

Since I'; are definable in G, understanding groups = to G is closely
related to understanding rings = to Lie(G).



R-groups

Example

e For a free nilpotent group, Lie(G) is a free nilpotent Lie ring.
e For a nilpotent pc group, Lie(G) is a pc nilpotent Lie algebra.
o Consider R-algebra and “go back” to the group.



R-groups

Example

e For a free nilpotent group, Lie(G) is a free nilpotent Lie ring.
e For a nilpotent pc group, Lie(G) is a pc nilpotent Lie algebra.
o Consider R-algebra and “go back” to the group.

If we are to understand groups = to an R-group G, we should
understand rings = to the Lie R-algebra Lie(G).



Nilpotent groups and R-groups

Let R be an associative domain. The ring R gives rise to the
category of R-groups. Enrich the language £ with new unary
operations f,(x), one for any r € R. For g € G and « € R denote
fo(g) = 8~
Definition
An structure G of the language £(R) is an R-group if:

e G is a group;

0 g =1,g" = gogh gof = g,
As the class of R-groups is a variety, so one has R-subgroups,
R-homomorphisms, free R-groups, nilpotent R-groups etc.
Example
R-modules are R-groups.



Hall R-groups

P. Hall introduced a subclass or R-groups, so called Hall R-groups.

Definition
Let R be a binomial ring. A nilpotent group G of a class m is
called a Hall R-group if for all x,y,x1,...,x, € G and any
A, it € R one has:
@ G is a nilpotent R-group of class m;
o (y b))t = ()N
0 X} xd = (x1- X)) (X))@ - Ti(x)Cm, where Ti(x) s the
i-th Petrescu word defined in the free group F(x) by

X]I: “ e XII:I — Tl(X)C{\7'2(X)C2)\ P Ti(X)Ci)\-



Hall R-groups

P. Hall introduced a subclass or R-groups, so called Hall R-groups.

Definition
Let R be a binomial ring. A nilpotent group G of a class m is
called a Hall R-group if for all x,y,x1,...,x, € G and any
A, it € R one has:
@ G is a nilpotent R-group of class m;
o (y b))t = ()N
0 X} xd = (x1- X)) (X))@ - Ti(x)Cm, where Ti(x) s the
i-th Petrescu word defined in the free group F(x) by

X]I: “ e XII:I — Tl(X)C{\7'2(X)C2)\ P Ti(X)Ci)\-

Proposition (Hall)

Let R be a binomial ring. Then the unitriangular group UT,(R)
and, therefore, all its subgroups are Hall R-groups.



|dea of Miasnikov (late 1980's)

© With an R-algebra A, associate a nice bilinear map
fa: AJAnn(A) x A/Ann(A) — A2,

@ A ring P(fs) O R, and the P(f4)-modules A? and A/Ann(A)
are interpretable in A in the language of rings.



Algebras elementarily equivalet to well-structured algebras

Let A be well-structured and Ann(A) = A2. Let B be a ring = to
A.

1A Ao AA2 1
1-B> —-B— B/B>—1
1A S A AAT 1



Well-structured algebras
Definition
A is called well-structured if
e R = P(fa) and Ann(A) < A2
o the modules A2, A/Ann(A)v Ann(A), A/ 42 and Az/Ann(A) are
free; in this case, the algebra A, as an R-module, admits the
following decomposition

Axfpe Az/Ann(A) @ Ann(A);

o Let U={uw,...,ux}, V={w,..., v} and
W = {wi,...,wn} be basis of the free modules A/Az,

2
A /Ann(A) and Ann(A), respectively. Then the structural
constants of A in the basis UU V U W are integer. In other

words,
k I m
Xy = Z QixysUs + Z Bxysvs + Z'nyswm
s=1 s=1 s=1

where x,y € UU VU W and a,ys, Byys, Yxys € Z.



Characterisation theorem for well-structured algebras

Theorem (Casals-Ruiz, Fernandez-Alcober, K., Remeslennikov)
Let A be a well structured R-algebra and B be a ring. Then

B = A ifand only if B~ QA(S,s)

for some ring S, S = R and some symmetric 2-cocycle

s € S2(QA o2, Ann(QA)).



Abelian deformations

Definition
Let A be a well-structured P(fa)-algebra. Define the ring
QA = QA(S,s), called abelian deformation of A, as follows.
@ Let S be a commutative unital ring of characteristic zero. Let
K, L, and M be free S-modules of ranks rank(A/Az),

rank(Az/Ann(A)) and rank(Ann(A)), respectively.

@ The ring QA, as an abelian group, is defined as an abelian
extension of M by K @ L via a symmetric 2-cocycle: let
x1,y1 € K, xo,yp €L, x3,y3 € M and s € 52(K, M), set

(x1,x2,x3) + (y1, 2, ¥3) = (31 +y1, X2 + y2, 3 + y3 +5(x1, y1))-
@ The multiplication in QA is defined on the elements of the

basis of K, L and M using the structural constants of A and
extended by linearity to the ring QA.



Lie algebras of some groups

Theorem

Let R be an integral domain of characteristic zero. And let G be
one of the following groups:

e free nilpotent R-group;
e UT(n,R);
e directly indecomposable partially commutative nilpotent
R-group.
Then Lie(G) is well-structured.



Characterisation theorem for groups

Theorem (Casals-Ruiz, Fernandez-Alcober, K., Remeslennikov)

Let G and R be as above and let H be a group, H= G. Then H is
QG(S) over some ring S such that S = R as rings.



