On hyperbolicity of the free splitting and free factor complexes

Ilya Kapovich

University of Illinois

at Urbana-Champaign

Based on joint work with Kasra Rafi arXiv:1206.3626

July 31, 2012; Düsseldorff

Dr. Gillian Taylor: "Don't tell me, you're from outer space." Captain Kirk: "No, I'm from Iowa. I only work in outer space."

The 1986 movie Star Trek IV: The Voyage Home

"Outer space is no place for a person of breeding." Lady Violet Bonham Carter

"Interestingly, according to modern astronomers, space is finite. This is a very comforting thought - particularly for people who cannot remember where they left things." *Woody Allen*

"Space is almost infinite. As a matter of fact, we think it is infinite." Dan Quale

< 67 ►

- ② Free splitting and free factor complexes for F_N
- Statement of the main result
- Bowditch criterion of hyperbolicity and its implications
- Free bases graph
- Sketch of the proof of the main result
- Open problems (time permitting)

- ² Free splitting and free factor complexes for F_N
- Statement of the main result
- Bowditch criterion of hyperbolicity and its implications
- Free bases graph
- Sketch of the proof of the main result
- Open problems (time permitting)

- 2 Free splitting and free factor complexes for F_N
- Statement of the main result
- Bowditch criterion of hyperbolicity and its implications
- Free bases graph
- Sketch of the proof of the main result
- Open problems (time permitting)

- 2 Free splitting and free factor complexes for F_N
- Statement of the main result
- Bowditch criterion of hyperbolicity and its implications
- 5 Free bases graph
- Sketch of the proof of the main result
- Open problems (time permitting)

- 2 Free splitting and free factor complexes for F_N
- Statement of the main result
- Bowditch criterion of hyperbolicity and its implications
- 5 Free bases graph
- Sketch of the proof of the main result
- Open problems (time permitting)

- 2 Free splitting and free factor complexes for F_N
- Statement of the main result
- Bowditch criterion of hyperbolicity and its implications
- Free bases graph
- Sketch of the proof of the main result
- Open problems (time permitting)

- 2 Free splitting and free factor complexes for F_N
- Statement of the main result
- Bowditch criterion of hyperbolicity and its implications
- Free bases graph
- Sketch of the proof of the main result

Open problems (time permitting)

- 2 Free splitting and free factor complexes for F_N
- Statement of the main result
- Bowditch criterion of hyperbolicity and its implications
- Free bases graph
- Sketch of the proof of the main result
- Open problems (time permitting)

Let *S* be a closed surface of negative Euler char. The *curve complex* C(S), introduced by Harvey in 1970s, has the vertex set consisting of free homotopy classes [α] of essential simple closed curves on *S*.

Two distinct vertices $[\alpha], [\beta]$ are joined by an edge if there exist disjoint representatives α, β of $[\alpha], [\beta]$. Higher-dimensional simplices are defined similarly.

The mapping class group Mod(S) acts on $\mathcal{C}(S)$ by simplicial automorphisms.

Let *S* be a closed surface of negative Euler char. The *curve complex* C(S), introduced by Harvey in 1970s, has the vertex set consisting of free homotopy classes [α] of essential simple closed curves on *S*.

Two distinct vertices $[\alpha], [\beta]$ are joined by an edge if there exist disjoint representatives α, β of $[\alpha], [\beta]$. Higher-dimensional simplices are defined similarly.

The mapping class group Mod(S) acts on $\mathcal{C}(S)$ by simplicial automorphisms.

Let *S* be a closed surface of negative Euler char. The *curve complex* C(S), introduced by Harvey in 1970s, has the vertex set consisting of free homotopy classes [α] of essential simple closed curves on *S*.

Two distinct vertices $[\alpha], [\beta]$ are joined by an edge if there exist disjoint representatives α, β of $[\alpha], [\beta]$. Higher-dimensional simplices are defined similarly.

The mapping class group Mod(S) acts on $\mathcal{C}(S)$ by simplicial automorphisms.

- Let *S* be a closed surface of negative Euler char. The *curve complex* C(S), introduced by Harvey in 1970s, has the vertex set consisting of free homotopy classes [α] of essential simple closed curves on *S*.
- Two distinct vertices $[\alpha], [\beta]$ are joined by an edge if there exist disjoint representatives α, β of $[\alpha], [\beta]$. Higher-dimensional simplices are defined similarly.

The mapping class group Mod(S) acts on C(S) by simplicial automorphisms.

- (1) C(S) is connected and dim $C(S) < \infty$
- (2) C(S) is locally infinite
- (3) C(S) has infinite diameter
- (4) [Masur-Minsky, late 1990s]) C(S) is Gromov-hyperbolic.

The curve complex C(S) has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_N ? Any "nice" complexes with natural $Out(F_N)$ -action?

Several analogs of C(S) for F_N were suggested in recent years.

- (1) $\mathcal{C}(S)$ is connected and dim $\mathcal{C}(S) < \infty$
- (2) C(S) is locally infinite
- (3) C(S) has infinite diameter
- (4) [Masur-Minsky, late 1990s]) C(S) is Gromov-hyperbolic.

The curve complex C(S) has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_N ? Any "nice" complexes with natural $Out(F_N)$ -action?

Several analogs of C(S) for F_N were suggested in recent years.

(1) $\mathcal{C}(S)$ is connected and dim $\mathcal{C}(S) < \infty$

(2) C(S) is locally infinite

(3) C(S) has infinite diameter

(4) [Masur-Minsky, late 1990s]) $\mathcal{C}(S)$ is Gromov-hyperbolic.

The curve complex C(S) has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_N ? Any "nice" complexes with natural $Out(F_N)$ -action?

Several analogs of C(S) for F_N were suggested in recent years.

- (1) $\mathcal{C}(S)$ is connected and dim $\mathcal{C}(S) < \infty$
- (2) $\mathcal{C}(S)$ is locally infinite
- (3) C(S) has infinite diameter
- (4) [Masur-Minsky, late 1990s]) $\mathcal{C}(S)$ is Gromov-hyperbolic.

The curve complex C(S) has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_N ? Any "nice" complexes with natural $Out(F_N)$ -action?

Several analogs of C(S) for F_N were suggested in recent years.

- (1) $\mathcal{C}(\textbf{\textit{S}})$ is connected and $\dim \mathcal{C}(\textbf{\textit{S}}) < \infty$
- (2) $\mathcal{C}(S)$ is locally infinite
- (3) C(S) has infinite diameter

(4) [Masur-Minsky, late 1990s]) C(S) is Gromov-hyperbolic.

The curve complex C(S) has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_N ? Any "nice" complexes with natural $Out(F_N)$ -action?

Several analogs of C(S) for F_N were suggested in recent years.

- (1) $\mathcal{C}(\textbf{\textit{S}})$ is connected and $\dim \mathcal{C}(\textbf{\textit{S}}) < \infty$
- (2) C(S) is locally infinite
- (3) $\mathcal{C}(S)$ has infinite diameter
- (4) [Masur-Minsky, late 1990s]) $\mathcal{C}(S)$ is Gromov-hyperbolic.

The curve complex C(S) has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_N ? Any "nice" complexes with natural $Out(F_N)$ -action?

Several analogs of C(S) for F_N were suggested in recent years.

- (1) $\mathcal{C}(\textit{S})$ is connected and $\dim \mathcal{C}(\textit{S}) < \infty$
- (2) C(S) is locally infinite
- (3) $\mathcal{C}(S)$ has infinite diameter
- (4) [Masur-Minsky, late 1990s]) C(S) is Gromov-hyperbolic.

The curve complex C(S) has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_N ? Any "nice" complexes with natural $Out(F_N)$ -action?

Several analogs of C(S) for F_N were suggested in recent years.

- (1) $\mathcal{C}(\textit{S})$ is connected and $\dim \mathcal{C}(\textit{S}) < \infty$
- (2) C(S) is locally infinite
- (3) $\mathcal{C}(S)$ has infinite diameter
- (4) [Masur-Minsky, late 1990s]) C(S) is Gromov-hyperbolic.

The curve complex C(S) has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_N ? Any "nice" complexes with natural $Out(F_N)$ -action?

Several analogs of C(S) for F_N were suggested in recent years.

- (1) $\mathcal{C}(\textit{S})$ is connected and $\dim \mathcal{C}(\textit{S}) < \infty$
- (2) C(S) is locally infinite
- (3) $\mathcal{C}(S)$ has infinite diameter
- (4) [Masur-Minsky, late 1990s]) C(S) is Gromov-hyperbolic.

The curve complex C(S) has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_N ? Any "nice" complexes with natural $Out(F_N)$ -action?

Several analogs of C(S) for F_N were suggested in recent years.

- (1) $\mathcal{C}(\textit{S})$ is connected and $\dim \mathcal{C}(\textit{S}) < \infty$
- (2) C(S) is locally infinite
- (3) $\mathcal{C}(S)$ has infinite diameter
- (4) [Masur-Minsky, late 1990s]) C(S) is Gromov-hyperbolic.

The curve complex C(S) has many applications in the study of mapping class groups and of Teichmuller space, of Kleinian groups and of 3-manifolds.

Question: What about a free group F_N ? Any "nice" complexes with natural $Out(F_N)$ -action?

Several analogs of C(S) for F_N were suggested in recent years.

Defn. The *free splitting complex* FS_N has as its vertex set the set of "elementary free splittings" $F_N = \pi_1(\mathbb{A})$ where \mathbb{A} is a (minimal nontrivial) graph of groups with a single edge (possibly a loop-edge) and the trivial edge group. Two such splittings are considered equal if their Bass-Serre trees are F_N -equivariantly isomorphic.

E.g. $F_N = A * B$ and $F_N = gAg^{-1} * gBg^{-1}$ are equal in FS_N .

Adjacency in FS_N corresponds to two splittings $F_N = \pi_1(\mathbb{A}_1)$ and $F_N = \pi_1(\mathbb{A}_2)$ admitting a *common refinement*, i.e. a splitting $F_N = \pi_1(\mathbb{B})$ where \mathbb{B} has TWO edges e_1, e_2 , both with trivial edge groups, and where for i = 1, 2 collapsing the edge e_i produces the splitting $F_N = \pi_1(\mathbb{A}_i)$.

E.g. if $F_N = A * B * C$ (with $A, B, C \neq \{1\}$) then the splittings $F_N = A * (B * C)$ and $F_N = (A * B) * C$ are adjacent vertices in FS_N .

Higher-dimensional simplices are defined similarly.

Ilya Kapovich (UIUC)

Defn. The *free splitting complex* FS_N has as its vertex set the set of "elementary free splittings" $F_N = \pi_1(\mathbb{A})$ where \mathbb{A} is a (minimal nontrivial) graph of groups with a single edge (possibly a loop-edge) and the trivial edge group. Two such splittings are considered equal if their Bass-Serre trees are F_N -equivariantly isomorphic.

E.g. $F_N = A * B$ and $F_N = gAg^{-1} * gBg^{-1}$ are equal in FS_N .

Adjacency in FS_N corresponds to two splittings $F_N = \pi_1(\mathbb{A}_1)$ and $F_N = \pi_1(\mathbb{A}_2)$ admitting a *common refinement*, i.e. a splitting $F_N = \pi_1(\mathbb{B})$ where \mathbb{B} has TWO edges e_1, e_2 , both with trivial edge groups, and where for i = 1, 2 collapsing the edge e_i produces the splitting $F_N = \pi_1(\mathbb{A}_i)$.

E.g. if $F_N = A * B * C$ (with $A, B, C \neq \{1\}$) then the splittings $F_N = A * (B * C)$ and $F_N = (A * B) * C$ are adjacent vertices in FS_N .

Higher-dimensional simplices are defined similarly.

Ilya Kapovich (UIUC)

Defn. The *free splitting complex* FS_N has as its vertex set the set of "elementary free splittings" $F_N = \pi_1(\mathbb{A})$ where \mathbb{A} is a (minimal nontrivial) graph of groups with a single edge (possibly a loop-edge) and the trivial edge group. Two such splittings are considered equal if their Bass-Serre trees are F_N -equivariantly isomorphic.

E.g. $F_N = A * B$ and $F_N = gAg^{-1} * gBg^{-1}$ are equal in FS_N .

Adjacency in FS_N corresponds to two splittings $F_N = \pi_1(\mathbb{A}_1)$ and $F_N = \pi_1(\mathbb{A}_2)$ admitting a *common refinement*, i.e. a splitting $F_N = \pi_1(\mathbb{B})$ where \mathbb{B} has TWO edges e_1, e_2 , both with trivial edge groups, and where for i = 1, 2 collapsing the edge e_i produces the splitting $F_N = \pi_1(\mathbb{A}_i)$.

E.g. if $F_N = A * B * C$ (with $A, B, C \neq \{1\}$) then the splittings $F_N = A * (B * C)$ and $F_N = (A * B) * C$ are adjacent vertices in FS_N .

Higher-dimensional simplices are defined similarly.

Ilya Kapovich (UIUC)

Defn. The *free splitting complex* FS_N has as its vertex set the set of "elementary free splittings" $F_N = \pi_1(\mathbb{A})$ where \mathbb{A} is a (minimal nontrivial) graph of groups with a single edge (possibly a loop-edge) and the trivial edge group. Two such splittings are considered equal if their Bass-Serre trees are F_N -equivariantly isomorphic.

E.g. $F_N = A * B$ and $F_N = gAg^{-1} * gBg^{-1}$ are equal in FS_N .

Adjacency in FS_N corresponds to two splittings $F_N = \pi_1(\mathbb{A}_1)$ and $F_N = \pi_1(\mathbb{A}_2)$ admitting a *common refinement*, i.e. a splitting $F_N = \pi_1(\mathbb{B})$ where \mathbb{B} has TWO edges e_1, e_2 , both with trivial edge groups, and where for i = 1, 2 collapsing the edge e_i produces the splitting $F_N = \pi_1(\mathbb{A}_i)$.

E.g. if $F_N = A * B * C$ (with $A, B, C \neq \{1\}$) then the splittings $F_N = A * (B * C)$ and $F_N = (A * B) * C$ are adjacent vertices in FS_N .

Higher-dimensional simplices are defined similarly.

Ilya Kapovich (UIUC)

Defn. The *free splitting complex* FS_N has as its vertex set the set of "elementary free splittings" $F_N = \pi_1(\mathbb{A})$ where \mathbb{A} is a (minimal nontrivial) graph of groups with a single edge (possibly a loop-edge) and the trivial edge group. Two such splittings are considered equal if their Bass-Serre trees are F_N -equivariantly isomorphic.

E.g. $F_N = A * B$ and $F_N = gAg^{-1} * gBg^{-1}$ are equal in FS_N .

Adjacency in FS_N corresponds to two splittings $F_N = \pi_1(\mathbb{A}_1)$ and $F_N = \pi_1(\mathbb{A}_2)$ admitting a *common refinement*, i.e. a splitting $F_N = \pi_1(\mathbb{B})$ where \mathbb{B} has TWO edges e_1, e_2 , both with trivial edge groups, and where for i = 1, 2 collapsing the edge e_i produces the splitting $F_N = \pi_1(\mathbb{A}_i)$.

E.g. if $F_N = A * B * C$ (with $A, B, C \neq \{1\}$) then the splittings $F_N = A * (B * C)$ and $F_N = (A * B) * C$ are adjacent vertices in FS_N .

Higher-dimensional simplices are defined similarly.

Ilya Kapovich (UIUC)

Defn. The *free splitting complex* FS_N has as its vertex set the set of "elementary free splittings" $F_N = \pi_1(\mathbb{A})$ where \mathbb{A} is a (minimal nontrivial) graph of groups with a single edge (possibly a loop-edge) and the trivial edge group. Two such splittings are considered equal if their Bass-Serre trees are F_N -equivariantly isomorphic.

E.g. $F_N = A * B$ and $F_N = gAg^{-1} * gBg^{-1}$ are equal in FS_N .

Adjacency in FS_N corresponds to two splittings $F_N = \pi_1(\mathbb{A}_1)$ and $F_N = \pi_1(\mathbb{A}_2)$ admitting a *common refinement*, i.e. a splitting $F_N = \pi_1(\mathbb{B})$ where \mathbb{B} has TWO edges e_1, e_2 , both with trivial edge groups, and where for i = 1, 2 collapsing the edge e_i produces the splitting $F_N = \pi_1(\mathbb{A}_i)$.

E.g. if $F_N = A * B * C$ (with $A, B, C \neq \{1\}$) then the splittings $F_N = A * (B * C)$ and $F_N = (A * B) * C$ are adjacent vertices in FS_N .

Higher-dimensional simplices are defined similarly.

Ilya Kapovich (UIUC)

Defn. The *free splitting complex* FS_N has as its vertex set the set of "elementary free splittings" $F_N = \pi_1(\mathbb{A})$ where \mathbb{A} is a (minimal nontrivial) graph of groups with a single edge (possibly a loop-edge) and the trivial edge group. Two such splittings are considered equal if their Bass-Serre trees are F_N -equivariantly isomorphic.

E.g. $F_N = A * B$ and $F_N = gAg^{-1} * gBg^{-1}$ are equal in FS_N .

Adjacency in FS_N corresponds to two splittings $F_N = \pi_1(\mathbb{A}_1)$ and $F_N = \pi_1(\mathbb{A}_2)$ admitting a *common refinement*, i.e. a splitting $F_N = \pi_1(\mathbb{B})$ where \mathbb{B} has TWO edges e_1, e_2 , both with trivial edge groups, and where for i = 1, 2 collapsing the edge e_i produces the splitting $F_N = \pi_1(\mathbb{A}_i)$.

E.g. if $F_N = A * B * C$ (with $A, B, C \neq \{1\}$) then the splittings $F_N = A * (B * C)$ and $F_N = (A * B) * C$ are adjacent vertices in FS_N .

Higher-dimensional simplices are defined similarly.

Ilya Kapovich (UIUC)

- **Defn.** The *free factor complex* FF_N has as its vertex set the set of conjugacy classes [A] of proper free factors A of F_N .
- Two distinct vertices [A], [B] are adjacent in FF_N if there exist representatives A of [A] and B of [B] such that $A \leq B$ or $B \leq A$.
- Higher-dimensional simplices are defined similarly.

Defn. The *free factor complex* FF_N has as its vertex set the set of conjugacy classes [A] of proper free factors A of F_N .

Two distinct vertices [A], [B] are adjacent in FF_N if there exist representatives A of [A] and B of [B] such that $A \leq B$ or $B \leq A$.

Higher-dimensional simplices are defined similarly.

- **Defn.** The *free factor complex* FF_N has as its vertex set the set of conjugacy classes [A] of proper free factors A of F_N .
- Two distinct vertices [A], [B] are adjacent in FF_N if there exist representatives A of [A] and B of [B] such that $A \leq B$ or $B \leq A$.

Higher-dimensional simplices are defined similarly.

- **Defn.** The *free factor complex* FF_N has as its vertex set the set of conjugacy classes [A] of proper free factors A of F_N .
- Two distinct vertices [A], [B] are adjacent in FF_N if there exist representatives A of [A] and B of [B] such that $A \leq B$ or $B \leq A$.

Higher-dimensional simplices are defined similarly.

< A >

Facts. Let $N \ge 3$. Then:

(1) Both FS_N and FF_N are connected, finite-dimensional and admit natural co-compact $Out(F_N)$ -actions.

(2) Both FS_N and FF_N are locally infinite.

(3) Both FS_N and FF_N have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)

(4) If $\phi \in Out(F_N)$ is fully irreducible (iwip) then ϕ acts on FS_N and FF_N with positive asymptotic translation length (Bestvina-Feighn '10)

(5) There is a canonical $Out(F_N)$ -equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau : FS_N^{(0)} \to FF_N^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A} . The image $\tau(\mathbb{A})$ of a vertex of FS_N has diameter ≤ 2 in FF_N .

E.g. $\tau(F_N = A * B) = \{[A], [B]\}.$

Facts. Let $N \ge 3$. Then:

(1) Both FS_N and FF_N are connected, finite-dimensional and admit natural co-compact $Out(F_N)$ -actions.

(2) Both FS_N and FF_N are locally infinite.

(3) Both FS_N and FF_N have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)

(4) If $\phi \in Out(F_N)$ is fully irreducible (iwip) then ϕ acts on FS_N and FF_N with positive asymptotic translation length (Bestvina-Feighn '10)

(5) There is a canonical $Out(F_N)$ -equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau : FS_N^{(0)} \to FF_N^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A} . The image $\tau(\mathbb{A})$ of a vertex of FS_N has diameter ≤ 2 in FF_N .

E.g. $\tau(F_N = A * B) = \{[A], [B]\}.$

Facts. Let $N \ge 3$. Then: (1) Both FS_N and FF_N are connected, finite-dimensional and admit natural co-compact $Out(F_N)$ -actions.

(2) Both FS_N and FF_N are locally infinite.

(3) Both FS_N and FF_N have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)

(4) If $\phi \in Out(F_N)$ is fully irreducible (iwip) then ϕ acts on FS_N and FF_N with positive asymptotic translation length (Bestvina-Feighn '10)

(5) There is a canonical $Out(F_N)$ -equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau : FS_N^{(0)} \to FF_N^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A} . The image $\tau(\mathbb{A})$ of a vertex of FS_N has diameter ≤ 2 in FF_N .

E.g. $\tau(F_N = A * B) = \{[A], [B]\}.$

Facts. Let $N \ge 3$. Then:

(1) Both FS_N and FF_N are connected, finite-dimensional and admit natural co-compact $Out(F_N)$ -actions.

(2) Both FS_N and FF_N are locally infinite.

(3) Both FS_N and FF_N have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)

(4) If $\phi \in Out(F_N)$ is fully irreducible (iwip) then ϕ acts on FS_N and FF_N with positive asymptotic translation length (Bestvina-Feighn '10)

(5) There is a canonical $Out(F_N)$ -equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau : FS_N^{(0)} \to FF_N^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A} . The image $\tau(\mathbb{A})$ of a vertex of FS_N has diameter ≤ 2 in FF_N .

E.g. $\tau(F_N = A * B) = \{[A], [B]\}.$

Facts. Let $N \ge 3$. Then:

(1) Both FS_N and FF_N are connected, finite-dimensional and admit natural co-compact $Out(F_N)$ -actions.

(2) Both FS_N and FF_N are locally infinite.

(3) Both FS_N and FF_N have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)

(4) If $\phi \in Out(F_N)$ is fully irreducible (iwip) then ϕ acts on FS_N and FF_N with positive asymptotic translation length (Bestvina-Feighn '10)

(5) There is a canonical $Out(F_N)$ -equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau : FS_N^{(0)} \to FF_N^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A} . The image $\tau(\mathbb{A})$ of a vertex of FS_N has diameter ≤ 2 in FF_N .

E.g. $\tau(F_N = A * B) = \{[A], [B]\}.$

Facts. Let $N \ge 3$. Then:

(1) Both FS_N and FF_N are connected, finite-dimensional and admit natural co-compact $Out(F_N)$ -actions.

(2) Both FS_N and FF_N are locally infinite.

(3) Both FS_N and FF_N have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)

(4) If $\phi \in Out(F_N)$ is fully irreducible (iwip) then ϕ acts on FS_N and FF_N with positive asymptotic translation length (Bestvina-Feighn '10)

(5) There is a canonical $Out(F_N)$ -equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau : FS_N^{(0)} \to FF_N^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A} . The image $\tau(\mathbb{A})$ of a vertex of FS_N has diameter ≤ 2 in FF_N .

E.g. $\tau(F_N = A * B) = \{[A], [B]\}.$

Facts. Let $N \ge 3$. Then:

(1) Both FS_N and FF_N are connected, finite-dimensional and admit natural co-compact $Out(F_N)$ -actions.

(2) Both FS_N and FF_N are locally infinite.

(3) Both FS_N and FF_N have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)

(4) If $\phi \in Out(F_N)$ is fully irreducible (iwip) then ϕ acts on FS_N and FF_N with positive asymptotic translation length (Bestvina-Feighn '10)

(5) There is a canonical $Out(F_N)$ -equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau : FS_N^{(0)} \to FF_N^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A} . The image $\tau(\mathbb{A})$ of a vertex of FS_N has diameter ≤ 2 in FF_N .

E.g. $\tau(F_N = A * B) = \{[A], [B]\}.$

Facts. Let $N \ge 3$. Then:

(1) Both FS_N and FF_N are connected, finite-dimensional and admit natural co-compact $Out(F_N)$ -actions.

(2) Both FS_N and FF_N are locally infinite.

(3) Both FS_N and FF_N have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)

(4) If $\phi \in Out(F_N)$ is fully irreducible (iwip) then ϕ acts on FS_N and FF_N with positive asymptotic translation length (Bestvina-Feighn '10)

(5) There is a canonical $Out(F_N)$ -equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau : FS_N^{(0)} \to FF_N^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A} . The image $\tau(\mathbb{A})$ of a vertex of FS_N has diameter ≤ 2 in FF_N .

E.g. $\tau(F_N = A * B) = \{[A], [B]\}.$

Facts. Let $N \ge 3$. Then:

(1) Both FS_N and FF_N are connected, finite-dimensional and admit natural co-compact $Out(F_N)$ -actions.

(2) Both FS_N and FF_N are locally infinite.

(3) Both FS_N and FF_N have infinite diameter. (Kapovich-Lustig '09, Behrstock-Bestvina-Clay '10)

(4) If $\phi \in Out(F_N)$ is fully irreducible (iwip) then ϕ acts on FS_N and FF_N with positive asymptotic translation length (Bestvina-Feighn '10)

(5) There is a canonical $Out(F_N)$ -equivariant coarsely Lipschitz and coarsely surjective "multi-function" $\tau : FS_N^{(0)} \to FF_N^{(0)}$ where $\tau(\mathbb{A})$ is the set of conjugacy classes of vertex groups of \mathbb{A} . The image $\tau(\mathbb{A})$ of a vertex of FS_N has diameter ≤ 2 in FF_N .

E.g.
$$\tau(F_N = A * B) = \{[A], [B]\}.$$

< 🗗 ▶

Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308] For any $N \ge 3$ the free factor complex FF_N is Gromov-hyperbolic.

Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994] For any $N \ge 3$ the free splitting complex FS_N is Gromov-hyperbolic.

The proofs are rather different, although both are long and complicated. However, it appears that the Handel-Mosher proof admits significant simplification.

Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308] For any $N \ge 3$ the free factor complex FF_N is Gromov-hyperbolic.

Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994] For any $N \ge 3$ the free splitting complex FS_N is Gromov-hyperbolic.

The proofs are rather different, although both are long and complicated. However, it appears that the Handel-Mosher proof admits significant simplification.

Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308] For any $N \ge 3$ the free factor complex FF_N is Gromov-hyperbolic.

Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994] For any $N \ge 3$ the free splitting complex FS_N is Gromov-hyperbolic.

The proofs are rather different, although both are long and complicated. However, it appears that the Handel-Mosher proof admits significant simplification.

Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308] For any $N \ge 3$ the free factor complex FF_N is Gromov-hyperbolic.

Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994] For any $N \ge 3$ the free splitting complex FS_N is Gromov-hyperbolic.

The proofs are rather different, although both are long and complicated. However, it appears that the Handel-Mosher proof admits significant simplification.

Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308] For any $N \ge 3$ the free factor complex FF_N is Gromov-hyperbolic.

Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994] For any $N \ge 3$ the free splitting complex FS_N is Gromov-hyperbolic.

The proofs are rather different, although both are long and complicated. However, it appears that the Handel-Mosher proof admits significant simplification.

< 67 ►

Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308] For any $N \ge 3$ the free factor complex FF_N is Gromov-hyperbolic.

Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994] For any $N \ge 3$ the free splitting complex FS_N is Gromov-hyperbolic.

The proofs are rather different, although both are long and complicated. However, it appears that the Handel-Mosher proof admits significant simplification.

Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308] For any $N \ge 3$ the free factor complex FF_N is Gromov-hyperbolic.

Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994] For any $N \ge 3$ the free splitting complex FS_N is Gromov-hyperbolic.

The proofs are rather different, although both are long and complicated. However, it appears that the Handel-Mosher proof admits significant simplification.

In a new paper with Kasra Rafi (June 2012, arxiv:1206.3626) we derive Theorem 1 from the Handel-Mosher proof of Theorem 2.

Specifically, we only use the fact that FS_N is hyperbolic and the conclusion of one of the propositions in the Handel-Mosher paper.

Thus we obtain: **Theorem 3.** Let $N \ge 3$. Then: (1) The free factor complex *EE* is Gromov

(2) There exists C = C(N) such that for any vertices $x, y \in FS_N$ the path $\tau([x, y])$ is C-Hausdorff close to any geodesic $[\tau(x), \tau(y)]$ in FF_N .

Here $\tau : FS_N \rightarrow FF_N$ is the canonical "multi-function" described earlier.

Thus we obtain: **Theorem 3.** Let $N \ge 3$. Then: (1) The free factor complex FF_N is Gromov-hyperbolic.

(2) There exists C = C(N) such that for any vertices $x, y \in FS_N$ the path $\tau([x, y])$ is C-Hausdorff close to any geodesic $[\tau(x), \tau(y)]$ in FF_N .

Here $\tau : FS_N \rightarrow FF_N$ is the canonical "multi-function" described earlier.

Thus we obtain:

Theorem 3. Let $N \ge 3$. Then:

(1) The free factor complex FF_N is Gromov-hyperbolic.

(2) There exists C = C(N) such that for any vertices $x, y \in FS_N$ the path $\tau([x, y])$ is C-Hausdorff close to any geodesic $[\tau(x), \tau(y)]$ in FF_N .

Here $\tau : FS_N \rightarrow FF_N$ is the canonical "multi-function" described earlier.

Thus we obtain: **Theorem 3.** Let $N \ge 3$. Then:

(1) The free factor complex FF_N is Gromov-hyperbolic.

(2) There exists C = C(N) such that for any vertices $x, y \in FS_N$ the path $\tau([x, y])$ is C-Hausdorff close to any geodesic $[\tau(x), \tau(y)]$ in FF_N .

Here $\tau : FS_N \rightarrow FF_N$ is the canonical "multi-function" described earlier.

Thus we obtain: **Theorem 3.** Let $N \ge 3$. Then: (1) The free factor complex FF_N is Gromov-hyperbolic.

(2) There exists C = C(N) such that for any vertices $x, y \in FS_N$ the path $\tau([x, y])$ is C-Hausdorff close to any geodesic $[\tau(x), \tau(y)]$ in FF_N .

Here $\tau : FS_N \rightarrow FF_N$ is the canonical "multi-function" described earlier.

Thus we obtain:

Theorem 3. Let $N \ge 3$. Then:

(1) The free factor complex FF_N is Gromov-hyperbolic.

(2) There exists C = C(N) such that for any vertices $x, y \in FS_N$ the path $\tau([x, y])$ is C-Hausdorff close to any geodesic $[\tau(x), \tau(y)]$ in FF_N .

Here $\tau : FS_N \rightarrow FF_N$ is the canonical "multi-function" described earlier.

< A >

Thus we obtain:

Theorem 3. Let $N \ge 3$. Then:

(1) The free factor complex FF_N is Gromov-hyperbolic.

(2) There exists C = C(N) such that for any vertices $x, y \in FS_N$ the path $\tau([x, y])$ is C-Hausdorff close to any geodesic $[\tau(x), \tau(y)]$ in FF_N .

Here $\tau : FS_N \rightarrow FF_N$ is the canonical "multi-function" described earlier.

< A >

Thus we obtain:

Theorem 3. Let $N \ge 3$. Then:

(1) The free factor complex FF_N is Gromov-hyperbolic.

(2) There exists C = C(N) such that for any vertices $x, y \in FS_N$ the path $\tau([x, y])$ is C-Hausdorff close to any geodesic $[\tau(x), \tau(y)]$ in FF_N .

Here $\tau : FS_N \rightarrow FF_N$ is the canonical "multi-function" described earlier.

< A >

Defn.[Thin structure] Let *X* be a connected graph with simplicial metric d_X .Let $\mathcal{G} = \{g_{x,y} | x, y \in V(X)\}$ be a family of edge-paths in *X* such that for any vertices x, y of $X \beta_{x,y}$ is a path from *x* to *y* in *X*. Let $\Phi : V(X) \times V(X) \times V(X) \rightarrow V(X)$ be a function such that for any $a, b, c \in V(X)$,

$$\Phi(a,b,c) = \Phi(b,c,a) = \Phi(c,a,b).$$

Assume, for constant B_1 and B_2 that \mathcal{G} and Φ have the following properties:

Defn.[Thin structure] Let *X* be a connected graph with simplicial metric d_X .Let $\mathcal{G} = \{g_{x,y} | x, y \in V(X)\}$ be a family of edge-paths in *X* such that for any vertices x, y of $X \beta_{x,y}$ is a path from x to y in *X*. Let $\Phi : V(X) \times V(X) \times V(X) \rightarrow V(X)$ be a function such that for any $a, b, c \in V(X)$,

$$\Phi(a,b,c) = \Phi(b,c,a) = \Phi(c,a,b).$$

Assume, for constant B_1 and B_2 that \mathcal{G} and Φ have the following properties:

Defn.[Thin structure] Let *X* be a connected graph with simplicial metric d_X .Let $\mathcal{G} = \{g_{x,y} | x, y \in V(X)\}$ be a family of edge-paths in *X* such that for any vertices x, y of $X \beta_{x,y}$ is a path from x to y in *X*. Let $\Phi : V(X) \times V(X) \times V(X) \rightarrow V(X)$ be a function such that for any $a, b, c \in V(X)$,

$$\Phi(a,b,c) = \Phi(b,c,a) = \Phi(c,a,b).$$

Assume, for constant B_1 and B_2 that \mathcal{G} and Φ have the following properties:

Defn.[Thin structure] Let *X* be a connected graph with simplicial metric d_X .Let $\mathcal{G} = \{g_{x,y} | x, y \in V(X)\}$ be a family of edge-paths in *X* such that for any vertices x, y of $X \beta_{x,y}$ is a path from x to y in *X*. Let $\Phi : V(X) \times V(X) \times V(X) \rightarrow V(X)$ be a function such that for any $a, b, c \in V(X)$,

$$\Phi(a,b,c) = \Phi(b,c,a) = \Phi(c,a,b).$$

Assume, for constant B_1 and B_2 that \mathcal{G} and Φ have the following properties:

Defn.[Thin structure] Let *X* be a connected graph with simplicial metric d_X .Let $\mathcal{G} = \{g_{x,y} | x, y \in V(X)\}$ be a family of edge-paths in *X* such that for any vertices x, y of $X \beta_{x,y}$ is a path from x to y in *X*. Let $\Phi : V(X) \times V(X) \times V(X) \rightarrow V(X)$ be a function such that for any $a, b, c \in V(X)$,

$$\Phi(a,b,c) = \Phi(b,c,a) = \Phi(c,a,b).$$

Assume, for constant B_1 and B_2 that G and Φ have the following properties:

- For $x, y \in V(X)$, the Hausdorff distance between $\beta_{x,y}$ and $\beta_{y,x}$ is at most B_2 .
- ② For, $x, y \in V(X)$, $\beta_{x,y}$: [0, *I*] → X, $s, t \in [0, I]$ and $a, b \in V(X)$, assume that

 $d_X(a,eta_{X,y}(s))\leq B_1$ and $d_X(b,eta_{X,y}(t))\leq B_1.$

Then, the Hausdorff distance between $\beta_{a,b}$ and $\beta_{x,y}|_{[s,t]}$ is at most B_2 .

■ For any *a*, *b*, *c* ∈ *V*(*X*), the vertex Φ(a, b, c) is contained in a *B*₂-neighborhood of $β_{a,b}$.

Then, we say that the pair (\mathcal{G}, Φ) is a (B_1, B_2) -thin triangles structure on X.

- For $x, y \in V(X)$, the Hausdorff distance between $\beta_{x,y}$ and $\beta_{y,x}$ is at most B_2 .
- ② For, $x, y \in V(X)$, $\beta_{x,y}$: [0, *I*] → $X, s, t \in [0, I]$ and $a, b \in V(X)$, assume that

 $d_X(a, \beta_{x,y}(s)) \leq B_1$ and $d_X(b, \beta_{x,y}(t)) \leq B_1$.

Then, the Hausdorff distance between $\beta_{a,b}$ and $\beta_{x,y}|_{[s,t]}$ is at most B_2 .

■ For any *a*, *b*, *c* ∈ *V*(*X*), the vertex Φ(a, b, c) is contained in a *B*₂-neighborhood of $β_{a,b}$.

Then, we say that the pair (\mathcal{G}, Φ) is a (B_1, B_2) -thin triangles structure on *X*.

- For $x, y \in V(X)$, the Hausdorff distance between $\beta_{x,y}$ and $\beta_{y,x}$ is at most B_2 .
- ② For, $x, y \in V(X)$, $\beta_{x,y}$: [0, *I*] → X, $s, t \in [0, I]$ and $a, b \in V(X)$, assume that

 $d_X(a, \beta_{x,y}(s)) \leq B_1$ and $d_X(b, \beta_{x,y}(t)) \leq B_1$.

Then, the Hausdorff distance between $\beta_{a,b}$ and $\beta_{x,y}|_{[s,t]}$ is at most B_2 .

Solution For any a, b, c ∈ V(X), the vertex Φ(a, b, c) is contained in a B₂-neighborhood of β_{a,b}.

Then, we say that the pair (\mathcal{G}, Φ) is a (B_1, B_2) -thin triangles structure on *X*.

- For $x, y \in V(X)$, the Hausdorff distance between $\beta_{x,y}$ and $\beta_{y,x}$ is at most B_2 .
- ② For, $x, y \in V(X)$, $\beta_{x,y}$: [0, *I*] → X, $s, t \in [0, I]$ and $a, b \in V(X)$, assume that

 $d_X(a, \beta_{x,y}(s)) \leq B_1$ and $d_X(b, \beta_{x,y}(t)) \leq B_1$.

Then, the Hausdorff distance between $\beta_{a,b}$ and $\beta_{x,y}|_{[s,t]}$ is at most B_2 .

Solution For any a, b, c ∈ V(X), the vertex Φ(a, b, c) is contained in a B₂-neighborhood of β_{a,b}.

Then, we say that the pair (\mathcal{G}, Φ) is a (B_1, B_2) -thin triangles structure on *X*.

- For $x, y \in V(X)$, the Hausdorff distance between $\beta_{x,y}$ and $\beta_{y,x}$ is at most B_2 .
- ② For, $x, y \in V(X)$, $\beta_{x,y}$: [0, *I*] → X, $s, t \in [0, I]$ and $a, b \in V(X)$, assume that

 $d_X(a, \beta_{x,y}(s)) \leq B_1$ and $d_X(b, \beta_{x,y}(t)) \leq B_1$.

Then, the Hausdorff distance between $\beta_{a,b}$ and $\beta_{x,y}|_{[s,t]}$ is at most B_2 .

Solution For any a, b, c ∈ V(X), the vertex Φ(a, b, c) is contained in a B₂-neighborhood of β_{a,b}.

Then, we say that the pair (\mathcal{G}, Φ) is a (B_1, B_2) -thin triangles structure on *X*.

The following statement is a direct corollary of a more general hyperbolicity criterion due to Bowditch (2006)

Proposition. Let X be a connected graph. For every $B_1 > 0$ and $B_2 > 0$, there exist $\delta > 0$ and H > 0 so that if (\mathcal{G}, Φ) is a (B_1, B_2) -thin triangles structure on X then X is δ -hyperbolic. Moreover, every path $\beta_{x,y}$ in \mathcal{G} is H-Hausdorff-close to any geodesic segment [x, y].

March 16, 2012 13 / 24

The following statement is a direct corollary of a more general hyperbolicity criterion due to Bowditch (2006)

Proposition. Let *X* be a connected graph. For every $B_1 > 0$ and $B_2 > 0$, there exist $\delta > 0$ and H > 0 so that if (\mathcal{G}, Φ) is a (B_1, B_2) -thin triangles structure on *X* then *X* is δ -hyperbolic.

Moreover, every path $\beta_{x,y}$ in G is H–Hausdorff-close to any geodesic segment [x, y].

< 67 ►

The following statement is a direct corollary of a more general hyperbolicity criterion due to Bowditch (2006)

Proposition. Let *X* be a connected graph. For every $B_1 > 0$ and $B_2 > 0$, there exist $\delta > 0$ and H > 0 so that if (\mathcal{G}, Φ) is a (B_1, B_2) -thin triangles structure on *X* then *X* is δ -hyperbolic. Moreover, every path $\beta_{x,y}$ in \mathcal{G} is H–Hausdorff-close to any geodesic segment [x, y].

< 67 ►

The following statement is a direct corollary of a more general hyperbolicity criterion due to Bowditch (2006)

Proposition. Let *X* be a connected graph. For every $B_1 > 0$ and $B_2 > 0$, there exist $\delta > 0$ and H > 0 so that if (\mathcal{G}, Φ) is a (B_1, B_2) -thin triangles structure on *X* then *X* is δ -hyperbolic. Moreover, every path $\beta_{x,y}$ in \mathcal{G} is H–Hausdorff-close to any geodesic segment [x, y].

< 67 ►

From here we derive the following useful corollary:

Corollary A For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds.

Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let $f: X \rightarrow Y$ be an L-Linschitz graph map. Suppose that:

- 1 f(V(X)) = V(Y).
- ② For $x, y \in V(X)$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

 $\operatorname{diam}_Y(f([x,y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

From here we derive the following useful corollary:

Corollary A For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds.

Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let f : X \rightarrow Y be an L-Lipschitz graph map. Suppose that:

- f(V(X)) = V(Y).
- ② For $x, y \in V(X)$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

 $\operatorname{diam}_{Y}(f([x, y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

Corollary A For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds. Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let $f : X \to Y$ be an L-Lipschitz graph map. Suppose that: • f(V(X)) = V(Y). • For $x, y \in V(X)$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y]in X we have $\operatorname{diam}_Y(f([x, y])) \le M$.

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

Corollary A For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds.

Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let f : X \rightarrow Y be an L-Lipschitz graph map. Suppose that:

- f(V(X)) = V(Y).
- ② For $x, y \in V(X)$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

 $\operatorname{diam}_{Y}(f([x, y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

Corollary A For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds.

Let *X*, *Y* be connected graphs, such that *X* is δ_0 -hyperbolic. Let $f: X \to Y$ be an L-Lipschitz graph map. Suppose that:

- f(V(X)) = V(Y).
- ② For $x, y \in V(X)$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

 $\operatorname{diam}_{Y}(f([x, y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

Corollary A For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds.

Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let $f: X \to Y$ be an L-Lipschitz graph map. Suppose that:

$$f(V(X)) = V(Y).$$

② For $x, y \in V(X)$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in *X* we have

 $\operatorname{diam}_{Y}(f([x, y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

Corollary A For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds.

Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let $f : X \to Y$ be an L-Lipschitz graph map. Suppose that:

•
$$f(V(X)) = V(Y)$$
.

2 For $x, y \in V(X)$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

 $\operatorname{diam}_Y(f([x, y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

< 67 ►

Corollary A For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds.

Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let $f : X \to Y$ be an L-Lipschitz graph map. Suppose that:

•
$$f(V(X)) = V(Y).$$

② For $x, y \in V(X)$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

 $\operatorname{diam}_{Y}(f([x, y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

< 67 ►

Corollary A For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds.

Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let $f : X \to Y$ be an L-Lipschitz graph map. Suppose that:

•
$$f(V(X)) = V(Y)$$
.

② For $x, y \in V(X)$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

 $\operatorname{diam}_{Y}(f([x, y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

< 🗗 ►

We also obtain a strengthened version of the previous statement:

Corollary A' For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ and $D \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds. Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let f : $X \rightarrow Y$ be an L-Lipschitz graph map. Let $S \subseteq V(X)$ be such that:

- f(S) = V(Y).
- Interset S is D-dense in X.
- ③ For $x, y \in S$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

$$\operatorname{diam}_Y(f([x,y])) \leq M.$$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

< 67 ►

We also obtain a strengthened version of the previous statement:

Corollary A' For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ and $D \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds.

Let *X*, *Y* be connected graphs, such that *X* is δ_0 -hyperbolic. Let $f : X \to Y$ be an L-Lipschitz graph map. Let $S \subseteq V(X)$ be such that:

• f(S) = V(Y).

- Interset S is D-dense in X.
- ③ For $x, y \in S$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

 $\operatorname{diam}_Y(f([x,y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

< 67 ►

We also obtain a strengthened version of the previous statement:

Corollary A' For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ and $D \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds. Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let f : $X \rightarrow Y$ be an L-Lipschitz graph map. Let $S \subseteq V(X)$ be such that:

f(S) = V(Y).

- Interset S is D-dense in X.
- So For x, y ∈ S, if d_Y(f(x), f(y)) ≤ 1 then for any geodesic [x, y] in X we have

 $\operatorname{diam}_Y(f([x,y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

< 🗗 >

We also obtain a strengthened version of the previous statement:

Corollary A' For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ and $D \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds. Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let $f : X \to Y$ be an L-Lipschitz graph map. Let $S \subseteq V(X)$ be such that:

- f(S) = V(Y).
- Interpret S is D-dense in X.
- ③ For $x, y \in S$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

 $\operatorname{diam}_Y(f([x,y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

We also obtain a strengthened version of the previous statement:

Corollary A' For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ and $D \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds. Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let $f : X \to Y$ be an L-Lipschitz graph map. Let $S \subseteq V(X)$ be such that:

- f(S) = V(Y).
- Interset S is D-dense in X.
- ③ For $x, y \in S$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

$$\operatorname{diam}_Y(f([x,y])) \leq M.$$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

We also obtain a strengthened version of the previous statement:

Corollary A' For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ and $D \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds. Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let $f : X \to Y$ be an L-Lipschitz graph map. Let $S \subseteq V(X)$ be such that:

• f(S) = V(Y).

- The set S is D-dense in X.
- ◎ For $x, y \in S$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

 $\operatorname{diam}_Y(f([x,y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

We also obtain a strengthened version of the previous statement:

Corollary A' For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ and $D \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds. Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let $f : X \to Y$ be an L-Lipschitz graph map. Let $S \subseteq V(X)$ be such that:

• f(S) = V(Y).

Interpreter S is D-dense in X.

I For x, y ∈ S, if d_Y(f(x), f(y)) ≤ 1 then for any geodesic [x, y] in X we have

 $\operatorname{diam}_Y(f([x,y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

We also obtain a strengthened version of the previous statement:

Corollary A' For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ and $D \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds. Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let $f : X \to Y$ be an L-Lipschitz graph map. Let $S \subseteq V(X)$ be such that:

- f(S) = V(Y).
- Interpreter S is D-dense in X.
- ◎ For $x, y \in S$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

$\operatorname{diam}_Y(f([x,y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

< @ >

We also obtain a strengthened version of the previous statement:

Corollary A' For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ and $D \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds. Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let $f : X \to Y$ be an L-Lipschitz graph map. Let $S \subseteq V(X)$ be such that:

- f(S) = V(Y).
- Interpreter S is D-dense in X.
- ◎ For $x, y \in S$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

$\operatorname{diam}_Y(f([x,y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

< @ >

We also obtain a strengthened version of the previous statement:

Corollary A' For every $\delta_0 \ge 0$, $L \ge 0$, $M \ge 0$ and $D \ge 0$ there exist $\delta_1 \ge 0$ and $H \ge 0$ so that the following holds. Let X, Y be connected graphs, such that X is δ_0 -hyperbolic. Let $f : X \to Y$ be an L-Lipschitz graph map. Let $S \subseteq V(X)$ be such that:

- f(S) = V(Y).
- Interpreter S is D-dense in X.
- So For $x, y \in S$, if $d_Y(f(x), f(y)) \le 1$ then for any geodesic [x, y] in X we have

 $\operatorname{diam}_{Y}(f([x, y])) \leq M.$

Then Y is δ_1 -hyperbolic and, for any $x, y \in V(X)$ and any geodesic [x, y] in X, the path f([x, y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

< @ >

We introduce the following useful object that is q.i. to FF_N :

Defn The *free bases graph* FB_N has as its vertex set the set of equivalence classes $[\mathcal{A}]$ of free bases \mathcal{A} of F_N . Two free bases \mathcal{A} and \mathcal{B} are equivalent if the Cayley graphs $Cay(F_N, \mathcal{A})$ and $Cay(F_N, \mathcal{B})$ are F_N -equivariantly isometric. (E.g $\mathcal{A} \sim g\mathcal{A}g^{-1}$. Also, permuting elements of \mathcal{A} and possibly inverting some of them preserves the equivalence class $[\mathcal{A}]$.)

Two distinct vertices [A] and [B] are adjacent in FB_N if there exist representatives A of [A] and B of [B] such that $A \cap B \neq \emptyset$.

- We introduce the following useful object that is q.i. to FF_N : **Defn** The *free bases graph* FB_N has as its vertex set the set of equivalence classes [A] of free bases A of F_N .
- Two free bases A and B are equivalent if the Cayley graphs $Cay(F_N, A)$ and $Cay(F_N, B)$ are F_N -equivariantly isometric. (E.g $A \sim gAg^{-1}$. Also, permuting elements of A and possibly inverting some of them preserves the equivalence class [A].)
- Two distinct vertices [A] and [B] are adjacent in FB_N if there exist representatives A of [A] and B of [B] such that $A \cap B \neq \emptyset$.

We introduce the following useful object that is q.i. to FF_N : **Defn** The *free bases graph* FB_N has as its vertex set the set of equivalence classes [A] of free bases A of F_N . Two free bases A and B are equivalent if the Cayley graphs $Cay(F_N, A)$ and $Cay(F_N, B)$ are F_N -equivariantly isometric. (E.g $A \sim gAg^{-1}$. Also, permuting elements of A and possibly inverting some of them preserves the equivalence class [A].)

Two distinct vertices [A] and [B] are adjacent in FB_N if there exist representatives A of [A] and B of [B] such that $A \cap B \neq \emptyset$.

We introduce the following useful object that is q.i. to FF_N : **Defn** The *free bases graph* FB_N has as its vertex set the set of equivalence classes [A] of free bases A of F_N . Two free bases A and B are equivalent if the Cayley graphs $Cay(F_N, A)$ and $Cay(F_N, B)$ are F_N -equivariantly isometric. (E.g $A \sim gAg^{-1}$. Also, permuting elements of A and possibly inverting some of them preserves the equivalence class [A].)

Two distinct vertices [A] and [B] are adjacent in FB_N if there exist representatives A of [A] and B of [B] such that $A \cap B \neq \emptyset$.

We introduce the following useful object that is q.i. to FF_N : **Defn** The *free bases graph* FB_N has as its vertex set the set of equivalence classes [\mathcal{A}] of free bases \mathcal{A} of F_N . Two free bases \mathcal{A} and \mathcal{B} are equivalent if the Cayley graphs $Cay(F_N, \mathcal{A})$ and $Cay(F_N, \mathcal{B})$ are F_N -equivariantly isometric. (E.g $\mathcal{A} \sim g\mathcal{A}g^{-1}$. Also, permuting elements of \mathcal{A} and possibly inverting some of them preserves the equivalence class [\mathcal{A}].)

Two distinct vertices $[\mathcal{A}]$ and $[\mathcal{B}]$ are adjacent in FB_N if there exist representatives \mathcal{A} of $[\mathcal{A}]$ and \mathcal{B} of $[\mathcal{B}]$ such that $\mathcal{A} \cap \mathcal{B} \neq \emptyset$.

< A >

We introduce the following useful object that is q.i. to FF_N : **Defn** The *free bases graph* FB_N has as its vertex set the set of equivalence classes [\mathcal{A}] of free bases \mathcal{A} of F_N . Two free bases \mathcal{A} and \mathcal{B} are equivalent if the Cayley graphs $Cay(F_N, \mathcal{A})$ and $Cay(F_N, \mathcal{B})$ are F_N -equivariantly isometric. (E.g $\mathcal{A} \sim g\mathcal{A}g^{-1}$. Also, permuting elements of \mathcal{A} and possibly inverting some of them preserves the equivalence class [\mathcal{A}].)

Two distinct vertices $[\mathcal{A}]$ and $[\mathcal{B}]$ are adjacent in FB_N if there exist representatives \mathcal{A} of $[\mathcal{A}]$ and \mathcal{B} of $[\mathcal{B}]$ such that $\mathcal{A} \cap \mathcal{B} \neq \emptyset$.

< A >

 $f([\mathcal{A}]) = \{ [\langle a_i \rangle] : i = 1, \dots, N. \}$

Then q is a quasi-isometry between FB_N and FF_N .

Prop. 2 The set $S := V(FB_N) = \{[A] : A \text{ is a free basis of } F_N\}$, when appropriately interpreted, is a *C*-dense subset of the barycentric subdivision FS'_N of FS_N .

Prop. 3 There is a natural coarsely L-Lipschitz map $f : FS'_N \to FB_N$ such that $f|_S = Id|_S$.

 $f([\mathcal{A}]) = \{ [\langle a_i \rangle] : i = 1, \dots, N. \}$

Then q is a quasi-isometry between FB_N and FF_N .

Prop. 2 The set $S := V(FB_N) = \{[A] : A \text{ is a free basis of } F_N\}$, when appropriately interpreted, is a *C*-dense subset of the barycentric subdivision FS'_N of FS_N .

Prop. 3 There is a natural coarsely L-Lipschitz map $f : FS'_N \to FB_N$ such that $f|_S = Id|_S$.

 $f([\mathcal{A}]) = \{ [\langle a_i \rangle] : i = 1, \dots, N. \}$

Then q is a quasi-isometry between FB_N and FF_N .

Prop. 2 The set $S := V(FB_N) = \{[A] : A \text{ is a free basis of } F_N\}$, when appropriately interpreted, is a *C*-dense subset of the barycentric subdivision FS'_N of FS_N .

Prop. 3 There is a natural coarsely L-Lipschitz map $f : FS'_N \to FB_N$ such that $f|_S = Id|_S$.

< 67 ►

$$f([\mathcal{A}]) = \{ [\langle a_i \rangle] : i = 1, \dots, N. \}$$

Then q is a quasi-isometry between FB_N and FF_N .

Prop. 2 The set $S := V(FB_N) = \{[A] : A \text{ is a free basis of } F_N\}$, when appropriately interpreted, is a *C*-dense subset of the barycentric subdivision FS'_N of FS_N .

Prop. 3 There is a natural coarsely L-Lipschitz map $f : FS'_N \to FB_N$ such that $f|_S = Id|_S$.

< 47 →

$$f([\mathcal{A}]) = \{ [\langle a_i \rangle] : i = 1, \dots, N. \}$$

Then q is a quasi-isometry between FB_N and FF_N .

Prop. 2 The set $S := V(FB_N) = \{[A] : A \text{ is a free basis of } F_N\}$, when appropriately interpreted, is a *C*-dense subset of the barycentric subdivision FS'_N of FS_N .

Prop. 3 There is a natural coarsely L-Lipschitz map $f : FS'_N \to FB_N$ such that $f|_S = Id|_S$.

< 67 ►

$$f([\mathcal{A}]) = \{ [\langle a_i \rangle] : i = 1, \dots, N. \}$$

Then q is a quasi-isometry between FB_N and FF_N .

Prop. 2 The set $S := V(FB_N) = \{[A] : A \text{ is a free basis of } F_N\}$, when appropriately interpreted, is a *C*-dense subset of the barycentric subdivision FS'_N of FS_N .

Prop. 3 There is a natural coarsely L-Lipschitz map $f : FS'_N \to FB_N$ such that $f|_S = Id|_S$.

< A >

Sketch of the proof of the main result

Recall that FS'_N is Gromov-hyperbolic by Handel-Mosher.

We will prove that FB_N is Gromov-hyperbolic by applying Corollary A' to the map $f : FS'_N \to FB_N$. Then hyperbolicity of FF_N will follow from Prop 1, since FB_N is q.i. to FF_N .

Main thing to verify: that if $x = [B], y = [A] \in S$ are such that $d_{FB_N}(x, y) \leq 1$ then f([x, y]) has diameter $\leq M$ in FB_N .

Instead of a geodesic [x, y] in FS'_N can use a quasi-geodesic from x to y.

Handel-Mosher, given any vertices $x, y \in FS_N$, construct a "folding line" $g_{x,y}$ from x to y in FS'_N and show that $g_{x,y}$ is a (reparameterized) uniform quasigeodesic in FS'_N .

The general construction of $g_{x,y}$ is rather hard, but for

 $x, y \in S = V(FB_N)$ it is fairly easy and can be interpreted in terms of the standard *Stallings folds*.

Recall that FS'_N is Gromov-hyperbolic by Handel-Mosher.

We will prove that FB_N is Gromov-hyperbolic by applying Corollary A' to the map $f : FS'_N \to FB_N$. Then hyperbolicity of FF_N will follow from Prop 1, since FB_N is q.i. to FF_N .

Main thing to verify: that if $x = [B], y = [A] \in S$ are such that $d_{FB_N}(x, y) \leq 1$ then f([x, y]) has diameter $\leq M$ in FB_N .

Instead of a geodesic [x, y] in FS'_N can use a quasi-geodesic from x to y.

Handel-Mosher, given any vertices $x, y \in FS_N$, construct a "folding line" $g_{x,y}$ from x to y in FS'_N and show that $g_{x,y}$ is a (reparameterized) uniform quasigeodesic in FS'_N .

The general construction of $g_{x,y}$ is rather hard, but for

 $x, y \in S = V(FB_N)$ it is fairly easy and can be interpreted in terms of the standard *Stallings folds*.

Recall that FS'_N is Gromov-hyperbolic by Handel-Mosher.

We will prove that FB_N is Gromov-hyperbolic by applying Corollary A' to the map $f : FS'_N \to FB_N$. Then hyperbolicity of FF_N will follow from Prop 1, since FB_N is q.i. to FF_N .

Main thing to verify: that if $x = [B], y = [A] \in S$ are such that $d_{FB_N}(x, y) \leq 1$ then f([x, y]) has diameter $\leq M$ in FB_N .

Instead of a geodesic [x, y] in FS'_N can use a quasi-geodesic from x to y.

Handel-Mosher, given any vertices $x, y \in FS_N$, construct a "folding line" $g_{x,y}$ from x to y in FS'_N and show that $g_{x,y}$ is a (reparameterized) uniform quasigeodesic in FS'_N .

The general construction of $g_{x,y}$ is rather hard, but for

 $x, y \in S = V(FB_N)$ it is fairly easy and can be interpreted in terms of the standard *Stallings folds*.

Recall that FS'_N is Gromov-hyperbolic by Handel-Mosher.

We will prove that FB_N is Gromov-hyperbolic by applying Corollary A' to the map $f : FS'_N \to FB_N$. Then hyperbolicity of FF_N will follow from Prop 1, since FB_N is q.i. to FF_N .

Main thing to verify: that if $x = [B], y = [A] \in S$ are such that $d = (x, y) \leq 1$ then f([x, y]) has diameter $\leq M$ in *FP*.

 $d_{FB_N}(x, y) \leq 1$ then f([x, y]) has diameter $\leq M$ in FB_N .

Instead of a geodesic [x, y] in FS'_N can use a quasi-geodesic from x to y.

Handel-Mosher, given any vertices $x, y \in FS_N$, construct a "folding line" $g_{x,y}$ from x to y in FS'_N and show that $g_{x,y}$ is a (reparameterized) uniform quasigeodesic in FS'_N .

The general construction of $g_{x,y}$ is rather hard, but for

 $x, y \in S = V(FB_N)$ it is fairly easy and can be interpreted in terms of the standard *Stallings folds*.

Recall that FS'_N is Gromov-hyperbolic by Handel-Mosher.

We will prove that FB_N is Gromov-hyperbolic by applying Corollary A' to the map $f : FS'_N \to FB_N$. Then hyperbolicity of FF_N will follow from Prop 1, since FB_N is q.i. to FF_N .

Main thing to verify: that if $x = [B], y = [A] \in S$ are such that $d_{FB_N}(x, y) \leq 1$ then f([x, y]) has diameter $\leq M$ in FB_N .

Instead of a geodesic [x, y] in FS'_N can use a quasi-geodesic from x to y.

Handel-Mosher, given any vertices $x, y \in FS_N$, construct a "folding line" $g_{x,y}$ from x to y in FS'_N and show that $g_{x,y}$ is a (reparameterized) uniform quasigeodesic in FS'_N .

The general construction of $g_{x,y}$ is rather hard, but for $x, y \in S = V(FB_N)$ it is fairly easy and can be interpreted in terms of the standard *Stallings folds*.

Recall that FS'_N is Gromov-hyperbolic by Handel-Mosher.

We will prove that FB_N is Gromov-hyperbolic by applying Corollary A' to the map $f : FS'_N \to FB_N$. Then hyperbolicity of FF_N will follow from Prop 1, since FB_N is q.i. to FF_N .

Main thing to verify: that if $x = [B], y = [A] \in S$ are such that $d_{FB_N}(x, y) \leq 1$ then f([x, y]) has diameter $\leq M$ in FB_N .

Instead of a geodesic [x, y] in FS'_N can use a quasi-geodesic from x to y.

Handel-Mosher, given any vertices $x, y \in FS_N$, construct a "folding line" $g_{x,y}$ from x to y in FS'_N and show that $g_{x,y}$ is a (reparameterized) uniform quasigeodesic in FS'_N .

The general construction of $g_{x,y}$ is rather hard, but for

 $x, y \in S = V(FB_N)$ it is fairly easy and can be interpreted in terms of the standard *Stallings folds*.

< 67 ▶

Form a labelled graph Γ_0 which is a wedge of N loop-edges at a vertex v_0 with the *i*-th loop-edge being labelled by the freely reduced word w_i over A such that $w_i = b_i$ in F_N . Thus the 1-st loop-edge is labelled by a_1 .

By conjugating A by a_1^t if necessary may achieve the following important technical condition, needed by the Handel-Mosher construction:

among the 2*N* oriented edges outgoing from v_0 in Γ_0 , there exist some three edges with their labels beginning with three distinct letters from $\mathcal{A}^{\pm 1}$.

Form a labelled graph Γ_0 which is a wedge of *N* loop-edges at a vertex v_0 with the *i*-th loop-edge being labelled by the freely reduced word w_i over A such that $w_i = b_i$ in F_N . Thus the 1-st loop-edge is labelled by a_1 .

By conjugating A by a_1^t if necessary may achieve the following important technical condition, needed by the Handel-Mosher construction:

among the 2*N* oriented edges outgoing from v_0 in Γ_0 , there exist some three edges with their labels beginning with three distinct letters from $\mathcal{A}^{\pm 1}$.

Form a labelled graph Γ_0 which is a wedge of *N* loop-edges at a vertex v_0 with the *i*-th loop-edge being labelled by the freely reduced word w_i over A such that $w_i = b_i$ in F_N . Thus the 1-st loop-edge is labelled by a_1 .

By conjugating A by a_1^t if necessary may achieve the following important technical condition, needed by the Handel-Mosher construction:

among the 2*N* oriented edges outgoing from v_0 in Γ_0 , there exist some three edges with their labels beginning with three distinct letters from $\mathcal{A}^{\pm 1}$.

Form a labelled graph Γ_0 which is a wedge of *N* loop-edges at a vertex v_0 with the *i*-th loop-edge being labelled by the freely reduced word w_i over A such that $w_i = b_i$ in F_N . Thus the 1-st loop-edge is labelled by a_1 .

By conjugating A by a_1^t if necessary may achieve the following important technical condition, needed by the Handel-Mosher construction:

among the 2*N* oriented edges outgoing from v_0 in Γ_0 , there exist some three edges with their labels beginning with three distinct letters from $\mathcal{A}^{\pm 1}$.

Form a labelled graph Γ_0 which is a wedge of *N* loop-edges at a vertex v_0 with the *i*-th loop-edge being labelled by the freely reduced word w_i over A such that $w_i = b_i$ in F_N . Thus the 1-st loop-edge is labelled by a_1 .

By conjugating A by a_1^t if necessary may achieve the following important technical condition, needed by the Handel-Mosher construction:

among the 2*N* oriented edges outgoing from v_0 in Γ_0 , there exist some three edges with their labels beginning with three distinct letters from $\mathcal{A}^{\pm 1}$.

< 🗗 ►

Form a labelled graph Γ_0 which is a wedge of *N* loop-edges at a vertex v_0 with the *i*-th loop-edge being labelled by the freely reduced word w_i over A such that $w_i = b_i$ in F_N . Thus the 1-st loop-edge is labelled by a_1 .

By conjugating A by a_1^t if necessary may achieve the following important technical condition, needed by the Handel-Mosher construction:

among the 2*N* oriented edges outgoing from v_0 in Γ_0 , there exist some three edges with their labels beginning with three distinct letters from $\mathcal{A}^{\pm 1}$.

< 🗗 ►

Now construct a sequence of labelled graphs $\Gamma_0, \Gamma_1, \Gamma_2, \ldots$ where each Γ_{i+1} is obtained from Γ_i by a "maximal fold":

There is a vertex v in Γ_i and two outgoing edges e_1 , e_2 from v with labels w_1, w_2 such that the freely words $w_1, w_2 \in F(\mathcal{A})$ have the same first letter. The graph Γ_{i+1} is obtained from Γ_i by "folding" together into a single edge the initial segments of e_1, e_2 corresponding to the maximal common initial segment of the word w_1, w_2 .

Since \mathcal{B} and \mathcal{A} are free bases of F_N , the sequence is guaranteed to terminate in a finite number of steps with $\Gamma_m = R_{\mathcal{A}}$, the graph with a single vertex and N loop-edges labelled a_1, \ldots, a_N .

Key feature: Each Γ_i has a loop-edge, based at its base-vertex v_i , labeled by a_1 .

Now construct a sequence of labelled graphs $\Gamma_0, \Gamma_1, \Gamma_2, \ldots$ where each Γ_{i+1} is obtained from Γ_i by a "maximal fold":

There is a vertex v in Γ_i and two outgoing edges e_1 , e_2 from v with labels w_1, w_2 such that the freely words $w_1, w_2 \in F(\mathcal{A})$ have the same first letter. The graph Γ_{i+1} is obtained from Γ_i by "folding" together into a single edge the initial segments of e_1, e_2 corresponding to the maximal common initial segment of the word w_1, w_2 .

Since \mathcal{B} and \mathcal{A} are free bases of F_N , the sequence is guaranteed to terminate in a finite number of steps with $\Gamma_m = R_{\mathcal{A}}$, the graph with a single vertex and N loop-edges labelled a_1, \ldots, a_N .

Key feature: Each Γ_i has a loop-edge, based at its base-vertex v_i , labeled by a_1 .

Now construct a sequence of labelled graphs $\Gamma_0, \Gamma_1, \Gamma_2, ...$ where each Γ_{i+1} is obtained from Γ_i by a "maximal fold":

There is a vertex v in Γ_i and two outgoing edges e_1 , e_2 from v with labels w_1, w_2 such that the freely words $w_1, w_2 \in F(\mathcal{A})$ have the same first letter. The graph Γ_{i+1} is obtained from Γ_i by "folding" together into a single edge the initial segments of e_1, e_2 corresponding to the maximal common initial segment of the word w_1, w_2 .

Since \mathcal{B} and \mathcal{A} are free bases of F_N , the sequence is guaranteed to terminate in a finite number of steps with $\Gamma_m = R_A$, the graph with a single vertex and N loop-edges labelled a_1, \ldots, a_N .

Key feature: Each Γ_i has a loop-edge, based at its base-vertex v_i , labeled by a_1 .

Now construct a sequence of labelled graphs $\Gamma_0, \Gamma_1, \Gamma_2, ...$ where each Γ_{i+1} is obtained from Γ_i by a "maximal fold":

There is a vertex v in Γ_i and two outgoing edges e_1 , e_2 from v with labels w_1, w_2 such that the freely words $w_1, w_2 \in F(\mathcal{A})$ have the same first letter. The graph Γ_{i+1} is obtained from Γ_i by "folding" together into a single edge the initial segments of e_1, e_2 corresponding to the maximal common initial segment of the word w_1, w_2 .

Since \mathcal{B} and \mathcal{A} are free bases of F_N , the sequence is guaranteed to terminate in a finite number of steps with $\Gamma_m = R_{\mathcal{A}}$, the graph with a single vertex and N loop-edges labelled a_1, \ldots, a_N .

Key feature: Each Γ_i has a loop-edge, based at its base-vertex v_i , labeled by a_1 .

Now construct a sequence of labelled graphs $\Gamma_0, \Gamma_1, \Gamma_2, ...$ where each Γ_{i+1} is obtained from Γ_i by a "maximal fold":

There is a vertex v in Γ_i and two outgoing edges e_1 , e_2 from v with labels w_1, w_2 such that the freely words $w_1, w_2 \in F(\mathcal{A})$ have the same first letter. The graph Γ_{i+1} is obtained from Γ_i by "folding" together into a single edge the initial segments of e_1, e_2 corresponding to the maximal common initial segment of the word w_1, w_2 .

Since \mathcal{B} and \mathcal{A} are free bases of F_N , the sequence is guaranteed to terminate in a finite number of steps with $\Gamma_m = R_{\mathcal{A}}$, the graph with a single vertex and N loop-edges labelled a_1, \ldots, a_N .

Key feature: Each Γ_i has a loop-edge, based at its base-vertex v_i , labeled by a_1 .

The "Key feature" implies that $f(g_{x,y})$ has diameter $\leq M$ in FB_N for some constant $M \geq 1$ independent of x, y.

Therefore FB_N is Gromov-Hyperbolic by Corollary A'. Hence FF_N is also Gromov-hyperbolic since FF_N is q.i. to FB_N by Prop 1. Q.E.D.

The "Key feature" implies that $f(g_{x,y})$ has diameter $\leq M$ in FB_N for some constant $M \geq 1$ independent of x, y.

Therefore FB_N is Gromov-Hyperbolic by Corollary A'. Hence FF_N is also Gromov-hyperbolic since FF_N is q.i. to FB_N by Prop 1. Q.E.D.

The "Key feature" implies that $f(g_{x,y})$ has diameter $\leq M$ in FB_N for some constant $M \geq 1$ independent of x, y.

Therefore FB_N is Gromov-Hyperbolic by Corollary A'. Hence FF_N is also Gromov-hyperbolic since FF_N is q.i. to FB_N by Prop 1. Q.E.D.

The "Key feature" implies that $f(g_{x,y})$ has diameter $\leq M$ in FB_N for some constant $M \geq 1$ independent of x, y.

Therefore FB_N is Gromov-Hyperbolic by Corollary A'. Hence FF_N is also Gromov-hyperbolic since FF_N is q.i. to FB_N by Prop 1. Q.E.D.

The "Key feature" implies that $f(g_{x,y})$ has diameter $\leq M$ in FB_N for some constant $M \geq 1$ independent of x, y.

Therefore FB_N is Gromov-Hyperbolic by Corollary A'. Hence FF_N is also Gromov-hyperbolic since FF_N is q.i. to FB_N by Prop 1. Q.E.D.

Let $n = d_{FS'_N}([\mathcal{A}], [\mathcal{B}]).$

Let *U* be the set of all vertices of FS'_N that occur along all folding paths $\Gamma_0, \ldots, \Gamma_m$ from [\mathcal{B}] to [\mathcal{A}] in FS'_N as in the proof of Thm 3.

Is it true that

 $\#U \leq Cn^{\alpha}$

for some constants C > 0 and $\alpha \ge 1$ independent of [A], [B]?

Let $n = d_{FS'_N}([\mathcal{A}], [\mathcal{B}]).$

Let *U* be the set of all vertices of FS'_N that occur along all folding paths $\Gamma_0, \ldots, \Gamma_m$ from [\mathcal{B}] to [\mathcal{A}] in FS'_N as in the proof of Thm 3.

Is it true that

 $\#U \leq Cn^{lpha}$

for some constants C > 0 and $\alpha \ge 1$ independent of [A], [B]?

Let $n = d_{FS'_N}([\mathcal{A}], [\mathcal{B}]).$

Let *U* be the set of all vertices of FS'_N that occur along all folding paths $\Gamma_0, \ldots, \Gamma_m$ from $[\mathcal{B}]$ to $[\mathcal{A}]$ in FS'_N as in the proof of Thm 3.

Is it true that

 $\#U \leq Cn^{\alpha}$

for some constants C > 0 and $\alpha \ge 1$ independent of [A], [B]?

< 🗗 >

Let $n = d_{FS'_N}([\mathcal{A}], [\mathcal{B}]).$

Let *U* be the set of all vertices of FS'_N that occur along all folding paths $\Gamma_0, \ldots, \Gamma_m$ from $[\mathcal{B}]$ to $[\mathcal{A}]$ in FS'_N as in the proof of Thm 3.

Is it true that

$$\#U \leq Cn^{lpha}$$

for some constants C > 0 and $\alpha \ge 1$ independent of [A], [B]?

Recall that $\phi \in Out(F_N)$ is *fully irreducible* or *iwip* if there is no power ϕ^t ($t \neq 0$) such that ϕ^t fixes the conjugacy class of a proper free factor of F_N .

Fact: Let $\phi \in Out(F_N)$. Then exactly one of the following occurs:

- φ is an iwip and it acts as a hyperbolic isometry on FF_N (has a quasi-axis and exactly 2 fixed points at infinity)
- φ is not an iwip and some nonzero power φ^t of φ fixes a vertex of FF_N.

Another model: FS_N^* has $V(FS_N^*) = V(FS_N)$. Two distinct vertices \mathbb{A}, \mathbb{B} of FS_N^* are adjacent if there exists $w \in F_N, w \neq 1$ such that

 $||w||_{\mathbb{A}} = ||w||_{\mathbb{B}} = 0$

i.e. w is conjugate to an elmt of a vertex group of A and w is conjugate to an elmnt of a vertex group of \mathbb{B} .

Recall that $\phi \in Out(F_N)$ is *fully irreducible* or *iwip* if there is no power ϕ^t ($t \neq 0$) such that ϕ^t fixes the conjugacy class of a proper free factor of F_N .

Fact: Let $\phi \in Out(F_N)$. Then exactly one of the following occurs:

- ϕ is an iwip and it acts as a hyperbolic isometry on FF_N (has a quasi-axis and exactly 2 fixed points at infinity)
- φ is not an iwip and some nonzero power φ^t of φ fixes a vertex of FF_N.

Another model: FS_N^* has $V(FS_N^*) = V(FS_N)$. Two distinct vertices \mathbb{A}, \mathbb{B} of FS_N^* are adjacent if there exists $w \in F_N, w \neq 1$ such that

 $||w||_{\mathbb{A}} = ||w||_{\mathbb{B}} = 0$

i.e. w is conjugate to an elmt of a vertex group of A and w is conjugate to an elmnt of a vertex group of \mathbb{B} .

Ilya Kapovich (UIUC)

March 16, 2012 23 / 24

Recall that $\phi \in Out(F_N)$ is *fully irreducible* or *iwip* if there is no power ϕ^t ($t \neq 0$) such that ϕ^t fixes the conjugacy class of a proper free factor of F_N .

Fact: Let $\phi \in Out(F_N)$. Then exactly one of the following occurs:

φ is an iwip and it acts as a hyperbolic isometry on FF_N (has a quasi-axis and exactly 2 fixed points at infinity)

φ is not an iwip and some nonzero power φ^t of φ fixes a vertex of FF_N.

Another model: FS_N^* has $V(FS_N^*) = V(FS_N)$. Two distinct vertices \mathbb{A}, \mathbb{B} of FS_N^* are adjacent if there exists $w \in F_N, w \neq 1$ such that

 $||w||_{\mathbb{A}} = ||w||_{\mathbb{B}} = 0$

i.e. w is conjugate to an elmt of a vertex group of A and w is conjugate to an elmnt of a vertex group of \mathbb{B} .

Recall that $\phi \in Out(F_N)$ is *fully irreducible* or *iwip* if there is no power ϕ^t ($t \neq 0$) such that ϕ^t fixes the conjugacy class of a proper free factor of F_N .

Fact: Let $\phi \in Out(F_N)$. Then exactly one of the following occurs:

- φ is an iwip and it acts as a hyperbolic isometry on FF_N (has a quasi-axis and exactly 2 fixed points at infinity)
- φ is not an iwip and some nonzero power φ^t of φ fixes a vertex of *FF_N*.

Another model: FS_N^* has $V(FS_N^*) = V(FS_N)$. Two distinct vertices \mathbb{A}, \mathbb{B} of FS_N^* are adjacent if there exists $w \in F_N, w \neq 1$ such that

 $||w||_{\mathbb{A}} = ||w||_{\mathbb{B}} = 0$

i.e. w is conjugate to an elmt of a vertex group of \mathbb{A} and w is conjugate to an elmnt of a vertex group of \mathbb{B} .

Recall that $\phi \in Out(F_N)$ is *fully irreducible* or *iwip* if there is no power ϕ^t ($t \neq 0$) such that ϕ^t fixes the conjugacy class of a proper free factor of F_N .

Fact: Let $\phi \in Out(F_N)$. Then exactly one of the following occurs:

- φ is an iwip and it acts as a hyperbolic isometry on FF_N (has a quasi-axis and exactly 2 fixed points at infinity)
- φ is not an iwip and some nonzero power φ^t of φ fixes a vertex of *FF_N*.

Another model: FS_N^* has $V(FS_N^*) = V(FS_N)$. Two distinct vertices \mathbb{A}, \mathbb{B} of FS_N^* are adjacent if there exists $w \in F_N, w \neq 1$ such that

 $||w||_{\mathbb{A}} = ||w||_{\mathbb{B}} = 0$

i.e. w is conjugate to an elmt of a vertex group of \mathbb{A} and w is conjugate to an elmnt of a vertex group of \mathbb{B} .

Recall that $\phi \in Out(F_N)$ is *fully irreducible* or *iwip* if there is no power ϕ^t ($t \neq 0$) such that ϕ^t fixes the conjugacy class of a proper free factor of F_N .

Fact: Let $\phi \in Out(F_N)$. Then exactly one of the following occurs:

- φ is an iwip and it acts as a hyperbolic isometry on FF_N (has a quasi-axis and exactly 2 fixed points at infinity)
- φ is not an iwip and some nonzero power φ^t of φ fixes a vertex of *FF_N*.

Another model: FS_N^* has $V(FS_N^*) = V(FS_N)$.

Two distinct vertices \mathbb{A}, \mathbb{B} of FS_N^* are adjacent if there exists $w \in F_N, w \neq 1$ such that

 $||w||_{\mathbb{A}} = ||w||_{\mathbb{B}} = 0$

i.e. w is conjugate to an elmt of a vertex group of A and w is conjugate to an elmnt of a vertex group of \mathbb{B} .

Recall that $\phi \in Out(F_N)$ is *fully irreducible* or *iwip* if there is no power ϕ^t ($t \neq 0$) such that ϕ^t fixes the conjugacy class of a proper free factor of F_N .

Fact: Let $\phi \in Out(F_N)$. Then exactly one of the following occurs:

- φ is an iwip and it acts as a hyperbolic isometry on FF_N (has a quasi-axis and exactly 2 fixed points at infinity)
- φ is not an iwip and some nonzero power φ^t of φ fixes a vertex of FF_N.

Another model: FS_N^* has $V(FS_N^*) = V(FS_N)$. Two distinct vertices \mathbb{A}, \mathbb{B} of FS_N^* are adjacent if there exists $w \in F_N, w \neq 1$ such that

 $||w||_{\mathbb{A}} = ||w||_{\mathbb{B}} = 0$

i.e. w is conjugate to an elmt of a vertex group of A and w is conjugate to an elmnt of a vertex group of \mathbb{B} .

Recall that $\phi \in Out(F_N)$ is *fully irreducible* or *iwip* if there is no power ϕ^t ($t \neq 0$) such that ϕ^t fixes the conjugacy class of a proper free factor of F_N .

Fact: Let $\phi \in Out(F_N)$. Then exactly one of the following occurs:

- φ is an iwip and it acts as a hyperbolic isometry on FF_N (has a quasi-axis and exactly 2 fixed points at infinity)
- φ is not an iwip and some nonzero power φ^t of φ fixes a vertex of *FF_N*.

Another model: FS_N^* has $V(FS_N^*) = V(FS_N)$. Two distinct vertices \mathbb{A}, \mathbb{B} of FS_N^* are adjacent if there exists $w \in F_N, w \neq 1$ such that

 $||\boldsymbol{w}||_{\mathbb{A}} = ||\boldsymbol{w}||_{\mathbb{B}} = 0$

i.e. w is conjugate to an elmt of a vertex group of A and w is conjugate to an elmnt of a vertex group of \mathbb{B} .

Recall that $\phi \in Out(F_N)$ is *fully irreducible* or *iwip* if there is no power ϕ^t ($t \neq 0$) such that ϕ^t fixes the conjugacy class of a proper free factor of F_N .

Fact: Let $\phi \in Out(F_N)$. Then exactly one of the following occurs:

- φ is an iwip and it acts as a hyperbolic isometry on FF_N (has a quasi-axis and exactly 2 fixed points at infinity)
- φ is not an iwip and some nonzero power φ^t of φ fixes a vertex of *FF_N*.

Another model: FS_N^* has $V(FS_N^*) = V(FS_N)$. Two distinct vertices \mathbb{A}, \mathbb{B} of FS_N^* are adjacent if there exists $w \in F_N, w \neq 1$ such that

 $||\boldsymbol{w}||_{\mathbb{A}} = ||\boldsymbol{w}||_{\mathbb{B}} = 0$

i.e. *w* is conjugate to an elmt of a vertex group of \mathbb{A} and *w* is conjugate to an elmnt of a vertex group of \mathbb{B} .

Recall that $\phi \in Out(F_N)$ is *fully irreducible* or *iwip* if there is no power ϕ^t ($t \neq 0$) such that ϕ^t fixes the conjugacy class of a proper free factor of F_N .

Fact: Let $\phi \in Out(F_N)$. Then exactly one of the following occurs:

- φ is an iwip and it acts as a hyperbolic isometry on FF_N (has a quasi-axis and exactly 2 fixed points at infinity)
- φ is not an iwip and some nonzero power φ^t of φ fixes a vertex of *FF_N*.

Another model: FS_N^* has $V(FS_N^*) = V(FS_N)$. Two distinct vertices \mathbb{A}, \mathbb{B} of FS_N^* are adjacent if there exists $w \in F_N, w \neq 1$ such that

 $||\boldsymbol{w}||_{\mathbb{A}} = ||\boldsymbol{w}||_{\mathbb{B}} = 0$

i.e. *w* is conjugate to an elmt of a vertex group of \mathbb{A} and *w* is conjugate to an elmnt of a vertex group of \mathbb{B} .

Yet another graph: The graph J_N has as its vertex set the set of (minimal nontrivial) splittings $F_N = \pi_1(\mathbb{A})$ such that \mathbb{A} has one edge and a cyclic (trivial or \mathbb{Z}) edge group. Adjacency is again defined as having a common elliptic element.

Then FS_N^* is a subgraph of J_N and, moreover $V(FS_N^*)$ is a 4-dense subset of $V(J_N)$.

Problem 2. Is J_N Gromov-hyperbolic?

If $\phi \in Out(F_N)$ is a geometric iwip (comes from a pseudo-Anosov homeo of a compact surface with one bry component) then ϕ acts on J_N with a bounded orbit while ϕ acts as a hyperbolic isometry on FS_N^* .

Yet another graph: The graph J_N has as its vertex set the set of (minimal nontrivial) splittings $F_N = \pi_1(\mathbb{A})$ such that \mathbb{A} has one edge and a cyclic (trivial or \mathbb{Z}) edge group. Adjacency is again defined as having a common elliptic element.

Then FS_N^* is a subgraph of J_N and, moreover $V(FS_N^*)$ is a 4-dense subset of $V(J_N)$.

Problem 2. Is J_N Gromov-hyperbolic?

If $\phi \in Out(F_N)$ is a geometric iwip (comes from a pseudo-Anosov homeo of a compact surface with one bry component) then ϕ acts on J_N with a bounded orbit while ϕ acts as a hyperbolic isometry on FS_N^* .

Yet another graph: The graph J_N has as its vertex set the set of (minimal nontrivial) splittings $F_N = \pi_1(\mathbb{A})$ such that \mathbb{A} has one edge and a cyclic (trivial or \mathbb{Z}) edge group. Adjacency is again defined as having a common elliptic element.

Then FS_N^* is a subgraph of J_N and, moreover $V(FS_N^*)$ is a 4-dense subset of $V(J_N)$.

Problem 2. Is J_N Gromov-hyperbolic?

If $\phi \in Out(F_N)$ is a geometric iwip (comes from a pseudo-Anosov homeo of a compact surface with one bry component) then ϕ acts on J_N with a bounded orbit while ϕ acts as a hyperbolic isometry on FS_N^* .

< 67 ▶

Yet another graph: The graph J_N has as its vertex set the set of (minimal nontrivial) splittings $F_N = \pi_1(\mathbb{A})$ such that \mathbb{A} has one edge and a cyclic (trivial or \mathbb{Z}) edge group. Adjacency is again defined as having a common elliptic element.

Then FS_N^* is a subgraph of J_N and, moreover $V(FS_N^*)$ is a 4-dense subset of $V(J_N)$.

Problem 2. Is J_N Gromov-hyperbolic?

If $\phi \in Out(F_N)$ is a geometric iwip (comes from a pseudo-Anosov homeo of a compact surface with one bry component) then ϕ acts on J_N with a bounded orbit while ϕ acts as a hyperbolic isometry on FS_N^* .

< 67 ▶

Yet another graph: The graph J_N has as its vertex set the set of (minimal nontrivial) splittings $F_N = \pi_1(\mathbb{A})$ such that \mathbb{A} has one edge and a cyclic (trivial or \mathbb{Z}) edge group. Adjacency is again defined as having a common elliptic element.

Then FS_N^* is a subgraph of J_N and, moreover $V(FS_N^*)$ is a 4-dense subset of $V(J_N)$.

Problem 2. Is J_N Gromov-hyperbolic?

If $\phi \in Out(F_N)$ is a geometric iwip (comes from a pseudo-Anosov homeo of a compact surface with one bry component) then ϕ acts on J_N with a bounded orbit while ϕ acts as a hyperbolic isometry on FS_N^* .