GAGTA-6 Conference

On hyperbolicity of the free splitting and free factor complexes

Ilya Kapovich
University of Illinois
at Urbana-Champaign

Based on joint work with Kasra Rafi
arXiv:1206.3626

July 31, 2012; Düsseldorff

Dr. Gillian Taylor: "Don't tell me, you're from outer space." Captain Kirk: "No, I'm from lowa. I only work in outer space."

The 1986 movie Star Trek IV: The Voyage Home
"Outer space is no place for a person of breeding." Lady Violet Bonham Carter
"Interestingly, according to modern astronomers, space is finite. This is
a very comforting thought - particularly for people who cannot remember where they left things."

Woody Allen
"Space is almost infinite. As a matter of fact, we think it is infinite." Dan Quale

Plan

- Curve complex for surfaces
(2) Free splitting and free factor complexes for F_{N}
(3) Statement of the main result
(4) Bowditch criterion of hyperbolicity and its implications
(5) Free bases graph
(6) Sketch of the proof of the main result

O Open problems (time permitting)
(1) Curve complex for surfaces
(2) Free splitting and free factor complexes for F_{N}
(3) Statement of the main result

4 Bowditch criterion of hyperbolicity and its implications
(6) Free bases graph
(6) Sketch of the proof of the main result
(Open problems (time permitting)
(1) Curve complex for surfaces
(2) Free splitting and free factor complexes for F_{N}
(3) Statement of the main result

4 Bowditch criterion of hyperbolicity and its implications
(5) Free bases graph
(6) Sketch of the proof of the main result

O Open problems (time permitting)
(1) Curve complex for surfaces
(2) Free splitting and free factor complexes for F_{N}
(3) Statement of the main result
(ㄱ) Bowditch criterion of hyperbolicity and its implications
(5) Free bases graph
(6) Sketch of the proof of the main result
(Open problems (time permitting)
(1) Curve complex for surfaces
(2) Free splitting and free factor complexes for F_{N}
(3) Statement of the main result
(9) Bowditch criterion of hyperbolicity and its implications
© Free bases graph
© Sketch of the proof of the main result

- Open problems (time permitting)
(1) Curve complex for surfaces
(2) Free splitting and free factor complexes for F_{N}
(3) Statement of the main result
(9) Bowditch criterion of hyperbolicity and its implications
(0) Free bases graph
© Sketch of the proof of the main result
- Open problems (time permitting)
(1) Curve complex for surfaces
(2) Free splitting and free factor complexes for F_{N}
(0) Statement of the main result
(9) Bowditch criterion of hyperbolicity and its implications
© Free bases graph
(0) Sketch of the proof of the main result

O Open problems (time permitting)
(1) Curve complex for surfaces
(2) Free splitting and free factor complexes for F_{N}
(0) Statement of the main result
(9) Bowditch criterion of hyperbolicity and its implications
(Free bases graph
(0) Sketch of the proof of the main result
© Open problems (time permitting)

Curve complex for surfaces.

Let S be a closed surface of negative Euler char. The curve complex $\mathcal{C}(S)$, introduced by Harvey in 1970s, has the vertex set consisting of free homotopy classes $[\alpha]$ of essential simple closed curves on S.

Two distinct vertices $[\alpha],[\beta]$ are joined by an edge if there exist disjoint representatives α, β of $[\alpha],[\beta]$. Higher-dimensional simplices are defined similarly.

The mapping class group $\operatorname{Mod}(S)$ acts on $\mathcal{C}(S)$ by simplicial automorphisms.

Curve complex for surfaces.

Let S be a closed surface of negative Euler char. The curve complex $\mathcal{C}(S)$, introduced by Harvey in 1970s, has the vertex set consisting of free homotopy classes $[\alpha]$ of essential simple closed curves on S.

Two distinct vertices $[\alpha],[\beta]$ are joined by an edge if there exist disjoint representatives α, β of $[\alpha],[\beta]$. Higher-dimensional simplices are defined similarly.

The mapping class group $\operatorname{Mod}(S)$ acts on $\mathcal{C}(S)$ by simplicial automorphisms.

Curve complex for surfaces.

Let S be a closed surface of negative Euler char. The curve complex $\mathcal{C}(S)$, introduced by Harvey in 1970s, has the vertex set consisting of free homotopy classes $[\alpha]$ of essential simple closed curves on S.

Two distinct vertices $[\alpha],[\beta]$ are joined by an edge if there exist disjoint representatives α, β of $[\alpha],[\beta]$. Higher-dimensional simplices are defined similarly.

The mapping class group $\operatorname{Mod}(S)$ acts on $\mathcal{C}(S)$ by simplicial automorphisms.

Curve complex for surfaces.

Let S be a closed surface of negative Euler char. The curve complex $\mathcal{C}(S)$, introduced by Harvey in 1970s, has the vertex set consisting of free homotopy classes $[\alpha]$ of essential simple closed curves on S.

Two distinct vertices $[\alpha],[\beta]$ are joined by an edge if there exist disjoint representatives α, β of $[\alpha],[\beta]$. Higher-dimensional simplices are defined similarly.

The mapping class group $\operatorname{Mod}(S)$ acts on $\mathcal{C}(S)$ by simplicial automorphisms.

Curve complex for surfaces

Facts:

(1) $\mathcal{C}(S)$ is connected and $\operatorname{dim} C(S)<\infty$
(2) $\mathcal{C}(S)$ is locally infinite
(3) $\mathcal{C}(S)$ has infinite diameter
(4) [Masur-Minsky, late 1990s]) C(S) is Gromov-hyperbolic.

The curve complex $\mathcal{C}(S)$ has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_{N} ? Any "nice" complexes with natural Out $\left(F_{N}\right)$-action?

Several analogs of $\mathcal{C}(S)$ for F_{N} were suggested in recent years.

Curve complex for surfaces

Facts:

(1) $\mathcal{C}(S)$ is connected and $\operatorname{dim} \mathcal{C}(S)<\infty$
(2) $\mathcal{C}(S)$ is locally infinite
(3) $\mathcal{C}(S)$ has infinite diameter
(4) [Masur-Minsky, late 1990s]) $\mathcal{C}(S)$ is Gromov-hyperbolic.

The curve complex $\mathcal{C}(S)$ has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_{N} ? Any "nice" complexes with natural Out $\left(F_{N}\right)$-action?

Several analogs of $\mathcal{C}(S)$ for F_{N} were suggested in recent years.

Curve complex for surfaces

Facts:

(1) $\mathcal{C}(S)$ is connected and $\operatorname{dim} \mathcal{C}(S)<\infty$
(2) $\mathcal{C}(S)$ is locally infinite
(3) $\mathcal{C}(S)$ has infinite diameter
(4) [Masur-Minsky, late 1990s]) C(S) is Gromov-hyperbolic.

The curve complex $\mathcal{C}(S)$ has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_{N} ? Any "nice" complexes with natural Out $\left(F_{N}\right)$-action?

Several analogs of $\mathcal{C}(S)$ for F_{N} were suggested in recent years.

Curve complex for surfaces

Facts:

(1) $\mathcal{C}(S)$ is connected and $\operatorname{dim} \mathcal{C}(S)<\infty$
(2) $\mathcal{C}(S)$ is locally infinite

(3) $\mathcal{C}(S)$ has infinite diameter

(4) [Masur-Minsky, late 1990s]) $\mathcal{C}(S)$ is Gromov-hyperbolic.

The curve complex $\mathcal{C}(S)$ has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_{N} ? Any "nice" complexes with natural Out $\left(F_{N}\right)$-action?

Several analogs of $\mathcal{C}(S)$ for F_{N} were suggested in recent years.

Curve complex for surfaces

Facts:

(1) $\mathcal{C}(S)$ is connected and $\operatorname{dim} \mathcal{C}(S)<\infty$
(2) $\mathcal{C}(S)$ is locally infinite
(3) $\mathcal{C}(S)$ has infinite diameter
(4) [Masur-Minsky, late 1990s]) C(S) is Gromov-hyperbolic.

The curve complex $\mathcal{C}(S)$ has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_{N} ? Any "nice" complexes with natural Out $\left(F_{N}\right)$-action?

Several analogs of $\mathcal{C}(S)$ for F_{N} were suggested in recent years.

Curve complex for surfaces

Facts:

(1) $\mathcal{C}(S)$ is connected and $\operatorname{dim} \mathcal{C}(S)<\infty$
(2) $\mathcal{C}(S)$ is locally infinite
(3) $\mathcal{C}(S)$ has infinite diameter
(4) [Masur-Minsky, late 1990s]) $\mathcal{C}(S)$ is Gromov-hyperbolic.

The curve complex $\mathcal{C}(S)$ has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_{N} ? Any "nice" complexes with natural Out $\left(F_{N}\right)$-action?

Several analogs of $\mathcal{C}(S)$ for F_{N} were suggested in recent years.

Curve complex for surfaces

Facts:

(1) $\mathcal{C}(S)$ is connected and $\operatorname{dim} \mathcal{C}(S)<\infty$
(2) $\mathcal{C}(S)$ is locally infinite
(3) $\mathcal{C}(S)$ has infinite diameter
(4) [Masur-Minsky, late 1990s]) $\mathcal{C}(S)$ is Gromov-hyperbolic.

The curve complex $\mathcal{C}(S)$ has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_{N} ? Any "nice" complexes with natural Out $\left(F_{N}\right)$-action?

Several analogs of $\mathcal{C}(S)$ for F_{N} were suggested in recent years.

Curve complex for surfaces

Facts:

(1) $\mathcal{C}(S)$ is connected and $\operatorname{dim} \mathcal{C}(S)<\infty$
(2) $\mathcal{C}(S)$ is locally infinite
(3) $\mathcal{C}(S)$ has infinite diameter
(4) [Masur-Minsky, late 1990s]) $\mathcal{C}(S)$ is Gromov-hyperbolic.

The curve complex $\mathcal{C}(S)$ has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_{N} ? Any "nice" complexes with natural Out $\left(F_{N}\right)$-action?

Several analogs of $\mathcal{C}(S)$ for F_{N} were suggested in recent years.

Curve complex for surfaces

Facts:

(1) $\mathcal{C}(S)$ is connected and $\operatorname{dim} \mathcal{C}(S)<\infty$
(2) $\mathcal{C}(S)$ is locally infinite
(3) $\mathcal{C}(S)$ has infinite diameter
(4) [Masur-Minsky, late 1990s]) $\mathcal{C}(S)$ is Gromov-hyperbolic.

The curve complex $\mathcal{C}(S)$ has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_{N} ? Any "nice" complexes with natural Out $\left(F_{N}\right)$-action?

Several analogs of $\mathcal{C}(S)$ for F_{N} were suggested in recent years.

Curve complex for surfaces

Facts:

(1) $\mathcal{C}(S)$ is connected and $\operatorname{dim} \mathcal{C}(S)<\infty$
(2) $\mathcal{C}(S)$ is locally infinite
(3) $\mathcal{C}(S)$ has infinite diameter
(4) [Masur-Minsky, late 1990s]) $\mathcal{C}(S)$ is Gromov-hyperbolic.

The curve complex $\mathcal{C}(S)$ has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_{N} ? Any "nice" complexes with natural Out $\left(F_{N}\right)$-action?

Several analogs of $\mathcal{C}(S)$ for F_{N} were suggested in recent years.

Free splitting and free factor complexes

Defn. The free splitting complex $F S_{N}$ has as its vertex set the set of "elementary free splittings" $F_{N}=\pi_{1}(\mathbb{A})$ where \mathbb{A} is a (minimal nontrivial) graph of groups with a single edge (possibly a loop-edge) and the trivial edge group. Two such splittings are considered equal if their Bass-Serre trees are F_{N}-equivariantly isomorphic.

$$
\text { E.g. } F_{N}=A * B \text { and } F_{N}=g A g^{-1} * g B g^{-1} \text { are equal in } F S_{N} \text {. }
$$

Adjacency in $F S_{N}$ corresponds to two splittings $F_{N}=\pi_{1}\left(\mathbb{A}_{1}\right)$ and $F_{N}=\pi_{1}\left(\mathbb{A}_{2}\right)$ admitting a common refinement, i.e. a splitting $F_{N}=\pi_{1}(\mathbb{B})$ where \mathbb{B} has TWO edges e_{1}, e_{2}, both with trivial edge groups, and where for $i=1,2$ collapsing the edge e_{i} produces the splitting $F_{N}=\pi_{1}\left(\mathbb{A}_{i}\right)$.
E.g. if $F_{N}=A * B * C$ (with $\left.A, B, C \neq\{1\}\right)$ then the splittings $F_{N}=A *(B * C)$ and $F_{N}=(A * B) * C$ are adjacent vertices in $F S_{N}$.

Higher-dimensional simplices are defined similarly.

Free splitting and free factor complexes

Defn. The free splitting complex $F S_{N}$ has as its vertex set the set of "elementary free splittings" $F_{N}=\pi_{1}(\mathbb{A})$ where \mathbb{A} is a (minimal nontrivial) graph of groups with a single edge (possibly a loop-edge) and the trivial edge group.

Higher-dimensional simplices are defined similarly.

Free splitting and free factor complexes

Defn. The free splitting complex $F S_{N}$ has as its vertex set the set of "elementary free splittings" $F_{N}=\pi_{1}(\mathbb{A})$ where \mathbb{A} is a (minimal nontrivial) graph of groups with a single edge (possibly a loop-edge) and the trivial edge group. Two such splittings are considered equal if their Bass-Serre trees are F_{N}-equivariantly isomorphic.

[^0]
Free splitting and free factor complexes

Defn. The free splitting complex $F S_{N}$ has as its vertex set the set of "elementary free splittings" $F_{N}=\pi_{1}(\mathbb{A})$ where \mathbb{A} is a (minimal nontrivial) graph of groups with a single edge (possibly a loop-edge) and the trivial edge group. Two such splittings are considered equal if their Bass-Serre trees are F_{N}-equivariantly isomorphic.
E.g. $F_{N}=A * B$ and $F_{N}=g A g^{-1} * g B g^{-1}$ are equal in $F S_{N}$.

Higher-dimensional simplices are defined similarly.

Free splitting and free factor complexes

Defn. The free splitting complex $F S_{N}$ has as its vertex set the set of "elementary free splittings" $F_{N}=\pi_{1}(\mathbb{A})$ where \mathbb{A} is a (minimal nontrivial) graph of groups with a single edge (possibly a loop-edge) and the trivial edge group. Two such splittings are considered equal if their Bass-Serre trees are F_{N}-equivariantly isomorphic.
E.g. $F_{N}=A * B$ and $F_{N}=g A g^{-1} * g B g^{-1}$ are equal in $F S_{N}$.

Adjacency in $F S_{N}$ corresponds to two splittings $F_{N}=\pi_{1}\left(\mathbb{A}_{1}\right)$ and $F_{N}=\pi_{1}\left(\mathbb{A}_{2}\right)$ admitting a common refinement, i.e. a splitting $F_{N}=\pi_{1}(\mathbb{B})$ where \mathbb{B} has TWO edges e_{1}, e_{2}, both with trivial edge groups, and where for $i=1,2$ collapsing the edge e_{i} produces the splitting $F_{N}=\pi_{1}\left(\mathbb{A}_{i}\right)$.

Free splitting and free factor complexes

Defn. The free splitting complex $F S_{N}$ has as its vertex set the set of "elementary free splittings" $F_{N}=\pi_{1}(\mathbb{A})$ where \mathbb{A} is a (minimal nontrivial) graph of groups with a single edge (possibly a loop-edge) and the trivial edge group. Two such splittings are considered equal if their Bass-Serre trees are F_{N}-equivariantly isomorphic.
E.g. $F_{N}=A * B$ and $F_{N}=g A g^{-1} * g B g^{-1}$ are equal in $F S_{N}$.

Adjacency in $F S_{N}$ corresponds to two splittings $F_{N}=\pi_{1}\left(\mathbb{A}_{1}\right)$ and $F_{N}=\pi_{1}\left(\mathbb{A}_{2}\right)$ admitting a common refinement, i.e. a splitting $F_{N}=\pi_{1}(\mathbb{B})$ where \mathbb{B} has TWO edges e_{1}, e_{2}, both with trivial edge groups, and where for $i=1,2$ collapsing the edge e_{i} produces the splitting $F_{N}=\pi_{1}\left(\mathbb{A}_{i}\right)$.
E.g. if $F_{N}=A * B * C$ (with $A, B, C \neq\{1\}$) then the splittings $F_{N}=A *(B * C)$ and $F_{N}=(A * B) * C$ are adjacent vertices in $F S_{N}$.

Free splitting and free factor complexes

Defn. The free splitting complex $F S_{N}$ has as its vertex set the set of "elementary free splittings" $F_{N}=\pi_{1}(\mathbb{A})$ where \mathbb{A} is a (minimal nontrivial) graph of groups with a single edge (possibly a loop-edge) and the trivial edge group. Two such splittings are considered equal if their Bass-Serre trees are F_{N}-equivariantly isomorphic.
E.g. $F_{N}=A * B$ and $F_{N}=g A g^{-1} * g B g^{-1}$ are equal in $F S_{N}$.

Adjacency in $F S_{N}$ corresponds to two splittings $F_{N}=\pi_{1}\left(\mathbb{A}_{1}\right)$ and $F_{N}=\pi_{1}\left(\mathbb{A}_{2}\right)$ admitting a common refinement, i.e. a splitting $F_{N}=\pi_{1}(\mathbb{B})$ where \mathbb{B} has TWO edges e_{1}, e_{2}, both with trivial edge groups, and where for $i=1,2$ collapsing the edge e_{i} produces the splitting $F_{N}=\pi_{1}\left(\mathbb{A}_{i}\right)$.
E.g. if $F_{N}=A * B * C$ (with $A, B, C \neq\{1\}$) then the splittings $F_{N}=A *(B * C)$ and $F_{N}=(A * B) * C$ are adjacent vertices in $F S_{N}$.

Higher-dimensional simplices are defined similarly.

Free splitting and free factor complexes

Defn. The free factor complex $F F_{N}$ has as its vertex set the set of conjugacy classes $[A]$ of proper free factors A of F_{N}.

Two distinct vertices $[A],[B]$ are adjacent in $F F_{N}$ if there exist representatives A of $[A]$ and B of $[B]$ such that $A \leq B$ or $B \leq A$.

Higher-dimensional simplices are defined similarly.

Free splitting and free factor complexes

Defn. The free factor complex $F F_{N}$ has as its vertex set the set of conjugacy classes $[A]$ of proper free factors A of F_{N}.

Two distinct vertices $[A],[B]$ are adjacent in $F F_{N}$ if there exist
representatives A of $[A]$ and B of $[B]$ such that $A \leq B$ or $B \leq A$.
Higher-dimensional simplices are defined similarly.

Free splitting and free factor complexes

Defn. The free factor complex $F F_{N}$ has as its vertex set the set of conjugacy classes $[A]$ of proper free factors A of F_{N}.

Two distinct vertices $[A],[B]$ are adjacent in $F F_{N}$ if there exist representatives A of $[A]$ and B of $[B]$ such that $A \leq B$ or $B \leq A$.

Higher-dimensional simplices are defined similarly.

Free splitting and free factor complexes

Defn. The free factor complex $F F_{N}$ has as its vertex set the set of conjugacy classes $[A]$ of proper free factors A of F_{N}.

Two distinct vertices $[A],[B]$ are adjacent in $F F_{N}$ if there exist representatives A of $[A]$ and B of $[B]$ such that $A \leq B$ or $B \leq A$.

Higher-dimensional simplices are defined similarly.

Free splitting and free factor complexes

Facts. Let $N \geq 3$. Then:
(1) Both $F S_{N}$ and $F F_{N}$ are connected, finite-dimensional and admit natural co-compact Out $\left(F_{N}\right)$-actions.
(2) Both $F S_{N}$ and $F F_{N}$ are locally infinite.
(3) Both $F S_{N}$ and $F F_{N}$ have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)
(4) If $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible (iwip) then ϕ acts on $F S_{N}$ and $F F_{N}$ with positive asymptotic translation length (Bestvina-Feighn '10)
(5) There is a canonical Out(F_{N})-equivariant coarsely Linschitz and coarsely surjective "multi-function" $\tau: F S_{N}^{(0)} \rightarrow F F_{N}^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A}. The image $\tau(\mathbb{A})$ of a vertex of $F S_{N}$ has diameter ≤ 2 in $F F_{N}$.

$$
\text { E.g. } \tau\left(F_{N}=A * B\right)=\{[A],[B]\} \text {. }
$$

Free splitting and free factor complexes

Facts. Let $N \geq 3$. Then:
(1) Both $F S_{N}$ and $F F_{N}$ are connected, finite-dimensional and admit natural co-compact Out $\left(F_{N}\right)$-actions.
(2) Both $F S_{N^{\prime}}$ and $F F_{N^{\prime}}$ are locally infinite.
(3) Both $F S_{N}$ and $F F_{N}$ have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)
(4) If $\phi \in$ Out $^{\prime}\left(F_{N}\right)$ is fully irreducible (iwip) then ϕ acts on $F S_{N}$ and $F F_{N}$ with positive asymptotic translation length (Bestvina-Feighn '10)
(5) There is a canonical $\operatorname{Out}\left(F_{N}\right)$-equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau: F S_{N I}^{(0)} \rightarrow F F_{N I}^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A}. The image $\tau(\mathbb{A})$ of a vertex of $F S_{N}$ has diameter ≤ 2 in $F F_{N}$.

$$
F a \cdot \tau\left(F_{\wedge^{\prime}}=A * B\right)=\{[A][B]\}
$$

Free splitting and free factor complexes

Facts. Let $N \geq 3$. Then:
(1) Both $F S_{N}$ and $F F_{N}$ are connected, finite-dimensional and admit natural co-compact $\operatorname{Out}\left(F_{N}\right)$-actions.
(2) Both $F S_{N}$ and $F F_{N}$ are locally infinite.
(3) Both $F S_{N}$ and $F F_{N}$ have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)
(4) If $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible (iwip) then ϕ acts on $F S_{N}$ and $F F_{N}$ with positive asymptotic translation length (Bestvina-Feighn '10)
(5) There is a canonical Out $\left(F_{N}\right)$-equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau: F S_{N}^{(0)} \rightarrow F F_{N}^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A}. The image $\tau(\mathbb{A})$ of a vertex of $F S_{N}$ has diameter ≤ 2 in $F F_{N}$. E.g. $\tau\left(F_{N}=A * B\right)=\{[A],[B]\}$

Free splitting and free factor complexes

Facts. Let $N \geq 3$. Then:
(1) Both $F S_{N}$ and $F F_{N}$ are connected, finite-dimensional and admit natural co-compact $\operatorname{Out}\left(F_{N}\right)$-actions.
(2) Both $F S_{N}$ and $F F_{N}$ are locally infinite.

\square

Free splitting and free factor complexes

Facts. Let $N \geq 3$. Then:
(1) Both $F S_{N}$ and $F F_{N}$ are connected, finite-dimensional and admit natural co-compact $\operatorname{Out}\left(F_{N}\right)$-actions.
(2) Both $F S_{N}$ and $F F_{N}$ are locally infinite.
(3) Both $F S_{N}$ and $F F_{N}$ have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)

Free splitting and free factor complexes

Facts. Let $N \geq 3$. Then:
(1) Both $F S_{N}$ and $F F_{N}$ are connected, finite-dimensional and admit natural co-compact $\operatorname{Out}\left(F_{N}\right)$-actions.
(2) Both $F S_{N}$ and $F F_{N}$ are locally infinite.
(3) Both $F S_{N}$ and $F F_{N}$ have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)
(4) If $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible (iwip) then ϕ acts on $F S_{N}$ and $F F_{N}$ with positive asymptotic translation length (Bestvina-Feighn '10)
(5) There is a canonical Out $\left(F_{N}\right)$-equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau: F S_{N}^{(0)} \rightarrow F F_{N}^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A}. The image $\tau(\mathbb{A})$ of a vertex of $F S_{N}$ has diameter
\square

Free splitting and free factor complexes

Facts. Let $N \geq 3$. Then:
(1) Both $F S_{N}$ and $F F_{N}$ are connected, finite-dimensional and admit natural co-compact $\operatorname{Out}\left(F_{N}\right)$-actions.
(2) Both $F S_{N}$ and $F F_{N}$ are locally infinite.
(3) Both $F S_{N}$ and $F F_{N}$ have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)
(4) If $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible (iwip) then ϕ acts on $F S_{N}$ and $F F_{N}$ with positive asymptotic translation length (Bestvina-Feighn '10)
(5) There is a canonical $\operatorname{Out}\left(F_{N}\right)$-equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau: F S_{N}^{(0)} \rightarrow F F_{N}^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A}.
E.g. $\tau\left(F_{N}=A * B\right)=\{[A],[B]\}$

Free splitting and free factor complexes

Facts. Let $N \geq 3$. Then:
(1) Both $F S_{N}$ and $F F_{N}$ are connected, finite-dimensional and admit natural co-compact $\operatorname{Out}\left(F_{N}\right)$-actions.
(2) Both $F S_{N}$ and $F F_{N}$ are locally infinite.
(3) Both $F S_{N}$ and $F F_{N}$ have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)
(4) If $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible (iwip) then ϕ acts on $F S_{N}$ and $F F_{N}$ with positive asymptotic translation length (Bestvina-Feighn '10)
(5) There is a canonical $\operatorname{Out}\left(F_{N}\right)$-equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau: F S_{N}^{(0)} \rightarrow F F_{N}^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A}. The image $\tau(\mathbb{A})$ of a vertex of $F S_{N}$ has diameter ≤ 2 in $F F_{N}$.
E.g. $\tau\left(F_{N}=A * B\right)=\{[A],[B]\}$

Free splitting and free factor complexes

Facts. Let $N \geq 3$. Then:
(1) Both $F S_{N}$ and $F F_{N}$ are connected, finite-dimensional and admit natural co-compact $\operatorname{Out}\left(F_{N}\right)$-actions.
(2) Both $F S_{N}$ and $F F_{N}$ are locally infinite.
(3) Both $F S_{N}$ and $F F_{N}$ have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)
(4) If $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible (iwip) then ϕ acts on $F S_{N}$ and $F F_{N}$ with positive asymptotic translation length (Bestvina-Feighn '10)
(5) There is a canonical $\operatorname{Out}\left(F_{N}\right)$-equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau: F S_{N}^{(0)} \rightarrow F F_{N}^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A}. The image $\tau(\mathbb{A})$ of a vertex of $F S_{N}$ has diameter ≤ 2 in $F F_{N}$.
E.g. $\tau\left(F_{N}=A * B\right)=\{[A],[B]\}$.

Free splitting and free factor complexes

Two big results proved last year:
Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308] For any $N \geq 3$ the free factor complex $F F_{N}$ is Gromov-hyperbolic.

Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994] For any $N \geq 3$ the free splitting complex $F S_{N}$ is Gromov-hyperbolic.

The proofs are rather different, although both are long and complicated. However, it appears that the Handel-Mosher proof admits significant simplification.

Free splitting and free factor complexes

Two big results proved last year:

> Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308] For any $N \geq 3$ the free factor complex $F F_{N}$ is Gromov-hyperbolic.

> Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994] For any $N \geq 3$ the free splitting complex $F S_{N}$ is Gromov-hyperbolic.

> The proofs are rather different, although both are long and complicated. However, it appears that the Handel-Mosher proof admits significant simplification.

Free splitting and free factor complexes

Two big results proved last year:
Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308]
For any $N \geq 3$ the free factor complex $F F_{N}$ is Gromov-hyperbolic.
Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994] For any $N \geq 3$ the free splitting complex $F S_{N}$ is Gromov-hyperbolic.

The proofs are rather different, although both are long and complicated. However, it appears that the Handel-Mosher proof admits significant simplification.

Free splitting and free factor complexes

Two big results proved last year:
Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308] For any $N \geq 3$ the free factor complex $F F_{N}$ is Gromov-hyperbolic.

> Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994] For any $N \geq 3$ the free splitting complex $F S_{N}$ is Gromov-hyperbolic.

> The proofs are rather different, although both are long and complicated. However, it appears that the Handel-Mosher proof admits significant simplification.

Free splitting and free factor complexes

Two big results proved last year:
Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308] For any $N \geq 3$ the free factor complex $F F_{N}$ is Gromov-hyperbolic.

Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994]

The proofs are rather different, although both are long and complicated. However, it appears that the Handel-Mosher proof admits significant simplification.

Free splitting and free factor complexes

Two big results proved last year:
Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308] For any $N \geq 3$ the free factor complex $F F_{N}$ is Gromov-hyperbolic.

Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994] For any $N \geq 3$ the free splitting complex $F S_{N}$ is Gromov-hyperbolic.

The proofs are rather different, although both are long and
complicated. However, it appears that the Handel-Mosher proof admits significant simplification.

Free splitting and free factor complexes

Two big results proved last year:
Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308] For any $N \geq 3$ the free factor complex $F F_{N}$ is Gromov-hyperbolic.

Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994] For any $N \geq 3$ the free splitting complex $F S_{N}$ is Gromov-hyperbolic.

The proofs are rather different, although both are long and complicated. However, it appears that the Handel-Mosher proof admits significant simplification.

Statement of the main result

In a new paper with Kasra Rafi (June 2012, arxiv:1206.3626) we derive Theorem 1 from the Handel-Mosher proof of Theorem 2. Specifically, we only use the fact that $F S_{N}$ is hyperbolic and the conclusion of one of the propositions in the Handel-Mosher paper.

Thus we obtain:
Theorem 3. Let $\Lambda \geq 3$. Then:
(1) The free factor complex $F F_{N}$ is Gromov-hyperbolic.
(2) There exists $C=C(N)$ such that for any vertices $x, y \in F S_{N}$ the path $\tau([x, y])$ is C-Hausdorff close to any geodesic $[\tau(x), \tau(y)]$ in $F F_{N}$.

Here $\tau: F S_{N} \rightarrow F F_{N}$ is the canonical "multi-function" described earlier.

Statement of the main result

In a new paper with Kasra Rafi (June 2012, arxiv:1206.3626) we derive Theorem 1 from the Handel-Mosher proof of Theorem 2. Specifically, we only use the fact that $F S_{N}$ is hyperbolic and the conclusion of one of the propositions in the Handel-Mosher paper.

Thus we obtain:
Theorem 3. Let $\Lambda \geq 3$. Then:
(1) The free factor complex $F F_{N}$ is Gromov-hyperbolic.
(2) There exists $C=C(N)$ such that for any vertices $x, y \in F S_{N}$ the path $\tau([x, y])$ is C-Hausdorff close to any geodesic $[\tau(x), \tau(y)]$ in $F F_{N}$.

Here $\tau: F S_{N} \rightarrow F F_{N}$ is the canonical "multi-function" described earlier.

Statement of the main result

In a new paper with Kasra Rafi (June 2012, arxiv:1206.3626) we derive Theorem 1 from the Handel-Mosher proof of Theorem 2. Specifically, we only use the fact that $F S_{N}$ is hyperbolic and the conclusion of one of the propositions in the Handel-Mosher paper.

Thus we obtain:

Here $\tau: F S_{N} \rightarrow F F_{N}$ is the canonical "multi-function" described earlier.

Statement of the main result

In a new paper with Kasra Rafi (June 2012, arxiv:1206.3626) we derive Theorem 1 from the Handel-Mosher proof of Theorem 2. Specifically, we only use the fact that $F S_{N}$ is hyperbolic and the conclusion of one of the propositions in the Handel-Mosher paper.

Thus we obtain:
Theorem 3. Let $N \geq 3$. Then:

Here $\tau: F S_{N} \rightarrow F F_{N}$ is the canonical "multi-function" described earlier.

Statement of the main result

In a new paper with Kasra Rafi (June 2012, arxiv:1206.3626) we derive Theorem 1 from the Handel-Mosher proof of Theorem 2. Specifically, we only use the fact that $F S_{N}$ is hyperbolic and the conclusion of one of the propositions in the Handel-Mosher paper.

Thus we obtain:
Theorem 3. Let $N \geq 3$. Then:
(1) The free factor complex $F F_{N}$ is Gromov-hyperbolic.

Here $\tau: F S_{N} \rightarrow F F_{N}$ is the canonical "multi-function" described earlier.

Statement of the main result

In a new paper with Kasra Rafi (June 2012, arxiv:1206.3626) we derive Theorem 1 from the Handel-Mosher proof of Theorem 2. Specifically, we only use the fact that $F S_{N}$ is hyperbolic and the conclusion of one of the propositions in the Handel-Mosher paper.

Thus we obtain:
Theorem 3. Let $N \geq 3$. Then:
(1) The free factor complex $F F_{N}$ is Gromov-hyperbolic.
(2) There exists $C=C(N)$ such that for any vertices $x, y \in F S_{N}$ the path $\tau([x, y])$ is C-Hausdorff close to any geodesic $[\tau(x), \tau(y)]$ in $F F_{N}$.

Here $\tau: F S_{N} \rightarrow F F_{N}$ is the canonical "multi-function" described earlier.

Statement of the main result

In a new paper with Kasra Rafi (June 2012, arxiv:1206.3626) we derive Theorem 1 from the Handel-Mosher proof of Theorem 2. Specifically, we only use the fact that $F S_{N}$ is hyperbolic and the conclusion of one of the propositions in the Handel-Mosher paper.

Thus we obtain:
Theorem 3. Let $N \geq 3$. Then:
(1) The free factor complex $F F_{N}$ is Gromov-hyperbolic.
(2) There exists $C=C(N)$ such that for any vertices $x, y \in F S_{N}$ the path $\tau([x, y])$ is C-Hausdorff close to any geodesic $[\tau(x), \tau(y)]$ in $F F_{N}$.

Here $\tau: F S_{N} \rightarrow F F_{N}$ is the canonical "multi-function" described earlier.

Statement of the main result

In a new paper with Kasra Rafi (June 2012, arxiv:1206.3626) we derive Theorem 1 from the Handel-Mosher proof of Theorem 2. Specifically, we only use the fact that $F S_{N}$ is hyperbolic and the conclusion of one of the propositions in the Handel-Mosher paper.

Thus we obtain:
Theorem 3. Let $N \geq 3$. Then:
(1) The free factor complex $F F_{N}$ is Gromov-hyperbolic.
(2) There exists $C=C(N)$ such that for any vertices $x, y \in F S_{N}$ the path $\tau([x, y])$ is C-Hausdorff close to any geodesic $[\tau(x), \tau(y)]$ in $F F_{N}$.

Here $\tau: F S_{N} \rightarrow F F_{N}$ is the canonical "multi-function" described earlier.

Bowditch's criterion of hyperbolicity and its consequences

Defn.[Thin structure] Let X be a connected graph with simplicial metric d_{X}. Let $\mathcal{G}=\left\{g_{x, y} \mid x, y \in V(X)\right\}$ be a family of edge-paths in X such that for any vertices x, y of $X \beta_{x, y}$ is a path from x to y in X. Let $\Phi: V(X) \times V(X) \times V(X) \rightarrow V(X)$ be a function such that for any
$a, b, c \in V(X)$,

$$
\Phi(a, b, c)=\Phi(b, c, a)=\Phi(c, a, b) .
$$

Assume, for constant B_{1} and B_{2} that \mathcal{G} and Φ have the following properties:

Bowditch's criterion of hyperbolicity and its consequences

Defn.[Thin structure] Let X be a connected graph with simplicial metric d_{x}. Let $\mathcal{G}=\left\{g_{x, y} \mid x, y \in V(X)\right\}$ be a family of edge-paths in X such that for any vertices x, y of $X \beta_{x, y}$ is a path from x to y in X.
Let $\Phi: V(X) \times V(X) \times V(X) \rightarrow V(X)$ be a function such that for any
$a, b, c \in V(X)$,

$$
\Phi(a, b, c)=\Phi(b, c, a)=\Phi(c, a, b)
$$

Assume, for constant B_{1} and B_{2} that \mathcal{G} and Φ have the following properties:

Bowditch's criterion of hyperbolicity and its consequences

Defn.[Thin structure] Let X be a connected graph with simplicial metric d_{X}. Let $\mathcal{G}=\left\{g_{x, y} \mid x, y \in V(X)\right\}$ be a family of edge-paths in X such that for any vertices x, y of $X \beta_{X, y}$ is a path from x to y in X.
Let $\Phi: V(X) \times V(X) \times V(X) \rightarrow V(X)$ be a function such that for any $a, b, c \in V(X)$,
$\Phi(a, b, c)=\Phi(b, c, a)=\Phi(c, a, b)$.
Assume, for constant B_{1} and B_{2} that \bar{G} and Φ have the following properties:

Bowditch's criterion of hyperbolicity and its consequences

Defn.[Thin structure] Let X be a connected graph with simplicial metric d_{X}. Let $\mathcal{G}=\left\{g_{x, y} \mid x, y \in V(X)\right\}$ be a family of edge-paths in X such that for any vertices x, y of $X \beta_{X, y}$ is a path from x to y in X.
Let $\Phi: V(X) \times V(X) \times V(X) \rightarrow V(X)$ be a function such that for any $a, b, c \in V(X)$,

$$
\Phi(a, b, c)=\Phi(b, c, a)=\Phi(c, a, b)
$$

Assume, for constant B_{1} and B_{2} that \mathcal{G} and Φ have the following properties:

Bowditch's criterion of hyperbolicity and its consequences

Defn.[Thin structure] Let X be a connected graph with simplicial metric d_{X}. Let $\mathcal{G}=\left\{g_{x, y} \mid x, y \in V(X)\right\}$ be a family of edge-paths in X such that for any vertices x, y of $X \beta_{X, y}$ is a path from x to y in X.
Let $\Phi: V(X) \times V(X) \times V(X) \rightarrow V(X)$ be a function such that for any $a, b, c \in V(X)$,

$$
\Phi(a, b, c)=\Phi(b, c, a)=\Phi(c, a, b)
$$

Assume, for constant B_{1} and B_{2} that \mathcal{G} and Φ have the following properties:

Bowditch's criterion of hyperbolicity and its consequences

(1) For $x, y \in V(X)$, the Hausdorff distance between $\beta_{x, y}$ and $\beta_{y, x}$ is at most B_{2}.
 assume that

$$
d_{x}\left(a, \beta_{x, y}(s)\right) \leq B_{1} \quad \text { and } \quad d_{X}\left(b, \beta_{x, y}(t)\right) \leq B_{1}
$$

Then, the Hausdorff distance between $\beta_{a, b}$ and $\left.\beta_{x, y}\right|_{[s, t]}$ is at most B_{2}
(3) For any $a, b, c \in V(X)$, the vertex $\Phi(a, b, c)$ is contained in a B_{2}-neighborhood of $\beta_{a, b}$.

Then, we say that the pair (\mathcal{G}, Φ) is a $\left(B_{1}, B_{2}\right)$-thin triangles structure on X.

Bowditch's criterion of hyperbolicity and its consequences

(1) For $x, y \in V(X)$, the Hausdorff distance between $\beta_{x, y}$ and $\beta_{y, x}$ is at most B_{2}.
(2) For, $x, y \in V(X), \beta_{x, y}:[0, I] \rightarrow X, s, t \in[0, I]$ and $a, b \in V(X)$, assume that

$$
d_{X}\left(a, \beta_{x, y}(s)\right) \leq B_{1} \quad \text { and } \quad d_{X}\left(b, \beta_{x, y}(t)\right) \leq B_{1}
$$

Then, the Hausdorff distance between $\beta_{a, b}$ and $\left.\beta_{x, y}\right|_{[s, t]}$ is at most B_{2}
(3) For any $a, b, c \in V(X)$, the vertex $\Phi(a, b, c)$ is contained in a B_{2}-neighborhood of $\beta_{a, b}$.

Then, we say that the pair (\mathcal{G}, Φ) is a $\left(B_{1}, B_{2}\right)$-thin triangles structure on X.

Bowditch's criterion of hyperbolicity and its consequences

(1) For $x, y \in V(X)$, the Hausdorff distance between $\beta_{x, y}$ and $\beta_{y, x}$ is at most B_{2}.
(2) For, $x, y \in V(X), \beta_{X, y}:[0, I] \rightarrow X, s, t \in[0, I]$ and $a, b \in V(X)$, assume that

$$
d_{X}\left(a, \beta_{x, y}(s)\right) \leq B_{1} \quad \text { and } \quad d_{X}\left(b, \beta_{x, y}(t)\right) \leq B_{1}
$$

Then, the Hausdorff distance between $\beta_{a, b}$ and $\left.\beta_{X, y}\right|_{[s, t]}$ is at most B_{2}.
(3) For any $a, b, c \in V(X)$, the vertex $\Phi(a, b, c)$ is contained in a B_{2}-neighborhood of $\beta_{a, b}$.

Then, we say that the pair (\mathcal{G}, Φ) is a $\left(B_{1}, B_{2}\right)$-thin triangles structure on X.

Bowditch's criterion of hyperbolicity and its consequences

(1) For $x, y \in V(X)$, the Hausdorff distance between $\beta_{x, y}$ and $\beta_{y, x}$ is at most B_{2}.
(2) For, $x, y \in V(X), \beta_{X, y}:[0, I] \rightarrow X, s, t \in[0, I]$ and $a, b \in V(X)$, assume that

$$
d_{X}\left(a, \beta_{x, y}(s)\right) \leq B_{1} \quad \text { and } \quad d_{X}\left(b, \beta_{x, y}(t)\right) \leq B_{1}
$$

Then, the Hausdorff distance between $\beta_{a, b}$ and $\left.\beta_{X, y}\right|_{[s, t]}$ is at most B_{2}.
(3) For any $a, b, c \in V(X)$, the vertex $\Phi(a, b, c)$ is contained in a B_{2}-neighborhood of $\beta_{a, b}$.

Then, we say that the pair (\mathcal{G}, Φ) is a $\left(B_{1}, B_{2}\right)$-thin triangles structure on X.

Bowditch's criterion of hyperbolicity and its consequences

(1) For $x, y \in V(X)$, the Hausdorff distance between $\beta_{x, y}$ and $\beta_{y, x}$ is at most B_{2}.
(2) For, $x, y \in V(X), \beta_{X, y}:[0, I] \rightarrow X, s, t \in[0, I]$ and $a, b \in V(X)$, assume that

$$
d_{X}\left(a, \beta_{x, y}(s)\right) \leq B_{1} \quad \text { and } \quad d_{X}\left(b, \beta_{x, y}(t)\right) \leq B_{1}
$$

Then, the Hausdorff distance between $\beta_{a, b}$ and $\left.\beta_{X, y}\right|_{[s, t]}$ is at most B_{2}.
(3) For any $a, b, c \in V(X)$, the vertex $\Phi(a, b, c)$ is contained in a B_{2}-neighborhood of $\beta_{a, b}$.

Then, we say that the pair (\mathcal{G}, Φ) is a $\left(B_{1}, B_{2}\right)$-thin triangles structure on X.

Bowditch's criterion of hyperbolicity and its consequences

The following statement is a direct corollary of a more general hyperbolicity criterion due to Bowditch (2006)

```
Proposition. Let X be a connected graph. For every B}\mp@subsup{B}{1}{}>0\mathrm{ and
B2>0, there exist }\delta>0\mathrm{ and }H>0\mathrm{ so that if }(\mathcal{G},\Phi)\mathrm{ is a ( }\mp@subsup{B}{1}{},\mp@subsup{B}{2}{})\mathrm{ -thin
triangles structure on }X\mathrm{ then }X\mathrm{ is }\delta\mathrm{ -hyperbolic.
Moreover, every path }\mp@subsup{\beta}{x,y}{}\mathrm{ in G}\mathrm{ is H-Hausdorff-close to any geodesic
segment [x,y]
```


Bowditch's criterion of hyperbolicity and its consequences

The following statement is a direct corollary of a more general hyperbolicity criterion due to Bowditch (2006)

Proposition. Let X be a connected graph. For every $B_{1}>0$ and $B_{2}>0$, there exist $\delta>0$ and $H>0$ so that if (\mathcal{G}, Φ) is a $\left(B_{1}, B_{2}\right)$-thin triangles structure on X then X is δ-hyperbolic.
Moreover, every path $\beta_{x, y}$ in \mathcal{G} is H-Hausdorff-close to any geodesic segment $[x, y]$.

Bowditch's criterion of hyperbolicity and its consequences

The following statement is a direct corollary of a more general hyperbolicity criterion due to Bowditch (2006)

Proposition. Let X be a connected graph. For every $B_{1}>0$ and $B_{2}>0$, there exist $\delta>0$ and $H>0$ so that if (\mathcal{G}, Φ) is a $\left(B_{1}, B_{2}\right)$-thin triangles structure on X then X is δ-hyperbolic.
Moreover, every path $\beta_{x, y}$ in \mathcal{G} is H-Hausdorff-close to any geodesic segment $[x, y]$.

Bowditch's criterion of hyperbolicity and its consequences

The following statement is a direct corollary of a more general hyperbolicity criterion due to Bowditch (2006)

Proposition. Let X be a connected graph. For every $B_{1}>0$ and $B_{2}>0$, there exist $\delta>0$ and $H>0$ so that if (\mathcal{G}, Φ) is a $\left(B_{1}, B_{2}\right)$-thin triangles structure on X then X is δ-hyperbolic.
Moreover, every path $\beta_{x, y}$ in \mathcal{G} is H-Hausdorff-close to any geodesic segment $[x, y]$.

Bowditch's criterion of hyperbolicity and its consequences

From here we derive the following useful corollary:
Corollary A For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic.
Let $f: X \rightarrow Y$ be an L-Lipschitz graph map. Suppose that:$f(V(X))=V(Y)$
(2) For $x, y \in V(X)$, if $d_{y}(f(x), f(y)) \leq 1$ then for any geodesic $[x, y]$
in X we have

$$
\operatorname{diam}_{Y}(f([x, y])) \leq M
$$

Then Y is δ_{1}-hyperbolic and, for any $x, y \in V(X)$ and any geodesic $[x, y]$ in X, the path $f([x, y\rceil)$ is H-Hausdorff close to any geodesic $[f(x), f(y)]$ in Y.

Bowditch's criterion of hyperbolicity and its consequences

From here we derive the following useful corollary:
Corollary A For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.

Then Y is δ_{1}-hyperbolic and, for any $x, y \in V(X)$ and any geodesic $[x, y]$ in X, the path $f([x, y])$ is H-Hausdorff close to any geodesic [$f(x), f(y)]$ in Y.

Bowditch's criterion of hyperbolicity and its consequences

From here we derive the following useful corollary:
Corollary A For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic.

Bowditch's criterion of hyperbolicity and its consequences

From here we derive the following useful corollary:
Corollary A For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic. Let $f: X \rightarrow Y$ be an L-Lipschitz graph map. Suppose that:

Bowditch's criterion of hyperbolicity and its consequences

From here we derive the following useful corollary:
Corollary A For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic. Let $f: X \rightarrow Y$ be an L-Lipschitz graph map. Suppose that:

Bowditch's criterion of hyperbolicity and its consequences

From here we derive the following useful corollary:
Corollary A For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic. Let $f: X \rightarrow Y$ be an L-Lipschitz graph map. Suppose that:
(1) $f(V(X))=V(Y)$.

Then Y is δ_{1}-hyperbolic and, for any $x, y \in V(X)$ and any geodesic $[x, y]$ in X, the path $f([x, y])$ is H-Hausdorff close to any geodesic

Bowditch's criterion of hyperbolicity and its consequences

From here we derive the following useful corollary:
Corollary A For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic. Let $f: X \rightarrow Y$ be an L-Lipschitz graph map. Suppose that:
(1) $f(V(X))=V(Y)$.
(2) For $x, y \in V(X)$, if $d_{Y}(f(x), f(y)) \leq 1$ then for any geodesic $[x, y]$ in X we have

Then Y is δ_{1}-hyperbolic and for any $x, y \in V(X)$ and any geodesic $[x, y]$ in X, the path $f([x, y])$ is H-Hausdorff close to any geodesic

Bowditch's criterion of hyperbolicity and its consequences

From here we derive the following useful corollary:
Corollary A For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic. Let $f: X \rightarrow Y$ be an L-Lipschitz graph map. Suppose that:
(1) $f(V(X))=V(Y)$.
(2) For $x, y \in V(X)$, if $d_{Y}(f(x), f(y)) \leq 1$ then for any geodesic $[x, y]$ in X we have

$$
\operatorname{diam}_{Y}(f([x, y])) \leq M
$$

Bowditch's criterion of hyperbolicity and its consequences

From here we derive the following useful corollary:
Corollary A For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic. Let $f: X \rightarrow Y$ be an L-Lipschitz graph map. Suppose that:
(1) $f(V(X))=V(Y)$.
(2) For $x, y \in V(X)$, if $d_{Y}(f(x), f(y)) \leq 1$ then for any geodesic $[x, y]$ in X we have

$$
\operatorname{diam}_{Y}(f([x, y])) \leq M
$$

Then Y is δ_{1}-hyperbolic and, for any $x, y \in V(X)$ and any geodesic $[x, y]$ in X, the path $f([x, y])$ is H-Hausdorff close to any geodesic [$f(x), f(y)]$ in Y.

Bowditch's criterion of hyperbolicity and its consequences

We also obtain a strengthened version of the previous statement:

```
Corollary A' For every }\mp@subsup{\delta}{0}{}\geq0,L\geq0,M\geq0 and D\geq0 there exis
\delta
Let }X,Y\mathrm{ be connected graphs, such that }X\mathrm{ is }\mp@subsup{\delta}{0}{}\mathrm{ -hyperbolic.
Let f : X }->Y\mathrm{ be an L-Lipschitz graph map.
Let }S\subseteqV(X)\mathrm{ be such that:
    (0) f(S)=V(Y)
    (2) The set S is D-dense in X.
    33)For }x,y\inS\mathrm{ , if }\mp@subsup{d}{Y}{}(f(x),f(y))\leq1\mathrm{ then for any geodesic [x,y] in X
    we have
                                    diam}Y(f([x,y]))\leqM
```

Then Y is δ_{1}-hyperbolic and, for any $x, y \in \mathbb{V}(X)$ and any geodesic
$[x, y]$ in X, the path $f([x, y])$ is H-Hausdorff close to any geodesic

Bowditch's criterion of hyperbolicity and its consequences

We also obtain a strengthened version of the previous statement:
Corollary A' For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ and $D \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic.
Let $f: X \rightarrow Y$ be an L-Lipschitz graph map.
Let $S \subseteq V(X)$ be such that:
(1) $f(S)=V(Y)$.
(2) The set S is D-dense in X.
(3) For $x, y \in S$, if $d_{Y}(f(x), f(y)) \leq 1$ then for any geodesic $[x, y]$ in X

> we have

Bowditch's criterion of hyperbolicity and its consequences

We also obtain a strengthened version of the previous statement:
Corollary A' For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ and $D \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic.

we have

Bowditch's criterion of hyperbolicity and its consequences

We also obtain a strengthened version of the previous statement:
Corollary A' For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ and $D \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic. Let $f: X \rightarrow Y$ be an L-Lipschitz graph map.

we have

Bowditch's criterion of hyperbolicity and its consequences

We also obtain a strengthened version of the previous statement:
Corollary A' For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ and $D \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic.
Let $f: X \rightarrow Y$ be an L-Lipschitz graph map.
Let $S \subseteq V(X)$ be such that:
(2) The set S is D-dense in X.
(0) For $x, y \in S$, if $d_{Y}(f(x), f(y)) \leq 1$ then for any geodesic $[x, y]$ in X
we have

$$
\operatorname{diam}_{Y}(f([x, y])) \leq M .
$$

\square
Then Y is δ_{1}-hyperbolic and, for any $x, y \in V(X)$ and any geodesic $[x, y]$ in X, the path $f([x, y])$ is H-Hausdorff close to any geodesic

Bowditch's criterion of hyperbolicity and its consequences

We also obtain a strengthened version of the previous statement:
Corollary A' For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ and $D \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic.
Let $f: X \rightarrow Y$ be an L-Lipschitz graph map.
Let $S \subseteq V(X)$ be such that:
(0) $f(S)=V(Y)$.
(3) The set S is D-dense in X.
(0) For $x, y \in S$, if $d_{Y}(f(x), f(y)) \leq 1$ then for any geodesic $[x, y]$ in X
we have

$$
\operatorname{diam}_{y}(\Gamma([x, y])) \leq M
$$

\square
and any geodesic

Bowditch's criterion of hyperbolicity and its consequences

We also obtain a strengthened version of the previous statement:
Corollary A' For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ and $D \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic.
Let $f: X \rightarrow Y$ be an L-Lipschitz graph map.
Let $S \subseteq V(X)$ be such that:
(1) $f(S)=V(Y)$.
(2) The set S is D-dense in X.
we have

$$
\operatorname{diam}_{Y}(f([x, y])) \leq M .
$$

\square

Bowditch's criterion of hyperbolicity and its consequences

We also obtain a strengthened version of the previous statement:
Corollary A' For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ and $D \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic.
Let $f: X \rightarrow Y$ be an L-Lipschitz graph map.
Let $S \subseteq V(X)$ be such that:
(1) $f(S)=V(Y)$.
(2) The set S is D-dense in X.
(3) For $x, y \in S$, if $d_{Y}(f(x), f(y)) \leq 1$ then for any geodesic $[x, y]$ in X we have

$$
\operatorname{diam}_{Y}(f([x, y])) \leq M .
$$

Then Y is δ_{1}-hyperbolic and, for any $x, y \in V(X)$ and any geodesic is H -Hausdorff close to any geodesic

Bowditch's criterion of hyperbolicity and its consequences

We also obtain a strengthened version of the previous statement:
Corollary A' For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ and $D \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic.
Let $f: X \rightarrow Y$ be an L-Lipschitz graph map.
Let $S \subseteq V(X)$ be such that:
(1) $f(S)=V(Y)$.
(2) The set S is D-dense in X.
(3) For $x, y \in S$, if $d_{Y}(f(x), f(y)) \leq 1$ then for any geodesic $[x, y]$ in X we have

$$
\operatorname{diam}_{Y}(f([x, y])) \leq M .
$$

Bowditch's criterion of hyperbolicity and its consequences

We also obtain a strengthened version of the previous statement:
Corollary A' For every $\delta_{0} \geq 0, L \geq 0, M \geq 0$ and $D \geq 0$ there exist $\delta_{1} \geq 0$ and $H \geq 0$ so that the following holds.
Let X, Y be connected graphs, such that X is δ_{0}-hyperbolic.
Let $f: X \rightarrow Y$ be an L-Lipschitz graph map.
Let $S \subseteq V(X)$ be such that:
(1) $f(S)=V(Y)$.
(2) The set S is D-dense in X.
(3) For $x, y \in S$, if $d_{Y}(f(x), f(y)) \leq 1$ then for any geodesic $[x, y]$ in X we have

$$
\operatorname{diam}_{Y}(f([x, y])) \leq M .
$$

Then Y is δ_{1}-hyperbolic and, for any $x, y \in V(X)$ and any geodesic $[x, y]$ in X, the path $f([x, y])$ is H-Hausdorff close to any geodesic $[f(x), f(y)]$ in Y.

Free bases graph

We introduce the following useful object that is q.i. to $F F_{N}$: Defn The free bases graph $F B_{N}$ has as its vertex set the set of equivalence classes $[\mathcal{A}]$ of free bases \mathcal{A} of F_{N}. Two free bases \mathcal{A} and \mathcal{B} are equivalent if the Cayley graphs $\operatorname{Cay}\left(F_{N}, \mathcal{A}\right)$ and $\operatorname{Cay}\left(F_{N}, \mathcal{B}\right)$ are F_{N}-equivariantly isometric. (E.g $\mathcal{A} \sim g \mathcal{A g}^{-1}$. Also, permuting elements of \mathcal{A} and possibly inverting some of them preserves the equivalence class $[\mathcal{A}]$.)

Two distinct vertices $[\mathcal{A}]$ and $[\mathcal{B}]$ are adjacent in $F B_{N}$ if there exist representatives \mathcal{A} of $[\mathcal{A}]$ and \mathcal{B} of $[\mathcal{B}]$ such that $\mathcal{A} \cap \mathcal{B} \neq \emptyset$.

Free bases graph

We introduce the following useful object that is q.i. to $F F_{N}$: Defn The free bases graph $F B_{N}$ has as its vertex set the set of equivalence classes $[\mathcal{A}]$ of free bases \mathcal{A} of F_{N}.
Two free bases \mathcal{A} and \mathcal{B} are equivalent if the Cayley graphs
$\operatorname{Cay}\left(F_{N}, \mathcal{A}\right)$ and $\operatorname{Cay}\left(F_{N}, \mathcal{B}\right)$ are $F_{N^{-}}$equivariantly isometric.
(E.g $\mathcal{A} \sim g \mathcal{A g}^{-1}$. Also, permuting elements of \mathcal{A} and possibly inverting some of them preserves the equivalence class $[\mathcal{A}]$.)

Twn distinct vertices [$\Lambda]$ and $[\mathcal{B}]$ are adiacent in $F B_{N}$ if there exist representatives \mathcal{A} of $[\mathcal{A}]$ and \mathcal{B} of $[\mathcal{B}]$ such that $\mathcal{A} \cap \mathcal{B} \neq \emptyset$.

Free bases graph

We introduce the following useful object that is q.i. to $F F_{N}$: Defn The free bases graph $F B_{N}$ has as its vertex set the set of equivalence classes $[\mathcal{A}]$ of free bases \mathcal{A} of F_{N}. Two free bases \mathcal{A} and \mathcal{B} are equivalent if the Cayley graphs $\operatorname{Cay}\left(F_{N}, \mathcal{A}\right)$ and $\operatorname{Cay}\left(F_{N}, \mathcal{B}\right)$ are F_{N}-equivariantly isometric.
some of them preserves the equivalence class $[\mathcal{A}]$.)
Two distinct vertices $[\mathcal{A}]$ and $[\mathcal{B}]$ are adjacent in $F B_{N}$ if there exist representatives \mathcal{A} of $[\mathcal{A}]$ and \mathcal{B} of $[\mathcal{B}]$ such that $\mathcal{A} \cap \mathcal{B} \neq \emptyset$.

Free bases graph

We introduce the following useful object that is q.i. to $F F_{N}$: Defn The free bases graph $F B_{N}$ has as its vertex set the set of equivalence classes $[\mathcal{A}]$ of free bases \mathcal{A} of F_{N}. Two free bases \mathcal{A} and \mathcal{B} are equivalent if the Cayley graphs $\operatorname{Cay}\left(F_{N}, \mathcal{A}\right)$ and $\operatorname{Cay}\left(F_{N}, \mathcal{B}\right)$ are F_{N}-equivariantly isometric. (E.g $\mathcal{A} \sim g \mathcal{A} g^{-1}$. Also, permuting elements of \mathcal{A} and possibly inverting some of them preserves the equivalence class $[\mathcal{A}]$.)

Free bases graph

We introduce the following useful object that is q.i. to $F F_{N}$:
Defn The free bases graph $F B_{N}$ has as its vertex set the set of equivalence classes $[\mathcal{A}]$ of free bases \mathcal{A} of F_{N}.
Two free bases \mathcal{A} and \mathcal{B} are equivalent if the Cayley graphs $\operatorname{Cay}\left(F_{N}, \mathcal{A}\right)$ and $\operatorname{Cay}\left(F_{N}, \mathcal{B}\right)$ are F_{N}-equivariantly isometric. (E.g $\mathcal{A} \sim g \mathcal{A} g^{-1}$. Also, permuting elements of \mathcal{A} and possibly inverting some of them preserves the equivalence class $[\mathcal{A}]$.)
Two distinct vertices $[\mathcal{A}]$ and $[\mathcal{B}]$ are adjacent in $F B_{N}$ if there exist representatives \mathcal{A} of $[\mathcal{A}]$ and \mathcal{B} of $[\mathcal{B}]$ such that $\mathcal{A} \cap \mathcal{B} \neq \emptyset$.

Free bases graph

We introduce the following useful object that is q.i. to $F F_{N}$:
Defn The free bases graph $F B_{N}$ has as its vertex set the set of equivalence classes $[\mathcal{A}]$ of free bases \mathcal{A} of F_{N}.
Two free bases \mathcal{A} and \mathcal{B} are equivalent if the Cayley graphs $\operatorname{Cay}\left(F_{N}, \mathcal{A}\right)$ and $\operatorname{Cay}\left(F_{N}, \mathcal{B}\right)$ are F_{N}-equivariantly isometric. (E.g $\mathcal{A} \sim g \mathcal{A} g^{-1}$. Also, permuting elements of \mathcal{A} and possibly inverting some of them preserves the equivalence class $[\mathcal{A}]$.)
Two distinct vertices $[\mathcal{A}]$ and $[\mathcal{B}]$ are adjacent in $F B_{N}$ if there exist representatives \mathcal{A} of $[\mathcal{A}]$ and \mathcal{B} of $[\mathcal{B}]$ such that $\mathcal{A} \cap \mathcal{B} \neq \emptyset$.

Free bases graph

Prop. 1 Define a multi-finction $q: V\left(F B_{N}\right) \rightarrow V\left(F F_{N}\right)$ as follows.
For a free basis $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\}$ of F_{N} put

$$
f([\mathcal{A}])=\left\{\left[\left\langle a_{i}\right\rangle\right]: i=1, \ldots, N .\right\}
$$

Then q is a quasi-isometry between $F B_{N}$ and $F F_{N}$.

Prop. 2 The set $S:=V\left(F B_{N}\right)=\left\{[\mathcal{A}]: \mathcal{A}\right.$ is a free basis of $\left.F_{N}\right\}$, when appropriately interpreted, is a C-dense subset of the barycentric subdivision $F S_{N}^{\prime}$ of $F S_{N}$.
Prop. 3 There is a natural coarsely L-Lipschitz map $f: F S_{N}^{\prime} \rightarrow F B_{N}$ such that $\left.f\right|_{S}=|d|_{S}$.

Free bases graph

Prop. 1 Define a multi-finction $q: V\left(F B_{N}\right) \rightarrow V\left(F F_{N}\right)$ as follows. For a free basis $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\}$ of F_{N} put

$$
f([\mathcal{A}])=\left\{\left[\left\langle a_{i}\right\rangle\right]: i=1, \ldots, N .\right\}
$$

Then q is a quasi-isometry between $F B_{N}$ and $F F_{N}$.

Prop. 2 The set $S:=V\left(F B_{N}\right)=\left\{[\mathcal{A}]: \mathcal{A}\right.$ is a free basis of $\left.F_{N}\right\}$, when appropriately interpreted, is a C-dense subset of the barycentric subdivision $F S_{N}^{\prime}$ of $F S_{N}$.
Prop. 3 There is a natural coarsely L-Lipschitz map $f: F S_{N}^{\prime} \rightarrow F B_{N}$ such that $\left.f\right|_{S}=|d|_{S}$.

Free bases graph

Prop. 1 Define a multi-finction $q: V\left(F B_{N}\right) \rightarrow V\left(F F_{N}\right)$ as follows. For a free basis $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\}$ of F_{N} put

$$
f([\mathcal{A}])=\left\{\left[\left\langle a_{i}\right\rangle\right]: i=1, \ldots, N .\right\}
$$

Then q is a quasi-isometry between $F B_{N}$ and $F F_{N}$.
Prop. 2 The sei $S:=V\left(F B_{N}\right)=\left\{[A]: \mathcal{A}\right.$ is a iree basis of $\left.F_{N}\right\}$, when appropriately interpreted, is a C-dense subset of the barycentric subdivision $F S_{N}^{\prime}$ of $F S_{N}$.
Prop. 3 There is a natural coarsely L-Lipschitz map $f: F S_{N}^{\prime} \rightarrow F B_{N}$ such that $\left.f\right|_{S}=|d|_{s}$.

Free bases graph

Prop. 1 Define a multi-finction $q: V\left(F B_{N}\right) \rightarrow V\left(F F_{N}\right)$ as follows. For a free basis $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\}$ of F_{N} put

$$
f([\mathcal{A}])=\left\{\left[\left\langle a_{i}\right\rangle\right]: i=1, \ldots, N .\right\}
$$

Then q is a quasi-isometry between $F B_{N}$ and $F F_{N}$.
Prop. 2 The set $S:=V\left(F B_{N}\right)=\left\{[\mathcal{A}]: \mathcal{A}\right.$ is a free basis of $\left.F_{N}\right\}$, when appropriately interpreted, is a C-dense subset of the barycentric subdivision $F S_{N}^{\prime}$ of $F S_{N}$.
Prop. 3 There is a natural coarsely L-Lipschitz map $f: F S_{N}^{\prime} \rightarrow F B_{N}$ such that $\left.f\right|_{S}=|d|_{S}$.

Free bases graph

Prop. 1 Define a multi-finction $q: V\left(F B_{N}\right) \rightarrow V\left(F F_{N}\right)$ as follows. For a free basis $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\}$ of F_{N} put

$$
f([\mathcal{A}])=\left\{\left[\left\langle a_{i}\right\rangle\right]: i=1, \ldots, N .\right\}
$$

Then q is a quasi-isometry between $F B_{N}$ and $F F_{N}$.
Prop. 2 The set $S:=V\left(F B_{N}\right)=\left\{[\mathcal{A}]: \mathcal{A}\right.$ is a free basis of $\left.F_{N}\right\}$, when appropriately interpreted, is a C-dense subset of the barycentric subdivision $F S_{N}^{\prime}$ of $F S_{N}$.
Prop. 3 There is a natural coarsely L-Lipschitz map $f: F S_{N}^{\prime} \rightarrow F B_{N}$
such that $\left.f\right|_{S}=|d|_{S}$.

Free bases graph

Prop. 1 Define a multi-finction $q: V\left(F B_{N}\right) \rightarrow V\left(F F_{N}\right)$ as follows. For a free basis $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\}$ of F_{N} put

$$
f([\mathcal{A}])=\left\{\left[\left\langle a_{i}\right\rangle\right]: i=1, \ldots, N .\right\}
$$

Then q is a quasi-isometry between $F B_{N}$ and $F F_{N}$.
Prop. 2 The set $S:=V\left(F B_{N}\right)=\left\{[\mathcal{A}]: \mathcal{A}\right.$ is a free basis of $\left.F_{N}\right\}$, when appropriately interpreted, is a C-dense subset of the barycentric subdivision $F S_{N}^{\prime}$ of $F S_{N}$.
Prop. 3 There is a natural coarsely L-Lipschitz map $f: F S_{N}^{\prime} \rightarrow F B_{N}$ such that $\left.f\right|_{S}=\left.I d\right|_{s}$.

Sketch of the proof of the main result

Recall that $F S_{N}^{\prime}$ is Gromov-hyperbolic by Handel-Mosher.
We will prove that $F B_{N}$ is Gromov-hyperbolic by applying Corollary A^{\prime} to the map $f: F S_{N}^{\prime} \rightarrow F B_{N}$. Then hyperbolicity of $F F_{N}$ will follow from Prop 1, since $F B_{N}$ is q.i. to $F F_{N}$. Main thing to verify: that if $x=[\mathcal{B}], y=[\mathcal{A}] \in S$ are such that $d_{F B_{N}}(x, y) \leq 1$ then $f([x, y])$ has diameter $\leq M$ in $F B_{N}$.

Instead of a geodesic $[x, y]$ in $F S_{N}^{\prime}$ can use a quasi-geodesic from x to y.
Handel-Mosher, given any vertices $x, y \in F S_{N}$, construct a "folding line" $g_{x, y}$ from x to y in $F S_{N}^{\prime}$ and show that $g_{x, y}$ is a (reparameterized) uniform quasigeodesic in $F S_{N}^{\prime}$.
The general construction of $g_{x, y}$ is rather hard, but for $x, y \in S=V\left(F B_{N}\right)$ it is fairly easy and can be interpreted in terms of the standard Stallings folds.

Sketch of the proof of the main result

Recall that $F S_{N}^{\prime}$ is Gromov-hyperbolic by Handel-Mosher. We will prove that $F B_{N}$ is Gromov-hyperbolic by applying Corollary A' to the map $f: F S_{N}^{\prime} \rightarrow F B_{N}$. Then hyperbolicity of $F F_{N}$ will follow from Prop 1, since $F B_{N}$ is q.i. to $F F_{N}$.

Sketch of the proof of the main result

Recall that $F S_{N}^{\prime}$ is Gromov-hyperbolic by Handel-Mosher.
We will prove that $F B_{N}$ is Gromov-hyperbolic by applying Corollary A' to the map $f: F S_{N}^{\prime} \rightarrow F B_{N}$. Then hyperbolicity of $F F_{N}$ will follow from Prop 1, since $F B_{N}$ is q.i. to $F F_{N}$. Main thing to verify: that if $x=[\mathcal{B}], y=[\mathcal{A}] \in S$ are such that $d_{F B_{N}}(x, y) \leq 1$ then $f([x, y])$ has diameter $\leq M$ in $F B_{N}$.

Instead of a geodesic $[x, y]$ in $F S_{N}^{\prime}$ can use a quasi-geodesic from x to
Handel-Mosher, given any vertices $x, y \in F S_{N}$, construct a "folding line" $g_{x, y}$ from x to y in $F S_{N}^{\prime}$ and show that $g_{x, y}$ is a (reparameterized) uniform quasigeodesic in $F S_{N}^{\prime}$. The general construction of $g_{x, y}$ is rather hard, but for $x, y \in S=V\left(F B_{N}\right)$ it is fairly easy and can be interpreted in terms of the standard Stallings folds.

Sketch of the proof of the main result

Recall that $F S_{N}^{\prime}$ is Gromov-hyperbolic by Handel-Mosher.
We will prove that $F B_{N}$ is Gromov-hyperbolic by applying Corollary A^{\prime} to the map $f: F S_{N}^{\prime} \rightarrow F B_{N}$. Then hyperbolicity of $F F_{N}$ will follow from Prop 1, since $F B_{N}$ is q.i. to $F F_{N}$. Main thing to verify: that if $x=[\mathcal{B}], y=[\mathcal{A}] \in S$ are such that $d_{F B_{N}}(x, y) \leq 1$ then $f([x, y])$ has diameter $\leq M$ in $F B_{N}$. Instead of a geodesic $[x, y]$ in $F S_{N}^{\prime}$ can use a quasi-geodesic from x to y.
Handel-Mosher, given any vertices $x, y \in F S_{N}$, construct a "folding
line" $g_{x, y}$ from x to y in $F S_{N}^{\prime}$ and show that $g_{x, y}$ is a (reparameterized) uniform quasigeodesic in $F S_{N}^{\prime}$. The general construction of $g_{x, y}$ is rather hard, but for $x, y \in S=V\left(F B_{N}\right)$ it is fairly easy and can be interpreted in terms of the standard Stallings folds.

Sketch of the proof of the main result

Recall that $F S_{N}^{\prime}$ is Gromov-hyperbolic by Handel-Mosher.
We will prove that $F B_{N}$ is Gromov-hyperbolic by applying Corollary A' to the map $f: F S_{N}^{\prime} \rightarrow F B_{N}$. Then hyperbolicity of $F F_{N}$ will follow from Prop 1, since $F B_{N}$ is q.i. to $F F_{N}$. Main thing to verify: that if $x=[\mathcal{B}], y=[\mathcal{A}] \in S$ are such that $d_{F B_{N}}(x, y) \leq 1$ then $f([x, y])$ has diameter $\leq M$ in $F B_{N}$. Instead of a geodesic $[x, y]$ in $F S_{N}^{\prime}$ can use a quasi-geodesic from x to y. Handel-Mosher, given any vertices $x, y \in F S_{N}$, construct a "folding line" $g_{x, y}$ from x to y in $F S_{N}^{\prime}$ and show that $g_{x, y}$ is a (reparameterized) uniform quasigeodesic in $F S_{N}^{\prime}$.

Sketch of the proof of the main result

Recall that $F S_{N}^{\prime}$ is Gromov-hyperbolic by Handel-Mosher.
We will prove that $F B_{N}$ is Gromov-hyperbolic by applying Corollary A' to the map $f: F S_{N}^{\prime} \rightarrow F B_{N}$. Then hyperbolicity of $F F_{N}$ will follow from Prop 1, since $F B_{N}$ is q.i. to $F F_{N}$.
Main thing to verify: that if $x=[\mathcal{B}], y=[\mathcal{A}] \in S$ are such that $d_{F B_{N}}(x, y) \leq 1$ then $f([x, y])$ has diameter $\leq M$ in $F B_{N}$.
Instead of a geodesic $[x, y]$ in $F S_{N}^{\prime}$ can use a quasi-geodesic from x to y.
Handel-Mosher, given any vertices $x, y \in F S_{N}$, construct a "folding line" $g_{x, y}$ from x to y in $F S_{N}^{\prime}$ and show that $g_{x, y}$ is a (reparameterized) uniform quasigeodesic in $F S_{N}^{\prime}$.
The general construction of $g_{x, y}$ is rather hard, but for $x, y \in S=V\left(F B_{N}\right)$ it is fairly easy and can be interpreted in terms of the standard Stallings folds.

Sketch of the proof of the main result

Let $x=[\mathcal{B}], y=[\mathcal{A}] \in S$ be such that $d_{F B_{N}}(x, y) \leq 1$. Thus may assume that $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\}, \mathcal{B}=\left\{b_{1}, \ldots, b_{N}\right\}$ and that $a_{1}=b_{1}$.
Form a labelled graph Γ_{0} which is a wedge of N loop-edges at a vertex v_{0} with the i-th loop-edge being labelled by the freely reduced word w_{i} over \mathcal{A} such that $w_{i}=b_{i}$ in F_{N}. Thus the 1 -st loop-edge is labelled by a_{1}

By conjugating \mathcal{A} by a_{1}^{t} if necessary may achieve the following important technical condition, needed by the Handel-Mosher construction:
among the 2 N oriented edges outgoing from v_{0} in Γ_{0}, there exist some three edges with their labels beginning with three distinct letters from

Sketch of the proof of the main result

Let $x=[\mathcal{B}], y=[\mathcal{A}] \in S$ be such that $d_{F B_{N}}(x, y) \leq 1$. Thus may assume that $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\}, \mathcal{B}=\left\{b_{1}, \ldots, b_{N}\right\}$ and that $a_{1}=b_{1}$.

Form a labelled graph Γ_{0} which is a wedge of N loop-edges at a vertex v_{0} with the i-th loop-edge being labelled by the freely reduced word w_{i} over \mathcal{A} such that $w_{i}=b_{i}$ in F_{N}.
a_{1}
By conjugating \mathcal{A} by a_{1}^{t} if necessary may achieve the following important technical condition, needed by the Handel-Mosher construction:
among the 2 N oriented edges outgoing from v_{0} in Γ_{0}, there exist some three edges with their labels beginning with three distinct letters from

Sketch of the proof of the main result

Let $x=[\mathcal{B}], y=[\mathcal{A}] \in S$ be such that $d_{F B_{N}}(x, y) \leq 1$. Thus may assume that $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\}, \mathcal{B}=\left\{b_{1}, \ldots, b_{N}\right\}$ and that $a_{1}=b_{1}$.

Form a labelled graph Γ_{0} which is a wedge of N loop-edges at a vertex v_{0} with the i-th loop-edge being labelled by the freely reduced word w_{i} over \mathcal{A} such that $w_{i}=b_{i}$ in F_{N}. Thus the 1 -st loop-edge is labelled by a_{1}.

By conjugating \mathcal{A} by a_{1}^{t} if necessary may achieve the following important technical condition, needed by the Handel-Mosher construction:
among the 2 N oriented edges outgoing from v_{0} in Γ_{0}, there exist some three edges with their labels beginning with three distinct letters from

Sketch of the proof of the main result

Let $x=[\mathcal{B}], y=[\mathcal{A}] \in S$ be such that $d_{F B_{N}}(x, y) \leq 1$. Thus may assume that $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\}, \mathcal{B}=\left\{b_{1}, \ldots, b_{N}\right\}$ and that $a_{1}=b_{1}$.

Form a labelled graph Γ_{0} which is a wedge of N loop-edges at a vertex v_{0} with the i-th loop-edge being labelled by the freely reduced word w_{i} over \mathcal{A} such that $w_{i}=b_{i}$ in F_{N}. Thus the 1 -st loop-edge is labelled by a_{1}.

By conjugating \mathcal{A} by a_{1}^{t} if necessary may achieve the following important technical condition, needed by the Handel-Mosher construction:
among the 2 N oriented edges outgoing from v_{0} in Γ_{0}, there exist some three edges with their labels beginning with three distinct letters from

Sketch of the proof of the main result

Let $x=[\mathcal{B}], y=[\mathcal{A}] \in S$ be such that $d_{F B_{N}}(x, y) \leq 1$. Thus may assume that $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\}, \mathcal{B}=\left\{b_{1}, \ldots, b_{N}\right\}$ and that $a_{1}=b_{1}$.

Form a labelled graph Γ_{0} which is a wedge of N loop-edges at a vertex v_{0} with the i-th loop-edge being labelled by the freely reduced word w_{i} over \mathcal{A} such that $w_{i}=b_{i}$ in F_{N}. Thus the 1-st loop-edge is labelled by a_{1}.

By conjugating \mathcal{A} by a_{1}^{t} if necessary may achieve the following important technical condition, needed by the Handel-Mosher construction: among the $2 N$ oriented edges outgoing from v_{0} in Γ_{0}, there exist some three edges with their labels beginning with three distinct letters from $\mathcal{A}^{ \pm 1}$.

Sketch of the proof of the main result

Let $x=[\mathcal{B}], y=[\mathcal{A}] \in S$ be such that $d_{F B_{N}}(x, y) \leq 1$. Thus may assume that $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\}, \mathcal{B}=\left\{b_{1}, \ldots, b_{N}\right\}$ and that $a_{1}=b_{1}$.

Form a labelled graph Γ_{0} which is a wedge of N loop-edges at a vertex v_{0} with the i-th loop-edge being labelled by the freely reduced word w_{i} over \mathcal{A} such that $w_{i}=b_{i}$ in F_{N}. Thus the 1-st loop-edge is labelled by a_{1}.

By conjugating \mathcal{A} by a_{1}^{t} if necessary may achieve the following important technical condition, needed by the Handel-Mosher construction: among the $2 N$ oriented edges outgoing from v_{0} in Γ_{0}, there exist some three edges with their labels beginning with three distinct letters from $\mathcal{A}^{ \pm 1}$.

Sketch of the proof of the main result

Now construct a sequence of labelled graphs $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}, \ldots$ where each Γ_{i+1} is obtained from Γ_{i} by a "maximal fold":

There is a vertex v in Γ_{i} and two outgoing edges e_{1}, e_{2} from v with labels w_{1}, w_{2} such that the freely words $w_{1}, w_{2} \in F(\mathcal{A})$ have the same first letter. The graph Γ_{i+1} is obtained from Γ_{i} by "folding" together into a single edge the initial segments of e_{1}, e_{2} corresponding to the maximal common initial segment of the word w_{1}, w_{2}.

Since \mathcal{B} and \mathcal{A} are free bases of F_{N}, the sequence is guaranteed to terminate in a finite number of steps with $\Gamma_{m}=R_{\mathcal{A}}$, the graph with a single vertex and N loop-edges labelled a_{1}, \ldots, a_{N}.

Key feature: Each Γ_{i} has a loop-edge, based at its base-vertex v_{i}, labeled by a_{1}

Sketch of the proof of the main result

Now construct a sequence of labelled graphs $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}, \ldots$ where each Γ_{i+1} is obtained from Γ_{i} by a "maximal fold":

There is a vertex v in Γ_{i} and two outgoing edges e_{1}, e_{2} from v with labels w_{1}, w_{2} such that the freely words $w_{1}, w_{2} \in F(\mathcal{A})$ have the same first letter. The graph Γ_{i+1} is obtained from Γ_{i} by "folding" together into
a single edge the initial segments of e_{1}, e_{2} corresponding to the maximal common initial segment of the word w_{1}, w_{2}.

Since \mathcal{B} and \mathcal{A} are free bases of F_{N}, the sequence is guaranteed to terminate in a finite number of steps with $\Gamma_{m}=R_{\mathcal{A}}$, the graph with a single vertex and N loop-edges labelled a_{1}, \ldots, a_{N}.

Key feature: Each Γ_{i} has a loop-edge, based at its base-vertex v_{i}, labeled by a_{1}

Sketch of the proof of the main result

Now construct a sequence of labelled graphs $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}, \ldots$ where each Γ_{i+1} is obtained from Γ_{i} by a "maximal fold":

There is a vertex v in Γ_{i} and two outgoing edges e_{1}, e_{2} from v with labels w_{1}, w_{2} such that the freely words $w_{1}, w_{2} \in F(\mathcal{A})$ have the same first letter. The graph Γ_{i+1} is obtained from Γ_{i} by "folding" together into a single edge the initial segments of e_{1}, e_{2} corresponding to the maximal common initial segment of the word w_{1}, w_{2}.

Key feature: Each Γ_{i} has a loop-edge, based at its base-vertex v_{i} labeled by a_{1}

Sketch of the proof of the main result

Now construct a sequence of labelled graphs $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}, \ldots$ where each Γ_{i+1} is obtained from Γ_{i} by a "maximal fold":

There is a vertex v in Γ_{i} and two outgoing edges e_{1}, e_{2} from v with labels w_{1}, w_{2} such that the freely words $w_{1}, w_{2} \in F(\mathcal{A})$ have the same first letter. The graph Γ_{i+1} is obtained from Γ_{i} by "folding" together into a single edge the initial segments of e_{1}, e_{2} corresponding to the maximal common initial segment of the word w_{1}, w_{2}.

Since \mathcal{B} and \mathcal{A} are free bases of F_{N}, the sequence is guaranteed to terminate in a finite number of steps with $\Gamma_{m}=R_{\mathcal{A}}$, the graph with a single vertex and N loop-edges labelled a_{1}, \ldots, a_{N}.

Key feature: Each Γ_{i} has a loop-edge, based at its base-vertex v_{i}, labeled by a_{1}.

Sketch of the proof of the main result

Now construct a sequence of labelled graphs $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}, \ldots$ where each Γ_{i+1} is obtained from Γ_{i} by a "maximal fold":

There is a vertex v in Γ_{i} and two outgoing edges e_{1}, e_{2} from v with labels w_{1}, w_{2} such that the freely words $w_{1}, w_{2} \in F(\mathcal{A})$ have the same first letter. The graph Γ_{i+1} is obtained from Γ_{i} by "folding" together into a single edge the initial segments of e_{1}, e_{2} corresponding to the maximal common initial segment of the word w_{1}, w_{2}.

Since \mathcal{B} and \mathcal{A} are free bases of F_{N}, the sequence is guaranteed to terminate in a finite number of steps with $\Gamma_{m}=R_{\mathcal{A}}$, the graph with a single vertex and N loop-edges labelled a_{1}, \ldots, a_{N}.

Key feature: Each Γ_{i} has a loop-edge, based at its base-vertex v_{i}, labeled by a_{1}.

Sketch of the proof of the main result

Handel-Mosher's general results imply: the sequence $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{m}$ determines a uniform quasigeodesic $g_{x, y}$ from $x=[\mathcal{B}]$ to $y=[\mathcal{A}]$ in $F S_{N}^{\prime}$.
The "Key feature" implies that $f\left(g_{x, y}\right)$ has diameter $\leq M$ in $F B_{N}$ for some constant $M \geq 1$ independent of x, y. Therefore $F B_{N}$ is Gromov-Hyperbolic by Corollary A^{\prime}. Hence $F F_{N}$ is also Gromov-hyperbolic since $F F_{N}$ is q.i. to $F B_{N}$ by Prop 1. Q.E.D.

Sketch of the proof of the main result

Handel-Mosher's general results imply: the sequence $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{m}$ determines a uniform quasigeodesic $g_{x, y}$ from $x=[\mathcal{B}]$ to $y=[\mathcal{A}]$ in $F S_{N}^{\prime}$.
The "Key feature" implies that $f\left(g_{x, y}\right)$ has diameter $\leq M$ in $F B_{N}$ for some constant $M \geq 1$ independent of x, y.
Therefore $F B_{N}$ is Gromov-Hyperbolic by Corollary A^{\prime}. Hence $F F_{N}$ is also Gromov-hyperbolic since $F F_{N}$ is q.i. to $F B_{N}$ by Prop 1. Q.E.D.

Sketch of the proof of the main result

Handel-Mosher's general results imply: the sequence $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{m}$ determines a uniform quasigeodesic $g_{x, y}$ from $x=[\mathcal{B}]$ to $y=[\mathcal{A}]$ in $F S_{N}^{\prime}$.
The "Key feature" implies that $f\left(g_{x, y}\right)$ has diameter $\leq M$ in $F B_{N}$ for some constant $M \geq 1$ independent of x, y.
Therefore $F B_{N}$ is Gromov-Hyperbolic by Corollary A^{\prime}. Hence $F F_{N}$ is also Gromov-hyperbolic since $F F_{N}$ is q.i. to $F B_{N}$ by Prop 1.

Sketch of the proof of the main result

Handel-Mosher's general results imply: the sequence $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{m}$ determines a uniform quasigeodesic $g_{x, y}$ from $x=[\mathcal{B}]$ to $y=[\mathcal{A}]$ in $F S_{N}^{\prime}$.
The "Key feature" implies that $f\left(g_{x, y}\right)$ has diameter $\leq M$ in $F B_{N}$ for some constant $M \geq 1$ independent of x, y.
Therefore $F B_{N}$ is Gromov-Hyperbolic by Corollary A'. Hence $F F_{N}$ is also Gromov-hyperbolic since $F F_{N}$ is q.i. to $F B_{N}$ by Prop 1. Q.E.D.

Sketch of the proof of the main result

Handel-Mosher's general results imply: the sequence $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{m}$ determines a uniform quasigeodesic $g_{x, y}$ from $x=[\mathcal{B}]$ to $y=[\mathcal{A}]$ in $F S_{N}^{\prime}$.
The "Key feature" implies that $f\left(g_{x, y}\right)$ has diameter $\leq M$ in $F B_{N}$ for some constant $M \geq 1$ independent of x, y.
Therefore $F B_{N}$ is Gromov-Hyperbolic by Corollary A'. Hence $F F_{N}$ is also Gromov-hyperbolic since $F F_{N}$ is q.i. to $F B_{N}$ by Prop 1. Q.E.D.

Open problems

Problem 1. Let \mathcal{A}, \mathcal{B} be free bases of F_{N}. Again consider $[\mathcal{A}]$ and $[\mathcal{B}]$ as vertices of $F S_{N}^{\prime}$.
Let $n=d_{F S_{N}^{\prime}}([\mathcal{A}],[\mathcal{B}])$.
Let U be the set of all vertices of $F S_{N}^{\prime}$ that occur along all folding paths Γ_{m} from $[\mathcal{B}]$ to $[\mathcal{A}]$ in $F S_{N}^{\prime}$ as in the proof of Thm 3.

Is it true that

$$
\# U \leq C n^{\alpha}
$$

for some constants $C>0$ and $\alpha \geq 1$ independent of $[\mathcal{A}],[\mathcal{B}]$?

Open problems

Problem 1. Let \mathcal{A}, \mathcal{B} be free bases of F_{N}. Again consider $[\mathcal{A}]$ and $[\mathcal{B}]$ as vertices of $F S_{N}^{\prime}$.
Let $n=d_{F S_{N}^{\prime}}([\mathcal{A}],[\mathcal{B}])$.
Let U be the set of all vertices of $F S_{N}^{\prime}$ that occur along all folding paths Γ_{m} from $[\mathcal{B}]$ to $[\mathcal{A}]$ in $F S_{N}^{\prime}$ as in the proof of Thm 3.

Is it true that

for some constants $C>0$ and $\alpha \geq 1$ independent of $[\mathcal{A}],[\mathcal{B}]$?

Open problems

Problem 1. Let \mathcal{A}, \mathcal{B} be free bases of F_{N}. Again consider $[\mathcal{A}]$ and $[\mathcal{B}]$ as vertices of $F S_{N}^{\prime}$.
Let $n=d_{F S_{N}^{\prime}}([\mathcal{A}],[\mathcal{B}])$.
Let U be the set of all vertices of $F S_{N}^{\prime}$ that occur along all folding paths $\Gamma_{0}, \ldots, \Gamma_{m}$ from $[\mathcal{B}]$ to $[\mathcal{A}]$ in $F S_{N}^{\prime}$ as in the proof of Thm 3.

Is it true that
for some constants $C>0$ and $\alpha \geq 1$ independent of $[\mathcal{A}],[\mathcal{B}]$?

Open problems

Problem 1. Let \mathcal{A}, \mathcal{B} be free bases of F_{N}. Again consider $[\mathcal{A}]$ and $[\mathcal{B}]$ as vertices of $F S_{N}^{\prime}$.
Let $n=d_{F S_{N}^{\prime}}([\mathcal{A}],[\mathcal{B}])$.
Let U be the set of all vertices of $F S_{N}^{\prime}$ that occur along all folding paths $\Gamma_{0}, \ldots, \Gamma_{m}$ from $[\mathcal{B}]$ to $[\mathcal{A}]$ in $F S_{N}^{\prime}$ as in the proof of Thm 3.

Is it true that

$$
\# U \leq C n^{\alpha}
$$

for some constants $C>0$ and $\alpha \geq 1$ independent of $[\mathcal{A}],[\mathcal{B}]$?

Open problems

Recall that $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible or iwip if there is no power $\phi^{t}(t \neq 0)$ such that ϕ^{t} fixes the conjugacy class of a proper free factor of F_{N}.
Fact: Let $\phi \in \operatorname{Out}\left(F_{N}\right)$. Then exactly one of the following occurs: - ϕ is an iwip and it acts as a hyperbolic isometry on $F F_{N}$ (has a quasi-axis and exactly 2 fixed points at infinity)

- ϕ is not an iwip and some nonzero power ϕ^{t} of ϕ fixes a vertex of $F F_{N}$.

Another model: $F S_{N}^{*}$ has $V\left(F S_{N}^{*}\right)=V\left(F S_{N}\right)$. Two distinct vertices \mathbb{A}, \mathbb{B} of $F S_{N}^{*}$ are adjacent if there exists $w \in F_{N}, w \neq 1$ such that

$$
\mid w\left\|_{\mathbb{A}}=\right\| w \|_{\mathbb{B}}=0
$$ to an elmnt of a vertex group of \mathbb{B}.

Open problems

Recall that $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible or iwip if there is no power $\phi^{t}(t \neq 0)$ such that ϕ^{t} fixes the conjugacy class of a proper free factor of F_{N}.

Fact: Let $\phi \in \operatorname{Out}\left(F_{N}\right)$. Then exactly one of the following occurs:

Another model: $F S_{N}^{*}$ has $V\left(F S_{N}^{*}\right)=V\left(F S_{N}\right)$. Two distinct vertices \mathbb{A}, \mathbb{B} of $F S_{N}^{*}$ are adjacent if there exists $w \in F_{N}, w \neq 1$ such that

$$
\mid w\left\|_{\mathbb{A}}=\right\| w \|_{\mathbb{B}}=0
$$

i.e. w is conjugate to an elmt of a vertex group of \mathbb{A} and w is conjugateto an elmnt of a vertex group of \mathbb{B}.

Open problems

Recall that $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible or iwip if there is no power $\phi^{t}(t \neq 0)$ such that ϕ^{t} fixes the conjugacy class of a proper free factor of F_{N}.
Fact: Let $\phi \in \operatorname{Out}\left(F_{N}\right)$. Then exactly one of the following occurs:

- ϕ is an iwip and it acts as a hyperbolic isometry on $F F_{N}$ (has a quasi-axis and exactly 2 fixed points at infinity)
- ϕ is not an iwip and some nonzero power ϕ^{t} of ϕ fixes a vertex of

Another model: $F S_{N}^{*}$ has $V\left(F S_{N}^{*}\right)=V\left(F S_{N}\right)$.
Two distinct vertices \mathbb{A}, \mathbb{B} of $F S_{N}^{*}$ are adjacent if there exists
$w \in F_{N}, w \neq 1$ such that
$w\left\|_{\mathbb{A}}=\right\| w \|_{\mathbb{B}}=0$
\square to an elmnt of a vertex group of \mathbb{B}.

Open problems

Recall that $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible or iwip if there is no power $\phi^{t}(t \neq 0)$ such that ϕ^{t} fixes the conjugacy class of a proper free factor of F_{N}.
Fact: Let $\phi \in \operatorname{Out}\left(F_{N}\right)$. Then exactly one of the following occurs:

- ϕ is an iwip and it acts as a hyperbolic isometry on $F F_{N}$ (has a quasi-axis and exactly 2 fixed points at infinity)
- ϕ is not an iwip and some nonzero power ϕ^{t} of ϕ fixes a vertex of $F F_{N}$.

Another model: $F S_{N}^{*}$ has $V\left(F S_{N}^{*}\right)=V\left(F S_{N}\right)$.
Two distinct vertices \mathbb{A}, \mathbb{B} of $F S_{N}^{*}$ are adjacent if there exists $w \in F_{N}, w \neq 1$ such that

\square to an elmnt of a vertex group of \mathbb{B}.

Open problems

Recall that $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible or iwip if there is no power $\phi^{t}(t \neq 0)$ such that ϕ^{t} fixes the conjugacy class of a proper free factor of F_{N}.
Fact: Let $\phi \in \operatorname{Out}\left(F_{N}\right)$. Then exactly one of the following occurs:

- ϕ is an iwip and it acts as a hyperbolic isometry on $F F_{N}$ (has a quasi-axis and exactly 2 fixed points at infinity)
- ϕ is not an iwip and some nonzero power ϕ^{t} of ϕ fixes a vertex of $F F_{N}$.

Another model: $F S_{N}^{*}$ has $V\left(F S_{N}^{*}\right)=V\left(F S_{N}\right)$.
Two distinct vertices \mathbb{A}, \mathbb{B} of $F S_{N}^{*}$ are adjacent if there exists $w \in F_{N}, w \neq 1$ such that

\square to an elmnt of a vertex group of \mathbb{B}.

Open problems

Recall that $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible or iwip if there is no power $\phi^{t}(t \neq 0)$ such that ϕ^{t} fixes the conjugacy class of a proper free factor of F_{N}.
Fact: Let $\phi \in \operatorname{Out}\left(F_{N}\right)$. Then exactly one of the following occurs:

- ϕ is an iwip and it acts as a hyperbolic isometry on $F F_{N}$ (has a quasi-axis and exactly 2 fixed points at infinity)
- ϕ is not an iwip and some nonzero power ϕ^{t} of ϕ fixes a vertex of $F F_{N}$.

Another model: $F S_{N}^{*}$ has $V\left(F S_{N}^{*}\right)=V\left(F S_{N}\right)$.
$w \in F_{N}, w \neq 1$ such that
$\mid w\left\|_{\mathbb{A}}=\right\| w \|_{\mathbb{B}}=0$
i.e. w is conjugate to an elmt of a vertex group of \mathbb{A} and w is conjugate to an elmnt of a vertex group of \mathbb{B}.

Open problems

Recall that $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible or iwip if there is no power $\phi^{t}(t \neq 0)$ such that ϕ^{t} fixes the conjugacy class of a proper free factor of F_{N}.
Fact: Let $\phi \in \operatorname{Out}\left(F_{N}\right)$. Then exactly one of the following occurs:

- ϕ is an iwip and it acts as a hyperbolic isometry on $F F_{N}$ (has a quasi-axis and exactly 2 fixed points at infinity)
- ϕ is not an iwip and some nonzero power ϕ^{t} of ϕ fixes a vertex of $F F_{N}$.

Another model: $F S_{N}^{*}$ has $V\left(F S_{N}^{*}\right)=V\left(F S_{N}\right)$.
Two distinct vertices \mathbb{A}, \mathbb{B} of $F S_{N}^{*}$ are adjacent if there exists $w \in F_{N}, w \neq 1$ such that
\square
i.e. w is conjugate to an elmt of a vertex group of \mathbb{A} and w is conjugate to an elmnt of a vertex group of \mathbb{B}.

Open problems

Recall that $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible or iwip if there is no power $\phi^{t}(t \neq 0)$ such that ϕ^{t} fixes the conjugacy class of a proper free factor of F_{N}.
Fact: Let $\phi \in \operatorname{Out}\left(F_{N}\right)$. Then exactly one of the following occurs:

- ϕ is an iwip and it acts as a hyperbolic isometry on $F F_{N}$ (has a quasi-axis and exactly 2 fixed points at infinity)
- ϕ is not an iwip and some nonzero power ϕ^{t} of ϕ fixes a vertex of $F F_{N}$.

Another model: $F S_{N}^{*}$ has $V\left(F S_{N}^{*}\right)=V\left(F S_{N}\right)$.
Two distinct vertices \mathbb{A}, \mathbb{B} of $F S_{N}^{*}$ are adjacent if there exists $w \in F_{N}, w \neq 1$ such that

$$
\|w\|_{\mathbb{A}}=\|w\|_{\mathbb{B}}=0
$$

i.e. w is conjugate to an elmt of a vertex group of \mathbb{A} and w is conjugate

Open problems

Recall that $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible or iwip if there is no power $\phi^{t}(t \neq 0)$ such that ϕ^{t} fixes the conjugacy class of a proper free factor of F_{N}.
Fact: Let $\phi \in \operatorname{Out}\left(F_{N}\right)$. Then exactly one of the following occurs:

- ϕ is an iwip and it acts as a hyperbolic isometry on $F F_{N}$ (has a quasi-axis and exactly 2 fixed points at infinity)
- ϕ is not an iwip and some nonzero power ϕ^{t} of ϕ fixes a vertex of $F F_{N}$.

Another model: $F S_{N}^{*}$ has $V\left(F S_{N}^{*}\right)=V\left(F S_{N}\right)$.
Two distinct vertices \mathbb{A}, \mathbb{B} of $F S_{N}^{*}$ are adjacent if there exists
$w \in F_{N}, w \neq 1$ such that

$$
\|w\|_{\mathbb{A}}=\|w\|_{\mathbb{B}}=0
$$

i.e. w is conjugate to an elmt of a vertex group of \mathbb{A} and w is conjugate to an elmnt of a vertex group of \mathbb{B}.

Open problems

Recall that $\phi \in \operatorname{Out}\left(F_{N}\right)$ is fully irreducible or iwip if there is no power $\phi^{t}(t \neq 0)$ such that ϕ^{t} fixes the conjugacy class of a proper free factor of F_{N}.
Fact: Let $\phi \in \operatorname{Out}\left(F_{N}\right)$. Then exactly one of the following occurs:

- ϕ is an iwip and it acts as a hyperbolic isometry on $F F_{N}$ (has a quasi-axis and exactly 2 fixed points at infinity)
- ϕ is not an iwip and some nonzero power ϕ^{t} of ϕ fixes a vertex of $F F_{N}$.

Another model: $F S_{N}^{*}$ has $V\left(F S_{N}^{*}\right)=V\left(F S_{N}\right)$.
Two distinct vertices \mathbb{A}, \mathbb{B} of $F S_{N}^{*}$ are adjacent if there exists
$w \in F_{N}, w \neq 1$ such that

$$
\|w\|_{\mathbb{A}}=\|w\|_{\mathbb{B}}=0
$$

i.e. w is conjugate to an elmt of a vertex group of \mathbb{A} and w is conjugate to an elmnt of a vertex group of \mathbb{B}.

Open problems

Fact: For $N \geq 3$ the spaces $F F_{N}$ and $F S_{N}^{*}$ are quasi-isometric.
Yet another graph: The graph J_{N} has as its vertex set the set of (minimal nontrivial) splittings $F_{N}=\pi_{1}(\mathbb{A})$ such that \mathbb{A} has one edge and a cyclic (trivial or \mathbb{Z}) edge group. Adjacency is again defined as having a common elliptic element.

Then $F S_{N}^{*}$ is a subgraph of J_{N} and, moreover $V\left(F S_{N}^{*}\right)$ is a 4-dense subset of $V\left(J_{N}\right)$.

Problem 2. Is J_{N} Gromov-hyperbolic?
If $\phi \in \operatorname{Out}\left(F_{N}\right)$ is a geometric iwip (comes from a pseudo-Anosov homeo of a compact surface with one bry component) then ϕ acts on J_{N} with a bounded orbit while ϕ acts as a hyperbolic isometry on $F S_{N}^{*}$.

Open problems

Fact: For $N \geq 3$ the spaces $F F_{N}$ and $F S_{N}^{*}$ are quasi-isometric.
Yet another graph: The graph J_{N} has as its vertex set the set of (minimal nontrivial) splittings $F_{N}=\pi_{1}(\mathbb{A})$ such that \mathbb{A} has one edge and a cyclic (trivial or \mathbb{Z}) edge group. Adjacency is again defined as having a common elliptic element.

Open problems

Fact: For $N \geq 3$ the spaces $F F_{N}$ and $F S_{N}^{*}$ are quasi-isometric.
Yet another graph: The graph J_{N} has as its vertex set the set of (minimal nontrivial) splittings $F_{N}=\pi_{1}(\mathbb{A})$ such that \mathbb{A} has one edge and a cyclic (trivial or \mathbb{Z}) edge group. Adjacency is again defined as having a common elliptic element.

Then $F S_{N}^{*}$ is a subgraph of J_{N} and, moreover $V\left(F S_{N}^{*}\right)$ is a 4-dense subset of $V\left(J_{N}\right)$.

Problem 2. Is J_{N} Gromov-hyperbolic?
If $\phi \in \operatorname{Out}\left(F_{N}\right)$ is a geometric iwip (comes from a pseudo-Anosov homeo of a compact surface with one bry component) then ϕ acts on J_{N} with a bounded orbit while ϕ acts as a hyperbolic isometry on $F S_{N}^{*}$

Open problems

Fact: For $N \geq 3$ the spaces $F F_{N}$ and $F S_{N}^{*}$ are quasi-isometric.
Yet another graph: The graph J_{N} has as its vertex set the set of (minimal nontrivial) splittings $F_{N}=\pi_{1}(\mathbb{A})$ such that \mathbb{A} has one edge and a cyclic (trivial or \mathbb{Z}) edge group. Adjacency is again defined as having a common elliptic element.

Then $F S_{N}^{*}$ is a subgraph of J_{N} and, moreover $V\left(F S_{N}^{*}\right)$ is a 4-dense subset of $V\left(J_{N}\right)$.

Problem 2. Is J_{N} Gromov-hyperbolic?

Open problems

Fact: For $N \geq 3$ the spaces $F F_{N}$ and $F S_{N}^{*}$ are quasi-isometric.
Yet another graph: The graph J_{N} has as its vertex set the set of (minimal nontrivial) splittings $F_{N}=\pi_{1}(\mathbb{A})$ such that \mathbb{A} has one edge and a cyclic (trivial or \mathbb{Z}) edge group. Adjacency is again defined as having a common elliptic element.
Then $F S_{N}^{*}$ is a subgraph of J_{N} and, moreover $V\left(F S_{N}^{*}\right)$ is a 4-dense subset of $V\left(J_{N}\right)$.
Problem 2. Is J_{N} Gromov-hyperbolic?
If $\phi \in \operatorname{Out}\left(F_{N}\right)$ is a geometric iwip (comes from a pseudo-Anosov homeo of a compact surface with one bry component) then ϕ acts on J_{N} with a bounded orbit while ϕ acts as a hyperbolic isometry on $F S_{N}^{*}$.

[^0]: Higher-dimensional simplices are defined similarly.

