On the elementary theory of linear groups.

Ilya Kazachkov

Mathematical Institute
University of Oxford

> GAGTA-6

Dusseldorf

August 3, 2012

First-order logic

First-order language of groups \mathcal{L}

- a symbol for multiplication '.';
- a symbol for inversion ${ }^{\text {' }}{ }^{1}$;
- and a symbol for the identity ' 1 '.

Formula
Formula Φ with free variables $Z=\left\{z_{1}, \ldots, z_{k}\right\}$ is

where $Q_{i} \in\{\forall, \exists\}$, and $\psi(X, Z)$ is a Boolean combination of equations and inequations in variahles $X 1 J 7$. Formula ϕ is caller a sentence, if Φ does not contain free variables.

First-order logic

First-order language of groups \mathcal{L}

- a symbol for multiplication '.';
- a symbol for inversion ' ${ }^{-1}$ ';
- and a symbol for the identity ' 1 '.

Formula

Formula Φ with free variables $Z=\left\{z_{1}, \ldots, z_{k}\right\}$ is

$$
Q_{1} x_{1} Q_{2 x_{2}} \ldots Q_{\mid x_{\mid}} \Psi(X, Z)
$$

where $Q_{i} \in\{\forall, \exists\}$, and $\Psi(X, Z)$ is a Boolean combination of equations and inequations in variables $X \cup Z$. Formula Φ is called a sentence, if Φ does not contain free variables.

Examples

$\underline{\text { Using } \mathcal{L} \text { one can say that }}$

- A group is (non-)abelian or (non-)nilpotent or (non-)solvable;
- A group does not have p-torsion;
- A group is torsion free;
- A group is a given finite group;
- $\forall x, \forall y, \forall z x^{k} y^{\prime} z^{m}=1 \rightarrow([x, y]=1 \wedge[y, z]=1 \wedge[x, z]=1)$
- A group is finitely generated (presented) or countable;
- A group is free or free abelian or cyclic.

Examples

$\underline{U s i n g} \mathcal{L}$ one can say that

- A group is (non-)abelian or (non-)nilpotent or (non-)solvable;
- A group does not have p-torsion;
- A group is torsion free;
- A group is a given finite group;
- $\forall x, \forall y, \forall z x^{k} y^{\prime} z^{m}=1 \rightarrow([x, y]=1 \wedge[y, z]=1 \wedge[x, z]=1)$

$\underline{\text { Using } \mathcal{L} \text { one can not say that }}$

- A group is finitely generated (presented) or countable;
- A group is free or free abelian or cyclic.

Formulas and Sentences

$$
\Phi(Z): \quad Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{I} x_{I} \Psi(X, Z)
$$

- $\Phi: \forall x \forall y x y x^{-1} y^{-1}=1$;
- $\Phi(y): \forall x x y x^{-1} y^{-1}=1$.

A truth set of a formula is called definable.

Elementary equivalence

The elementary theory $\operatorname{Th}(G)$ of a group is the set of all sentences which hold in G. Two groups G and H are called elementarily equivalent if $\operatorname{Th}(G)=\operatorname{Th}(H)$.

Problem
Classify groups (in a given class) up to elementary equivalence

Elementary equivalence

The elementary theory $\operatorname{Th}(G)$ of a group is the set of all sentences which hold in G. Two groups G and H are called elementarily equivalent if $\operatorname{Th}(G)=\operatorname{Th}(H)$.

Elementary equivalence

The elementary theory $\operatorname{Th}(G)$ of a group is the set of all sentences which hold in G. Two groups G and H are called elementarily equivalent if $\operatorname{Th}(G)=\operatorname{Th}(H)$.

Problem

Classify groups (in a given class) up to elementary equivalence.

Keislar-Shelah Theorem

An ultrafilter \mathfrak{U} on \mathbb{N} is a 0-1 probability measure. The ultrafilter is non-principal if the measure of every finite set is 0 .
Consider the unrestricted direct product $\prod G$ of copies of G. Identify two sequence $\left(g_{i}\right)$ and $\left(h_{i}\right)$ if they coincide on a set of measure 1. The obtained object is a group called the ultrapower of G.

Keislar-Shelah Theorem

An ultrafilter \mathfrak{U} on \mathbb{N} is a 0-1 probability measure. The ultrafilter is non-principal if the measure of every finite set is 0 .
Consider the unrestricted direct product ΠG of copies of G. Identify two sequence $\left(g_{i}\right)$ and $\left(h_{i}\right)$ if they coincide on a set of measure 1. The obtained object is a group called the ultrapower of G.

Theorem (Keislar-Shelah)

Let H and K be groups. The groups H and K are elementarily equivalent if and only if there exists a non-principal ultrafilter \mathfrak{U} so that the ultrapowers H^{*} and K^{*} are isomorphic.

Results of Malcev

Theorem (Malcev, 1961)
Let $G=G L$ (or $P G L, S L, P S L$), let $n, m \geq 3$, and let K and F be fields of characteristic zero, then $G_{m}(F) \equiv G_{n}(K)$ if and only if $m=n$ and $F \equiv K$.

Proof
If $G_{m}(F) \equiv G_{n}(K)$, then $G_{m}^{*}(F) \simeq G_{n}^{*}(K)$. Since $G_{m}^{*}(F)$ and $G_{n}^{*}(K)$ are $G_{m}\left(F^{*}\right)$ and $G_{n}\left(K^{*}\right)$, the result follows from the description of abstract isomorphisms of such groups (which are semi-algebraic, so they preserve the algebraic scheme and the field). In fact, in the case of $G L$ and $P G L$ the result holds for $n, m \geq 2$.

Classical linear groups over \mathbb{Z}

Theorem (Malcev, 1961)
Let $G=G L$ (or PGL, SL, PSL), let $n, m \geq 3$, and let R and S be commutative rings of characteristic zero, then $G_{m}(R) \equiv G_{n}(S)$ if and only if $m=n$ and $R \equiv S$.
In the case of $G L$ and $P G L$ the result holds for $n, m \geq 2$.

- Malcev stresses the importance of the case when $R=\mathbb{Z}$, and $n=2$.

Results of Durnev, 1995

Theorem
The \forall^{2}-theories of the groups $G L(n, \mathbb{Z})$ and $G L(m, \mathbb{Z})(P G L(n, \mathbb{Z})$ and $P G L(m, \mathbb{Z}), S L(n, \mathbb{Z})$ and $S L(m, \mathbb{Z})$, or $\operatorname{PSL}(n, \mathbb{Z})$ and $\operatorname{PSL}(m, \mathbb{Z})$) are distinct, $n>m>1$. If n is even or n is odd and $m \leq n-2$, then even the corresponding \forall^{1}-theories are distinct.

Results of Durnev, 1995

Theorem

The \forall^{2}-theories of the groups $G L(n, \mathbb{Z})$ and $G L(m, \mathbb{Z})(P G L(n, \mathbb{Z})$
and $P G L(m, \mathbb{Z}), S L(n, \mathbb{Z})$ and $S L(m, \mathbb{Z})$, or $P S L(n, \mathbb{Z})$ and $\operatorname{PSL}(m, \mathbb{Z})$) are distinct, $n>m>1$. If n is even or n is odd and $m \leq n-2$, then even the corresponding \forall^{1}-theories are distinct.

Theorem

There exists m so that for every $n \geq 3$, the $\forall^{2} \exists^{m}$-theory of $G L(n, \mathbb{Z})$ is undecidable. Similarly, for every $n \geq 3, n \neq 4$, the $\forall^{2} \exists^{m}$-theory of $S L(n, \mathbb{Z})$ is undecidable.
That is, there exists m so that for any n there is no algorithm that, given a $\forall^{2} \exists^{m}$-sentence decides whether or not it is true in $G L(n, \mathbb{Z})$ (or $S L(n, \mathbb{Z})$)

Lifting elementary equivalence

- Let $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$ be a group extension.
- Use Q and N to understand $\operatorname{Th}(G)$.

Suppose that we know which groups are elementarily equivalent to N and Q.

- Linear groups.
- Soluble groups.
- Nilpotent groups.

Lifting elementary equivalence

- Let $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$ be a group extension.
- Use Q and N to understand $T h(G)$.
- Suppose that we know which groups are elementarily equivalent to N and Q.
- Then if the action of Q on N can be described using first-order language and if N is definable in G, then we may be able to describe groups elementarily equivalent to G.
\circ Linear grouss
- Soluble groups
- Nilpotent groups.

Lifting elementary equivalence

- Let $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$ be a group extension.
- Use Q and N to understand $T h(G)$.
- Suppose that we know which groups are elementarily equivalent to N and Q.
- Then if the action of Q on N can be described using first-order language and if N is definable in G, then we may be able to describe groups elementarily equivalent to G.

Example

- Linear groups.
- Soluble groups.
- Nilpotent groups.

Finitely generated groups elementarily equivalent to $\operatorname{PSL}(2, \mathbb{Z}), S L(2, \mathbb{Z}), G L(2, \mathbb{Z})$ and $P G L(2, \mathbb{Z})$

Finitely generated groups elementarily equivalent

 to $\operatorname{PSL}(2, \mathbb{Z})$$S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ generate $S L(2, \mathbb{Z})$.
S has order $4, S T$ has order $6, S^{2}=(S T)^{3}=-I_{2}$,
$S L(2, \mathbb{Z}) \simeq \mathbb{Z}_{4} *_{\mathbb{Z}} \mathbb{Z}_{6}$ and $\operatorname{PSL}(2, \mathbb{Z})=\mathbb{Z}_{2} * \mathbb{Z}_{3}=S L(2, \mathbb{Z}) / Z(S L(2, \mathbb{Z}))$.

Finitely generated groups elementarily equivalent

 to $\operatorname{PSL}(2, \mathbb{Z})$$S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ generate $S L(2, \mathbb{Z})$.
S has order $4, S T$ has order $6, S^{2}=(S T)^{3}=-I_{2}$,
$S L(2, \mathbb{Z}) \simeq \mathbb{Z}_{4} *_{\mathbb{Z}} \mathbb{Z}_{6}$ and $\operatorname{PSL}(2, \mathbb{Z})=\mathbb{Z}_{2} * \mathbb{Z}_{3}=S L(2, \mathbb{Z}) / Z(S L(2, \mathbb{Z}))$.
Theorem (Sela, 2011)
A finitely generated group G is elementary equivalent to $\operatorname{PSL}(2, \mathbb{Z})$
if and only if G is a hyperbolic tower (over $\operatorname{PSL}(2, \mathbb{Z})$).

Finitely generated groups elementarily equivalent

 to $\operatorname{PSL}(2, \mathbb{Z})$$$
S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \text { and } T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { generate } S L(2, \mathbb{Z}) \text {. }
$$

S has order $4, S T$ has order $6, S^{2}=(S T)^{3}=-l_{2}$,
$S L(2, \mathbb{Z}) \simeq \mathbb{Z}_{4} *_{\mathbb{Z}} \mathbb{Z}_{6}$ and $\operatorname{PSL}(2, \mathbb{Z})=\mathbb{Z}_{2} * \mathbb{Z}_{3}=S L(2, \mathbb{Z})^{\prime} / Z(S L(2, \mathbb{Z}))$.

- $1 \rightarrow F_{2}=\operatorname{PSL}(2, \mathbb{Z})^{\prime} \rightarrow \operatorname{PSL}(2, \mathbb{Z}) \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{3} \rightarrow 1$

Finitely generated groups elementarily equivalent

 to $\operatorname{PSL}(2, \mathbb{Z})$$$
S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \text { and } T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { generate } S L(2, \mathbb{Z}) \text {. }
$$

S has order $4, S T$ has order $6, S^{2}=(S T)^{3}=-l_{2}$,
$S L(2, \mathbb{Z}) \simeq \mathbb{Z}_{4} *_{\mathbb{Z}} \mathbb{Z}_{6}$ and $\operatorname{PSL}(2, \mathbb{Z})=\mathbb{Z}_{2} * \mathbb{Z}_{3}=S L(2, \mathbb{Z})^{\prime} / Z(S L(2, \mathbb{Z}))$.

- $1 \rightarrow F_{2}=\operatorname{PSL}(2, \mathbb{Z})^{\prime} \rightarrow \operatorname{PSL}(2, \mathbb{Z}) \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{3} \rightarrow 1$
- Axiomatisation of $\operatorname{PSL}(2, \mathbb{Z})$ and decidability

Hyperbolic towers over $\operatorname{PSL}(2, \mathbb{Z})$

- Induction on height of tower.
- Any hyperbolic tower T^{0} of height 0 is a free product of $\operatorname{PSL}(2, \mathbb{Z})$ with some (possibly none) free groups and fundamental groups of hyperbolic surfaces of Euler characteristic at most -2 .
- A hyperbolic tower T^{n} is built from a tower T^{n-1} by taking free product of T^{n-1} with free groups and surface groups and then attaching finitely many hyperbolic surface groups or punctured 2-tori along boundary subgroups in such a way that T^{n} retracts to T^{n-1} and the restriction of this retraction onto any of the surfaces has nonabelian image in T^{n-1}

Hyperbolic towers over $\operatorname{PSL}(2, \mathbb{Z})$

Finitely generated groups elementarily equivalent to $S L(2, \mathbb{Z})$

- We have $1 \rightarrow \mathbb{Z}_{2} \rightarrow S L(2, \mathbb{Z}) \rightarrow \operatorname{PSL}(2, \mathbb{Z}) \rightarrow 1$.

Finitely generated groups elementarily equivalent

 to $S L(2, \mathbb{Z})$- We have $1 \rightarrow \mathbb{Z}_{2} \rightarrow S L(2, \mathbb{Z}) \rightarrow \operatorname{PSL}(2, \mathbb{Z}) \rightarrow 1$.
- Let $G \equiv S L(2, \mathbb{Z})$, then $Z(G) \equiv Z(S L(2, \mathbb{Z}))$, hence $Z(G)=\mathbb{Z}_{2}$.

Finitely generated groups elementarily equivalent

 to $S L(2, \mathbb{Z})$- We have $1 \rightarrow \mathbb{Z}_{2} \rightarrow S L(2, \mathbb{Z}) \rightarrow \operatorname{PSL}(2, \mathbb{Z}) \rightarrow 1$.
- Let $G \equiv S L(2, \mathbb{Z})$, then $Z(G) \equiv Z(S L(2, \mathbb{Z}))$, hence $Z(G)=\mathbb{Z}_{2}$.
- Since $Z(G)$ is definable and G is f.g.,
$Q=G / Z(G) \equiv P S L(2, \mathbb{Z})$ is a hyperbolic tower.

Finitely generated groups elementarily equivalent to $S L(2, \mathbb{Z})$

- We have $1 \rightarrow \mathbb{Z}_{2} \rightarrow S L(2, \mathbb{Z}) \rightarrow \operatorname{PSL}(2, \mathbb{Z}) \rightarrow 1$.
- Let $G \equiv S L(2, \mathbb{Z})$, then $Z(G) \equiv Z(S L(2, \mathbb{Z}))$, hence $Z(G)=\mathbb{Z}_{2}$.
- Since $Z(G)$ is definable and G is f.g., $Q=G / Z(G) \equiv \operatorname{PSL}(2, \mathbb{Z})$ is a hyperbolic tower.
- Hence, G is a central extension of a tower by \mathbb{Z}_{2}.

Finitely generated groups elementarily equivalent to $S L(2, \mathbb{Z})$

- We have $1 \rightarrow \mathbb{Z}_{2} \rightarrow S L(2, \mathbb{Z}) \rightarrow \operatorname{PSL}(2, \mathbb{Z}) \rightarrow 1$.
- Let $G \equiv S L(2, \mathbb{Z})$, then $Z(G) \equiv Z(S L(2, \mathbb{Z}))$, hence $Z(G)=\mathbb{Z}_{2}$.
- Since $Z(G)$ is definable and G is f.g., $Q=G / Z(G) \equiv \operatorname{PSL}(2, \mathbb{Z})$ is a hyperbolic tower.
- Hence, G is a central extension of a tower by \mathbb{Z}_{2}.
- Central extensions are described using the second cohomology group $H^{2}(Q, Z(G))$.

Finitely generated groups elementarily equivalent

 to $S L(2, \mathbb{Z})$- We have $1 \rightarrow \mathbb{Z}_{2} \rightarrow S L(2, \mathbb{Z}) \rightarrow \operatorname{PSL}(2, \mathbb{Z}) \rightarrow 1$.
- Let $G \equiv S L(2, \mathbb{Z})$, then $Z(G) \equiv Z(S L(2, \mathbb{Z}))$, hence $Z(G)=\mathbb{Z}_{2}$.
- Since $Z(G)$ is definable and G is f.g., $Q=G / Z(G) \equiv \operatorname{PSL}(2, \mathbb{Z})$ is a hyperbolic tower.
- Hence, G is a central extension of a tower by \mathbb{Z}_{2}.
- Central extensions are described using the second cohomology group $H^{2}(Q, Z(G))$.
(1) Use the explicit description of towers and compute the cohomology.
(2) Do a trick.

Finitely generated groups elementarily equivalent to $S L(2, \mathbb{Z})$

| 1 | $\rightarrow \mathbb{Z}_{2}$ | \rightarrow | $\operatorname{SL}(2, \mathbb{Z})^{*}$ | \rightarrow | $\operatorname{PSL}(2, \mathbb{Z})^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |$\rightarrow 1$

Finitely generated groups elementarily equivalent

 to $S L(2, \mathbb{Z})$| $1 \rightarrow$ | \mathbb{Z}_{2} | \rightarrow | $S L(2, \mathbb{Z})^{*}$ | \rightarrow | $\operatorname{PSL}(2, \mathbb{Z})^{*}$ |
| ---: | :--- | :---: | :---: | :---: | :---: |$\rightarrow 1$

- $Z\left(G^{*}\right) \simeq Z(G)^{*}$ and G^{*} is the central extension of Q^{*} by $Z(G)^{*}$. The corresponding cocycle $f^{*}: Q^{*} \times Q^{*} \rightarrow A^{*}$ is defined coordinate-wise, i.e. $f^{*}=(f)$.

Finitely generated groups elementarily equivalent

 to $S L(2, \mathbb{Z})$| $1 \rightarrow \mathbb{Z}_{2}$ | \rightarrow | $S L(2, \mathbb{Z})^{*}$ | \rightarrow | $\operatorname{PSL}(2, \mathbb{Z})^{*}$ | $\rightarrow 1$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \mid$ | | $2 \mid$ | | $2 \mid$ | |
| $1 \rightarrow \mathbb{Z}_{2}$ | \rightarrow | G^{*} | \rightarrow | Q^{*} | $\rightarrow 1$ |
| $2 \mid$ | | \uparrow | | \uparrow | |
| $1 \rightarrow \mathbb{Z}_{2}$ | \rightarrow | G | \rightarrow | Q | $\rightarrow 1$ |

- $Z\left(G^{*}\right) \simeq Z(G)^{*}$ and G^{*} is the central extension of Q^{*} by $Z(G)^{*}$. The corresponding cocycle $f^{*}: Q^{*} \times Q^{*} \rightarrow A^{*}$ is defined coordinate-wise, i.e. $f^{*}=(f)$.
- The cocycle $h: \operatorname{PSL}(2, \mathbb{Z}) \times \operatorname{PSL}(2, \mathbb{Z}) \rightarrow \mathbb{Z}_{2}$ satisfies: $h(x, x)=1$ for all x of order 2 , and $h(y, z)=0$ otherwise.

Finitely generated groups elementarily equivalent

 to $S L(2, \mathbb{Z})$| $1 \rightarrow$ | \mathbb{Z}_{2} | \rightarrow | $S L(2, \mathbb{Z})^{*}$ | \rightarrow | $\operatorname{PSL}(2, \mathbb{Z})^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |$\rightarrow 1$

- $Z\left(G^{*}\right) \simeq Z(G)^{*}$ and G^{*} is the central extension of Q^{*} by $Z(G)^{*}$. The corresponding cocycle $f^{*}: Q^{*} \times Q^{*} \rightarrow A^{*}$ is defined coordinate-wise, i.e. $f^{*}=(f)$.
- The cocycle $h: \operatorname{PSL}(2, \mathbb{Z}) \times \operatorname{PSL}(2, \mathbb{Z}) \rightarrow \mathbb{Z}_{2}$ satisfies: $h(x, x)=1$ for all x of order 2 , and $h(y, z)=0$ otherwise.
- By the properties of ultrafilters, the same holds the cocycle $h^{*}=(h)$ which defines $S L(2, \mathbb{Z})^{*}$ as the extension of $\operatorname{PSL}(2, \mathbb{Z})^{*}$.

Finitely generated groups elementarily equivalent to $S L(2, \mathbb{Z})$

Theorem
A finitely generated group G is elementarily equivalent to $S L(2, \mathbb{Z})$ if and only if G is the central extension of a hyperbolic tower over $\operatorname{PSL}(2, \mathbb{Z})$ by \mathbb{Z}_{2} with the cocycle $f: \operatorname{PSL}(2, \mathbb{Z}) \times \operatorname{PSL}(2, \mathbb{Z}) \rightarrow \mathbb{Z}_{2}$, where $f(x, x)=1$ for all $x \in \operatorname{PSL}(2, \mathbb{Z})$ of order 2 and $f(x, y)=0$ otherwise.

Finitely generated groups elementarily equivalent to $S L(2, \mathbb{Z})$

Theorem
A finitely generated group G is elementarily equivalent to $S L(2, \mathbb{Z})$ if and only if G is the central extension of a hyperbolic tower over $\operatorname{PSL}(2, \mathbb{Z})$ by \mathbb{Z}_{2} with the cocycle $f: \operatorname{PSL}(2, \mathbb{Z}) \times \operatorname{PSL}(2, \mathbb{Z}) \rightarrow \mathbb{Z}_{2}$, where $f(x, x)=1$ for all $x \in \operatorname{PSL}(2, \mathbb{Z})$ of order 2 and $f(x, y)=0$ otherwise.

Conjecture
There are commutative rings R and S so that $R \equiv S$, but $S L(2, R) \not \equiv S L(2, S)$

Finitely generated groups elementarily equivalent to $\operatorname{PSL}(2, \mathbb{Z}), S L(2, \mathbb{Z}), G L(2, \mathbb{Z})$ and $P G L(2, \mathbb{Z})$

Baumslag-Solitar groups

Recall that

$$
B S(m, n)=\left\langle a, b \mid a^{-1} b^{m} a=b^{n}\right\rangle
$$

Baumslag-Solitar groups

(1) In $B S(1, n)$, one has $C(b)=B S(1, n)^{\prime}$ is a normal, abelian n-divisible subgroup (and contains $\left.B S(1, n)^{\prime}\right)$.
(2) It follows that if $G \equiv B S(1, n)$, then there is $A \triangleleft G$, $A \equiv B S(1, n)^{\prime}$ and $Q=G / A \equiv B S(1, n) / B S(1, n)^{\prime}$.

Baumslag-Solitar groups

(1) In $B S(1, n)$, one has $C(b)=B S(1, n)^{\prime}$ is a normal, abelian n-divisible subgroup (and contains $\left.B S(1, n)^{\prime}\right)$.
(2) It follows that if $G \equiv B S(1, n)$, then there is $A \triangleleft G$, $A \equiv B S(1, n)^{\prime}$ and $Q=G / A \equiv B S(1, n) / B S(1, n)^{\prime}$.
(3) G is f.g. iff Q is f.g. and A is f.g. as Q-module.

Baumslag-Solitar groups

(1) In $B S(1, n)$, one has $C(b)=B S(1, n)^{\prime}$ is a normal, abelian n-divisible subgroup (and contains $\left.B S(1, n)^{\prime}\right)$.
(2) It follows that if $G \equiv B S(1, n)$, then there is $A \triangleleft G$, $A \equiv B S(1, n)^{\prime}$ and $Q=G / A \equiv B S(1, n) / B S(1, n)^{\prime}$.
(3) G is f.g. iff Q is f.g. and A is f.g. as Q-module.
(9) Using Szmielew's theorem and the structure theorem for divisible abelian groups, we get: $Q \simeq \mathbb{Z}$ and $A \simeq \mathbb{Z}\left[\frac{1}{n}\right]$.

Baumslag-Solitar groups

(1) In $B S(1, n)$, one has $C(b)=B S(1, n)^{\prime}$ is a normal, abelian n-divisible subgroup (and contains $\left.B S(1, n)^{\prime}\right)$.
(2) It follows that if $G \equiv B S(1, n)$, then there is $A \triangleleft G$, $A \equiv B S(1, n)^{\prime}$ and $Q=G / A \equiv B S(1, n) / B S(1, n)^{\prime}$.
(3) G is f.g. iff Q is f.g. and A is f.g. as Q-module.
(9) Using Szmielew's theorem and the structure theorem for divisible abelian groups, we get: $Q \simeq \mathbb{Z}$ and $A \simeq \mathbb{Z}\left[\frac{1}{n}\right]$.
(5) It is now left to understand the action of Q on A. The corresponding groups are classified and one can exhibit a formula that distinguishes $B S(1, n)$ from any other such group.

Baumslag-Solitar groups

(1) In $B S(1, n)$, one has $C(b)=B S(1, n)^{\prime}$ is a normal, abelian n-divisible subgroup (and contains $\left.B S(1, n)^{\prime}\right)$.
(2) It follows that if $G \equiv B S(1, n)$, then there is $A \triangleleft G$, $A \equiv B S(1, n)^{\prime}$ and $Q=G / A \equiv B S(1, n) / B S(1, n)^{\prime}$.
(3) G is f.g. iff Q is f.g. and A is f.g. as Q-module.
(9) Using Szmielew's theorem and the structure theorem for divisible abelian groups, we get: $Q \simeq \mathbb{Z}$ and $A \simeq \mathbb{Z}\left[\frac{1}{n}\right]$.
(5) It is now left to understand the action of Q on A. The corresponding groups are classified and one can exhibit a formula that distinguishes $B S(1, n)$ from any other such group.

Theorem (Nies 2007, Casals-Ruiz and K. 2010)
Let G f.g. Then $G \equiv B S(1, n)$ iff $G \simeq B S(1, n)$.

Nilpotent groups: elementary equivalence

Free nilpotent group $U T_{3}(\mathbb{Z})$ of class 2 and rank 2:

$$
1 \rightarrow \mathbb{Z}=Z\left(U T_{3}(\mathbb{Z})\right) \rightarrow U T_{3}(\mathbb{Z}) \rightarrow \mathbb{Z}^{2} \rightarrow 1
$$

Nilpotent groups: elementary equivalence

Free nilpotent group $U T_{3}(\mathbb{Z})$ of class 2 and rank 2:

$$
1 \rightarrow \mathbb{Z}=Z\left(U T_{3}(\mathbb{Z})\right) \rightarrow U T_{3}(\mathbb{Z}) \rightarrow \mathbb{Z}^{2} \rightarrow 1
$$

Theorem (Oger)
Two f.g. nilpotent groups G and H are elementarily equivalent iff $G \times \mathbb{Z} \simeq H \times \mathbb{Z}$.

Groups elementarily equivalent to $U T_{3}(R)$

Theorem (Belegradek)
$G \equiv U T_{3}(R)$ iff $G \simeq U T_{3}\left(S, f_{1}, f_{2}\right)$ and $S \equiv R$.

Groups elementarily equivalent to $U T_{3}(R)$

Theorem (Belegradek)
$G \equiv U T_{3}(R)$ iff $G \simeq U T_{3}\left(S, f_{1}, f_{2}\right)$ and $S \equiv R$.
$U T_{3}(R)=\left\{\left(\begin{array}{lll}1 & \alpha & \gamma \\ 0 & 1 & \beta \\ 0 & 0 & 1\end{array}\right)\right\}$, with the multiplication:

$$
(\alpha, \beta, \gamma)\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)=\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime}, \gamma+\gamma^{\prime}+\alpha \beta^{\prime}\right)
$$

Let $f_{1}, f_{2}: R^{+} \times R^{+} \rightarrow R$ be two symmetric 2 -cocycles. New operation on $U T_{3}(R)$:
$(\alpha, \beta, \gamma) \circ\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)=\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime}, \gamma+\gamma^{\prime}+\alpha \beta^{\prime}+f_{1}\left(\alpha, \alpha^{\prime}\right)+f_{2}\left(\beta, \beta^{\prime}\right)\right)$.

Groups elementarily equivalent to $U T_{3}(R)$

Theorem (Belegradek)
$G \equiv U T_{3}(R)$ iff $G \simeq U T_{3}\left(S, f_{1}, f_{2}\right)$ and $S \equiv R$.
$U T_{3}(R)=\left\{\left(\begin{array}{lll}1 & \alpha & \gamma \\ 0 & 1 & \beta \\ 0 & 0 & 1\end{array}\right)\right\}$, with the multiplication:

$$
(\alpha, \beta, \gamma)\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)=\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime}, \gamma+\gamma^{\prime}+\alpha \beta^{\prime}\right)
$$

Let $f_{1}, f_{2}: R^{+} \times R^{+} \rightarrow R$ be two symmetric 2 -cocycles. New operation on $U T_{3}(R)$:
$(\alpha, \beta, \gamma) \circ\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)=\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime}, \gamma+\gamma^{\prime}+\alpha \beta^{\prime}+f_{1}\left(\alpha, \alpha^{\prime}\right)+f_{2}\left(\beta, \beta^{\prime}\right)\right)$.

$$
1 \rightarrow Z \rightarrow U T_{3}(R) \rightarrow U T_{3} / Z \rightarrow 1
$$

The ring R inside $U T_{3}(R)$

- As a set $Z\left(U T_{3}(R)\right)=R$.

The ring R inside $U T_{3}(R)$

- As a set $Z\left(U T_{3}(R)\right)=R$.
- If $c_{1}, c_{2} \in Z\left(U T_{3}(R)\right)$, then we can "interpret" addition in R as: " $c_{1}+c_{2}=c_{1} \cdot c_{2}$ ".

The ring R inside $U T_{3}(R)$

- As a set $Z\left(U T_{3}(R)\right)=R$.
- If $c_{1}, c_{2} \in Z\left(U T_{3}(R)\right)$, then we can "interpret" addition in R as: " $c_{1}+c_{2}=c_{1} \cdot c_{2}$ ".
- Furthermore, we can "interpret" multiplication in R as:
$z_{1} \times z_{2}=\left[x_{1}, x_{2}\right]$, where $\left[x_{1}, a\right]=z_{1},\left[x_{2}, b\right]=z_{2}$.

The ring R inside $U T_{3}(R)$

- As a set $Z\left(U T_{3}(R)\right)=R$.
- If $c_{1}, c_{2} \in Z\left(U T_{3}(R)\right)$, then we can "interpret" addition in R as: " $c_{1}+c_{2}=c_{1} \cdot c_{2}$ ".
- Furthermore, we can "interpret" multiplication in R as:
$z_{1} \times z_{2}=\left[x_{1}, x_{2}\right]$, where $\left[x_{1}, a\right]=z_{1},\left[x_{2}, b\right]=z_{2}$.
- 0_{R} is 1 and 1_{R} is $[a, b]$.

The ring R inside $U T_{3}(R)$

- As a set $Z\left(U T_{3}(R)\right)=R$.
- If $c_{1}, c_{2} \in Z\left(U T_{3}(R)\right)$, then we can "interpret" addition in R as: " $c_{1}+c_{2}=c_{1} \cdot c_{2}$ ".
- Furthermore, we can "interpret" multiplication in R as: $z_{1} \times z_{2}=\left[x_{1}, x_{2}\right]$, where $\left[x_{1}, a\right]=z_{1},\left[x_{2}, b\right]=z_{2}$.
- 0_{R} is 1 and 1_{R} is $[a, b]$.

Theorem (Malcev)
R is interpretable in $U T_{3}(R)$. It follows that the elementary theory of $U T_{3}(\mathbb{Z})$ (=free 2-nilpotent 2-generated) is undecidable.

The ring R inside $U T_{3}(R)$

- As a set $Z\left(U T_{3}(R)\right)=R$.
- If $c_{1}, c_{2} \in Z\left(U T_{3}(R)\right)$, then we can "interpret" addition in R as: " $c_{1}+c_{2}=c_{1} \cdot c_{2}$ ".
- Furthermore, we can "interpret" multiplication in R as: $z_{1} \times z_{2}=\left[x_{1}, x_{2}\right]$, where $\left[x_{1}, a\right]=z_{1},\left[x_{2}, b\right]=z_{2}$.
- 0_{R} is 1 and 1_{R} is $[a, b]$.

Theorem (Malcev)
R is interpretable in $U T_{3}(R)$. It follows that the elementary theory of $U T_{3}(\mathbb{Z})$ (=free 2-nilpotent 2-generated) is undecidable.

$$
\begin{array}{ccc}
1 \rightarrow R \rightarrow & U T_{3}(R) & \rightarrow R^{2} \rightarrow 1 \\
1 \rightarrow S \rightarrow & G & \rightarrow S^{2} \rightarrow 1 \\
1 \rightarrow R^{*} \rightarrow & U T_{3}(R)^{*} & \rightarrow R^{2^{*}} \rightarrow 1
\end{array}
$$

Lie ring/algebra of a nilpotent group

Let G be t.f. nilpotent. Define $\operatorname{Lie}(G)$ as follows:

- $\operatorname{Lie}(G)=\oplus_{i=1}^{\infty} \Gamma_{i} / \Gamma_{i+1}$, as an abelian group;
- Let $x=\sum_{i=1}^{\infty} x_{i} \Gamma_{i+1}$ and $y=\sum_{i=1}^{\infty} y_{i} \Gamma_{i+1}$, where $x_{i}, y_{i} \in \Gamma_{i}$ be elements of $\operatorname{Lie}(G)$. Define a product \circ on $\operatorname{Lie}(G)$ by

$$
x \circ y=\sum_{k=2}^{\infty} \sum_{i+j=2}^{k}\left[x_{i}, y_{j}\right] \Gamma_{i+j+1}
$$

Since Γ_{i} are definable in G, understanding groups \equiv to G is closely
related to understanding rings \equiv to Lie(G)

Lie ring/algebra of a nilpotent group

Let G be t.f. nilpotent. Define $\operatorname{Lie}(G)$ as follows:

- $\operatorname{Lie}(G)=\oplus_{i=1}^{\infty} \Gamma_{i} / \Gamma_{i+1}$, as an abelian group;
- Let $x=\sum_{i=1}^{\infty} x_{i} \Gamma_{i+1}$ and $y=\sum_{i=1}^{\infty} y_{i} \Gamma_{i+1}$, where $x_{i}, y_{i} \in \Gamma_{i}$ be elements of $\operatorname{Lie}(G)$. Define a product \circ on $\operatorname{Lie}(G)$ by

$$
x \circ y=\sum_{k=2}^{\infty} \sum_{i+j=2}^{k}\left[x_{i}, y_{j}\right] \Gamma_{i+j+1}
$$

Since Γ_{i} are definable in G, understanding groups \equiv to G is closely related to understanding rings \equiv to $\operatorname{Lie}(G)$.

R-groups

Example

- For a free nilpotent group, $\operatorname{Lie}(G)$ is a free nilpotent Lie ring.
- For a nilpotent pc group, $\operatorname{Lie}(G)$ is a pc nilpotent Lie algebra.
- Consider R-algebra and "go back" to the group.

R-groups

Example

- For a free nilpotent group, $\operatorname{Lie}(G)$ is a free nilpotent Lie ring.
- For a nilpotent pc group, $\operatorname{Lie}(G)$ is a pc nilpotent Lie algebra.
- Consider R-algebra and "go back" to the group.

If we are to understand groups \equiv to an R-group G, we should understand rings \equiv to the Lie R-algebra $\operatorname{Lie}(G)$.

Nilpotent groups and R-groups

Let R be an associative domain. The ring R gives rise to the category of R-groups. Enrich the language \mathcal{L} with new unary operations $f_{r}(x)$, one for any $r \in R$. For $g \in G$ and $\alpha \in R$ denote $f_{\alpha}(g)=g^{\alpha}$.
Definition
An structure G of the language $\mathcal{L}(R)$ is an R-group if:

- G is a group;
- $g^{0}=1, g^{\alpha+\beta}=g^{\alpha} g^{\beta}, g^{\alpha \beta}=g^{\alpha \beta}$.

As the class of R-groups is a variety, so one has R-subgroups, R-homomorphisms, free R-groups, nilpotent R-groups etc.
Example
R-modules are R-groups.

Hall R-groups

P. Hall introduced a subclass or R-groups, so called Hall R-groups.

Definition
Let R be a binomial ring. A nilpotent group G of a class m is called a Hall R-group if for all $x, y, x_{1}, \ldots, x_{n} \in G$ and any $\lambda, \mu \in R$ one has:

- G is a nilpotent R-group of class m;
- $\left(y^{-1} x y\right)^{\lambda}=\left(y^{-1} x y\right)^{\lambda}$;
- $x_{1}^{\lambda} \cdots x_{n}^{\lambda}=\left(x_{1} \cdots x_{n}\right)^{\lambda} \tau_{2}(x)^{C_{2}^{\lambda}} \cdots \tau_{m}(x)^{C_{m}^{\lambda}}$, where $\tau_{i}(x)$ is the i-th Petrescu word defined in the free group $F(x)$ by

$$
x_{1}^{i} \cdots x_{n}^{i}=\tau_{1}(x)^{C_{1}^{\lambda}} \tau_{2}(x)^{C_{2}^{\lambda}} \cdots \tau_{i}(x)^{C_{i}^{\lambda}}
$$

Hall R-groups

P. Hall introduced a subclass or R-groups, so called Hall R-groups.

Definition
Let R be a binomial ring. A nilpotent group G of a class m is called a Hall R-group if for all $x, y, x_{1}, \ldots, x_{n} \in G$ and any $\lambda, \mu \in R$ one has:

- G is a nilpotent R-group of class m;
- $\left(y^{-1} x y\right)^{\lambda}=\left(y^{-1} x y\right)^{\lambda}$;
- $x_{1}^{\lambda} \cdots x_{n}^{\lambda}=\left(x_{1} \cdots x_{n}\right)^{\lambda} \tau_{2}(x)^{C_{2}^{\lambda}} \cdots \tau_{m}(x)^{C_{m}^{\lambda}}$, where $\tau_{i}(x)$ is the i-th Petrescu word defined in the free group $F(x)$ by

$$
x_{1}^{i} \cdots x_{n}^{i}=\tau_{1}(x)^{C_{1}^{\lambda}} \tau_{2}(x)^{C_{2}^{\lambda}} \cdots \tau_{i}(x)^{C_{i}^{\lambda}}
$$

Proposition (Hall)
Let R be a binomial ring. Then the unitriangular group $U T_{n}(R)$ and, therefore, all its subgroups are Hall R-groups.

Idea of Miasnikov (late 1980's)

(1) With an R-algebra A, associate a nice bilinear map $f_{A}: A / A n n(A) \times A / A n n(A) \rightarrow A^{2}$.
(2) A ring $P\left(f_{A}\right) \supseteq R$, and the $P\left(f_{A}\right)$-modules A^{2} and $A / A n n(A)$ are interpretable in A in the language of rings.

Algebras elementarily equivalet to well-structured algebras

Let A be well-structured and $\operatorname{Ann}(A)=A^{2}$. Let B be a ring \equiv to A.

$$
\begin{array}{lll}
1 \rightarrow A^{2} & \rightarrow A \rightarrow & A / A^{2} \rightarrow 1 \\
1 \rightarrow B^{2} & \rightarrow B \rightarrow & B / B^{2} \rightarrow 1 \\
1 \rightarrow A^{2^{*}} & \rightarrow A^{*} \rightarrow & A / A^{2^{*}} \rightarrow 1
\end{array}
$$

Well-structured algebras

Definition

A is called well-structured if

- $R=P\left(f_{A}\right)$ and $\operatorname{Ann}(A)<A^{2}$;
- the modules $A^{2}, A / A n n(A), A n n(A), A / A^{2}$ and $A^{2} / A n n(A)$ are free; in this case, the algebra A, as an R-module, admits the following decomposition

$$
A \simeq A / A^{2} \oplus A^{2} / A n n(A) \oplus A n n(A)
$$

- Let $U=\left\{u_{1}, \ldots, u_{k}\right\}, V=\left\{v_{1}, \ldots, v_{l}\right\}$ and
$W=\left\{w_{1}, \ldots, w_{m}\right\}$ be basis of the free modules A / A^{2},
$A^{2} / \operatorname{Ann}(A)$ and $\operatorname{Ann}(A)$, respectively. Then the structural constants of A in the basis $U \cup V \cup W$ are integer. In other words,

$$
x y=\sum_{s=1}^{k} \alpha_{x y s} u_{s}+\sum_{s=1}^{l} \beta_{x y s} v_{s}+\sum_{s=1}^{m} \gamma_{x y s} w_{s}
$$

where $x, y \in U \cup V \cup W$ and $\alpha_{x y s}, \beta_{x y s}, \gamma_{x y s} \in \mathbb{Z}$.

Characterisation theorem for well-structured algebras

Theorem (Casals-Ruiz, Fernandez-Alcober, K., Remeslennikov) Let A be a well structured R-algebra and B be a ring. Then

$$
B \equiv A \text { if and only if } B \simeq Q A(S, \mathfrak{s})
$$

for some ring $S, S \equiv R$ and some symmetric 2-cocycle $\mathfrak{s} \in S^{2}\left(Q A / Q A^{2}, A n n(Q A)\right)$.

Abelian deformations

Definition

Let A be a well-structured $P\left(f_{A}\right)$-algebra. Define the ring $Q A=Q A(S, \mathfrak{s})$, called abelian deformation of A, as follows.

- Let S be a commutative unital ring of characteristic zero. Let K, L, and M be free S-modules of ranks $\operatorname{rank}\left(A / A^{2}\right)$, $\operatorname{rank}\left(A^{2} / \operatorname{Ann}(A)\right)$ and $\operatorname{rank}(A n n(A))$, respectively.
- The ring $Q A$, as an abelian group, is defined as an abelian extension of M by $K \oplus L$ via a symmetric 2 -cocycle: let $x_{1}, y_{1} \in K, x_{2}, y_{2} \in L, x_{3}, y_{3} \in M$ and $\mathfrak{s} \in S^{2}(K, M)$, set $\left(x_{1}, x_{2}, x_{3}\right)+\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}+\mathfrak{s}\left(x_{1}, y_{1}\right)\right)$.
- The multiplication in $Q A$ is defined on the elements of the basis of K, L and M using the structural constants of A and extended by linearity to the ring $Q A$.

Lie algebras of some groups

Theorem
Let R be an integral domain of characteristic zero. And let G be one of the following groups:

- free nilpotent R-group;
- UT (n, R);
- directly indecomposable partially commutative nilpotent R-group.
Then Lie(G) is well-structured.

Characterisation theorem for groups

Theorem (Casals-Ruiz, Fernandez-Alcober, K., Remeslennikov) Let G and R be as above and let H be a group, $H \equiv G$. Then H is $Q G(S)$ over some ring S such that $S \equiv R$ as rings.

