Generalised Triangle Groups

Jim Howie
Maxwell Institute for Mathematical Sciences, Heriot-Watt University,
Edinburgh

GAGTA6, Düsseldorf, 3 August 2012

Generalised Triangle Groups

A generalised triangle group is

$$
\begin{aligned}
& \quad G:=G(p, q, r, W):=\left\langle x, y \mid x^{p}=y^{q}=W(x, y)^{r}=1\right\rangle, \\
& p, q, r \geq 2, W=x^{\alpha(1)} y^{\beta(1)} \cdots x^{\alpha(k)} y^{\beta(k)}, k \geq 1,0<\alpha(i)<p, \\
& 0<\beta(i)<q \text {. } \\
& G(p, q, r, x y) \text { is the triangle group } T(p, q, r)<\operatorname{lsom}+(\Pi), \\
& \text { generated by rotations about the vertices of a }(\pi / p, \pi / q, \pi / r) \\
& \text { triangle in the elliptic/Euclidean/hyperbolic plane } \Pi
\end{aligned}
$$ (depending on sign of $\kappa=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}-1$).

Example: $T(4,4,2)$

Motivation

Culler/Gordon/Luecke/Shalen (1980's) If Dehn surgery on $K \subset S^{3}$ with slope $\frac{a}{b}$ gives $L(p, c) \# L(q, d)$, then $\exists W$ with $G(p, q, b, W)=\{1\}$.

Theorem (Boyer)
Generalised triangle groups are non-trivial.
Proof: Topology of varieties of representations to

$$
S O(3) \cong P S U(2) \subset P S L(2, \mathbb{C})=\operatorname{Isom}^{+}\left(\mathbb{H}^{3}\right)
$$

gives existence of an essential rep $\rho: G \rightarrow S O(3)$.
($\rho(x), \rho(y), \rho(W)$ have orders p, q, r resp.)
Corollary
Only integer Dehn surgery can give $L(p, c) \# L(q, d)$.

Properties of Generalised Triangle Groups
Theorem (Boyer)
Generalised triangle groups are non-trivial.
Theorem (Baumslag/Morgan/Shalen)
$G=\left\langle x, y \mid x^{p}=y^{q}=W(x, y)^{r}=1\right\rangle$ is

- infinite if $\kappa=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}-1 \leq 0$;
- large if $\kappa=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}-1<0$.
$(\exists H, K)|G: H|<\infty, K \triangleleft H, H / K \cong F_{2}$.
Proof. \exists essential rep $\rho: G \rightarrow \Phi,|\Phi|<\infty$.

$$
\chi(\operatorname{Presentation}(\operatorname{Ker}(\rho)))=\kappa|\Phi| .
$$

Conjecture (Rosenberger)
Tits alternative: G soluble-by-finite or $G \supset F_{2}$.

Trace polynomials

$$
\operatorname{EssRep}(\Gamma)=\{\text { Essential representations } \Gamma \rightarrow \operatorname{PSL}(2, C)\}
$$

is an algebraic variety over \mathbb{C}.

$$
\operatorname{EssChar}(G):=\operatorname{EssRep}(G) / P S L(2, \mathbb{C})
$$

the essential character variety

$$
F=\left\langle x, y \mid x^{p}=y^{q}=1\right\rangle \rightarrow\left\langle x, y \mid x^{p}=y^{q}=W^{r}=1\right\rangle=G .
$$

EssChar $(F) \supset$ curve $C:=$ $\{(\{ \pm X\},\{ \pm Y\}) ; \operatorname{Tr}(X)=2 \cos (\pi / p), \operatorname{Tr}(Y)=2 \cos (\pi / q)\}$.
$\operatorname{EssChar}(G) \cap C$ finite - solutions of $\tau_{W}(\lambda)=2 \cos (m \pi / r)$ with $(m, r)=1, \lambda:=\operatorname{Tr}(X Y), \tau_{W}(\lambda) \in \mathbb{C}[\lambda], \operatorname{deg}\left(\tau_{W}\right)=k$.
$\tau_{W}(\lambda)$ is the trace polynomial

Theorem (JH/Metaftsis/Thomas)

G finite generalised triangle group $\Rightarrow G$ one of short list (modulo two unknown cases).
Proof: $\rho(G)$ finite $(\forall \rho: G \rightarrow \operatorname{PSL}(2, \mathbb{C}))$ means the trace equation

$$
\tau_{W}(\lambda)=2 \cos (m \pi / r)
$$

has only finitely many solutions.
Multiple solutions mean G infinite.
$\left(\operatorname{Ker}\left(P S L\left(2, \mathbb{C}[X] /\left\langle\left\langle X^{2}\right\rangle\right\rangle\right) \rightarrow P S L(2, \mathbb{C})\right)\right.$ torsion-free abelian.)
Hence bound on length $(W)=\operatorname{deg}\left(\tau_{W}\right)$.
Computer search plus ad-hoc arguments.
Theorem (Lévai/Rosenberger/Souvignier)
Unknown case 1 infinite. Unknown case 2:

$$
\left\langle x, y \mid x^{2}=y^{3}=\left(x y x y x y x y^{2} x y^{2} x y x y^{2} x y^{2}\right)^{2}=1\right\rangle
$$

is finite of order $2^{20} \cdot 3^{4} \cdot 5=424,673,280$.

Known Results on Rosenberger Conjecture

$$
\begin{gathered}
G=\left\langle x, y \mid x^{p}=y^{q}=W(x, y)^{r}=1\right\rangle \\
W=x^{\alpha(1)} y^{\beta(1)} \cdots x^{\alpha(k)} y^{\beta(k)}
\end{gathered}
$$

Conjecture (Rosenberger)
$G \supset F_{2}$ or G soluble-by-finite.
The Rosenberger Conjecture holds for G if:

- $\kappa=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}-1<0$ (Baumslag/Morgan/Shalen)
- $r>2$ (Fine/Levin/Rosenberger) idea: ≥ 2 allowable values for $\operatorname{tr}(W) \Rightarrow$ allowable values of λ need to distribute over them.
- $k \leq 4$ (Fine/Levin/Rosenberger) - case-by-case analysis.
- $k \leq 6$ (Williams, modulo few open cases) - ditto.

Known results continued
The Rosenberger Conjecture holds for G if:

- $\kappa=0(\mathrm{JH})$ - multiple roots \Rightarrow
$(\exists H)|G: H|<\infty, H^{a b}$ high rank, $\operatorname{def}(H)=1$.
Apply BNS invariant and commutative algebra to $[H, H]^{a b}$.
- $p=2, q>5$ (Benyash-Krivets, B-K/Barkovitch, $\mathrm{JH} /$ Williams) - mixture of tricks.
- $(p, q, r)=(3,4,2)$ (Benyash-Krivets for k odd; $\mathrm{JH} /$ Williams for general case).
- $(p, q, r)=(2,4,2)$ and k odd. (Benyash-Krivets).

Remaining open cases

- $(p, q, r)=(2,3,2) . \quad(p, q, r)=(2,5,2)$.
- $(p, q, r)=(2,4,2), k$ even.
- $(p, q, r)=(3,3,2) . \quad(p, q, r)=(3,5,2)$.

The $(3,3,2)$ case
$G=\left\langle x, y \mid x^{3}=y^{3}=W(x, y)^{2}=1\right\rangle$.
$\rho: x \mapsto \pm X, y \mapsto \pm Y$ with $\operatorname{tr}(X)=1=\operatorname{tr}(Y)$.
$\rho(G) \supset F_{2}$ unless
(i) $\rho(G)=A_{4}$ (roots 0,1), or
(ii) $\rho(G)=A_{5}(\operatorname{roots}(1 \pm \sqrt{5}) / 2)$.

So

$$
\tau_{W}(\lambda)=\lambda^{a}(\lambda-1)^{b}\left(\lambda^{2}-\lambda-1\right)^{c} .
$$

$\lambda \in[-1,2] \Rightarrow$ unitary rep $\Rightarrow|\tau(\lambda)| \leq 2$.

- $\tau_{W}(2)=2^{a} \Rightarrow a \leq 1 ; \quad \quad \tau_{W}(-1)= \pm 2^{b} \Rightarrow b \leq 1$;
- $\tau_{W}\left(\frac{1}{2}\right)= \pm\left(\frac{1}{2}\right)^{a+b}\left(\frac{5}{4}\right)^{c} \Rightarrow c \leq 3(a+b+1) \leq 9$

The $(3,3,2)$ case
$G=\left\langle x, y \mid x^{3}=y^{3}=W(x, y)^{2}=1\right\rangle$.
$W=x^{\alpha(1)} y^{\beta(1)} \cdots x^{\alpha(k)} y^{\beta(k)}$

$$
\tau_{W}(\lambda)=\lambda^{a}(\lambda-1)^{b}\left(\lambda^{2}-\lambda-1\right)^{c}
$$

$a \leq 1, b \leq 1, c \leq 3(a+b+1) \leq 9$. So: $k=a+b+2 c \leq 20$.
Computer search: up to equivalence, 19 words have correct τ_{W}.
Of these, 12 have small cancellation property $\Rightarrow G \supset F_{2}$.
The other 7 have $k \leq 6 \Rightarrow$ result already known.
Theorem
The Rosenberger Conjecture holds for generalised triangle groups of type (3, 3, 2).

The $(3,5,2)$ case
$G=\left\langle x, y \mid x^{3}=y^{5}=W(x, y)^{2}=1\right\rangle$.
$\rho: x \mapsto \pm X, y \mapsto \pm Y$ with $\operatorname{tr}(X)=1, \operatorname{tr}(Y)=(1+\sqrt{5}) / 2$.
$\rho(G) \supset F_{2}$ unless $\rho(G)=A_{5}($ roots $0,1,(\pm 1+\sqrt{5}) / 2)$.
$\operatorname{Aut}\left(\mathbb{Z}_{5}\right)$ permutes these 4 roots, so equivalent.
If no multiple roots, then $k \leq 4$ so OK by Fine/Rosenberger.
So assume 0 a multiple root, ie $\lambda^{2} \mid \tau_{W}(\lambda)$.
Theorem
If $\lambda^{2} \mid \tau_{W}(\lambda)$, then $G \supset F_{2}$.

Theorem
If $\lambda^{2} \mid \tau_{W}(\lambda)$, then $G \supset F_{2}$.
Idea of proof.
$\Lambda=\mathbb{C}[\lambda] /\left\langle\left\langle\lambda^{2}\right\rangle\right\rangle . \phi: G \rightarrow \operatorname{PSL}(2, \Lambda) . \rho: G \rightarrow A_{5}$.

$$
1 \rightarrow A \rightarrow \operatorname{Im}(\phi) \rightarrow A_{5} \rightarrow 1
$$

where $A \cong \mathbb{Z}^{6}$ (spanned by V (Icosahedron): $\mathbb{Q} A=\mathbb{Q}[\sqrt{5}]^{3} \subset \mathbb{R}^{3}$).
$C:=\rho^{-1}\left(\mathbb{Z}_{2}\right)=\left\langle x_{1}, \ldots, x_{15} \mid r_{1}, \ldots, r_{14}, s_{1}^{2}, s_{2}^{2}\right\rangle . C \rightarrow \mathbb{Z}^{2} \oplus \mathbb{Z}_{2}^{4}$.
$\Rightarrow H_{1}\left([C, C], \mathbb{Z}_{2}\right)$ infinite.
\Rightarrow BNS-invariant $\Delta:=\Delta\left(C, \mathbb{Z}_{2}\right) \neq S^{1}$.
$K=\rho^{-1}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ induces -1 on $H^{1}(C)$, so $-\Delta=\Delta$.
$\Delta \cup-\Delta=\Delta \neq S^{1}$.
$G \supset C \supset F_{2}$.

Remaining cases (2, m, 2), $m=3,4,5$

$m=5$: Theory restricts τ_{W}, but no length bound.
Computer search succeeds up to length ~ 15. (Short words by Fine-Rosenberger, Williams or ad-hoc. Longer words small cancellation.)
$m=4$: Odd length by Benyash-Krivets. For even length, theory strongly restricts τ_{W}, but still no length bound.
$C o m p u t e r$ search succeeds up to length ~ 50. (No words of length >16 or in $[9,15]$. Length 16 small-cancellation. Length 8 ad-hoc. Shorter words by Fine-Rosenberger and Williams.)
$m=3$: Even length similar to $(3,3,2)$ case. OK except for small number of unknown cases (6 , reduced by Button to 2).

Odd length - who knows? Computer searches find non-small-cancellation examples at all lengths.

