New examples of totally disconnected locally compact groups

Murray Elder, George Willis

GACGTA 2012, Düsseldorf
A topological space X is

Hausdorff if for each $x \neq y$ there are disjoint open sets, one containing x and the other y

locally compact if for each x and each open set U containing x there is a compact open set $V \subseteq U$ containing x

connected if it is not the disjoint union of two open sets

totally disconnected if for each $x \neq y$, X is the disjoint union of open sets, one containing x and the other y
G is a topological group if

G is a group and a topological space such that \((x, y) \mapsto xy^{-1}\)
is a continuous map (from \(G \times G\) to \(G\))

Lem: Let \(G\) be a locally compact group and \(G_0\) the connected component containing the identity. Then \(G_0\) is an open normal subgroup and \(G/G_0\) is **totally disconnected**.

In other words, to understand locally compact groups you just need to understand the **connected** and **totally disconnected** cases.
Understanding totally disconnected locally compact groups

Any (abstract) group G with the *discrete topology* is totally disconnected (and locally compact).

Question: What other (tdlc) topologies can you *put on* G?
If G is finitely generated, let \mathcal{T} be the topology on $\text{Aut}(\text{Cay}(G))$ with basis

$$N(x, F) = \{ y \in \text{Aut}(\text{Cay}(G)) \mid x.f = y.f \quad \forall f \in F \}$$

where F is a finite set of vertices of $\text{Cay}(G)$.

Aut(Cay(G))
In some cases this topology is nondiscrete (e.g. nonabelian free groups)

However, the subspace topology on G, or even the closure of G in $\text{Aut}(\text{Cay}(G))$, is discrete

(for each $\alpha \neq e \in \text{Aut}(\text{Cay}(G))$ there is some v so that $\alpha \notin N(e, \{v\})$ so the intersection of $N(e, \{v\})$ over all v is just $\{e\}$).

Instead, here is a trick with \textit{commensurated subgroups} that sometimes makes a nondiscrete tdlc group in which G embeds densely.
Commensurability and commensurated subgroups

Defn: Let G be a group, and H, K subgroups. H and K are *commensurable* if $H \cap K$ is finite index in both H and K.

Lem: Commensurability is an equivalence relation
Commensurability and commensurated subgroups

Defn: H is *commensurated by G* if \(gHg^{-1} \) is commensurable with H for all \(g \in G \).

Lem: If G is finitely generated, it suffices to check \(gHg^{-1} \) is commensurable with H just for the generators.
Example 1: Baumslag-Solitar groups

\[\text{BS}(m, n) = \langle a, t \mid ta^m t^{-1} = a^n \rangle \]

the cyclic subgroup \(\langle a \rangle \) is commensurated
Example 2: tdlc groups

Every tdlc group G has a **compact open subgroup** (van Dantzig).

An **automorphism** of a topological group $\alpha : G \to G$ is a group isomorphism that is also a homeomorphism (α and α^{-1} are continuous).

If V is a compact open subgroup of G, then $\alpha(V)$ is also compact and open, and $\alpha(V) \cap V$ is open, so its cosets in V are an open cover, its index is finite

(i.e. $\alpha(V) \cap V$ is commensurated by V)
Scale

Defn: \[s(\alpha) = \min_{V \text{ compact open}} \{ [V : \alpha(V) \cap V] \} \]

is the **scale** of the automorphism \(\alpha \).

A subgroup that realises this minimum for a group element is called **minimizing**.
Scale

In the case that α is the inner automorphism $x \mapsto gxg^{-1}$, the scale is a function $s : G \rightarrow \mathbb{Z}^+$ which satisfies some useful properties:

- s is continuous

- $s(x^n) = s(x)^n$

- $s(gxg^{-1}) = s(x)$

- the number of prime factors of the scales of a (compactly generated) tdlc group is finite
Recipe

Let G be an abstract group with a \textbf{commensurated} subgroup H, and suppose H has \textbf{no subgroup that is normal in G}.

Then G acts (faithfully) on G/H by permuting cosets, so $G \leq \text{Sym}(G/H)$.

if $x \not\in H$ then $xH \neq H$

if $x \in H$ and $xgH = gH$ for all $g \in G$ then $x \in \bigcap_{g \in G} gHg^{-1}$ which is normal so must be $\{e\}$
Recipe

Let \mathcal{T} be the topology on $\text{Sym}(G/H)$ with basis

$$N(x, F) = \{ y \in \text{Sym}(G/H) \mid y(gH) = x(gH) \ \forall \ (gH) \in F \}$$

for each $x \in \text{Sym}(G/H)$ and each finite subset F of G/H.
Recipe

Take the *closure* of \(G \) in \(\text{Sym}(G/H) \)

which is the intersection of all closed subsets of \(\text{Sym}(G/H) \) that contain \(G \).

We denote the closed subgroup by \(G//H \).

\((G \text{ is dense in } G//H) \)
Locally compact

Since H is commensurated, the orbits of cosets under H are finite,

$$\text{Stab}_H(gH) = N(e,gH) = H \cap gHg^{-1}$$
so the orbit HgH is H/Stab_H which is finite when H is commensurated

so H acts on G/H by permuting cosets in finite blocks,

so $H \leq \prod \text{Sym}(HgH)$ which is compact by Tychonov’s theorem.

The closure of H is also a subgroup of this compact group, so is compact. It is open since it is equal to $N_{G//H}(e,H)$.

It follows that $G//H$ is locally compact since each point lies in a translate of \overline{H}.
Totally disconnected

Since the action of G on G/H is faithful,

for each $x \neq y \in G$ there is a coset gH with $xgH \neq ygH$.

$N_{G//H}(x, gH)$ is an open set containing x, and its complement

$$\bigcup_{z \in N_{G//H}(x, gH)} N_{G//H}(z, gH)$$

is open and contains y.

So $G//H$ is a tdlc group.
New examples

So given a group G, a subgroup H

- having no subgroups normal in G
- and commensurated by G

the recipe produces a ready-made tdlc group

Since $\langle a \rangle$ is commensurated by $\text{BS}(m,n)$, and when $|m| \neq |n|$ has no subgroup that is normal in $\text{BS}(m,n)$,

we get a (nondiscrete) topology on $\text{BS}(m,n)$.

(i.e. we have a tdlc group in which $\text{BS}(m,n)$ is dense)
Scales of $\text{BS}(m,n) / \langle a \rangle$

Thm (E, Willis): The set of scales for $\text{BS}(m,n) / \langle a \rangle$ for all $m, n \neq 0$ is

$$\left\{ \left(\frac{\text{lcm}(m,n)}{m} \right)^k, \left(\frac{\text{lcm}(m,n)}{n} \right)^k : k \in \mathbb{N} \right\}$$

Since $\text{BS}(m,n)$ is dense in its closure, and $s: \text{BS}(m,n) / \langle a \rangle \to \mathbb{Z}$ is continuous, if we show that scales of elements in $\text{BS}(m,n)$ take only these values, the result for $\text{BS}(m,n) / \langle a \rangle$ follows.

See our paper (on arxiv very soon) for more details
Thanks and References

U. Baumgartner, R. Möller and G. Willis, Hyperbolic groups have flat-rank at most 1, arXiv:0911.4461

M. Elder and G. Willis, Totally disconnected groups from Baumslag-Solitar groups, arXiv:soon

Y. Shalom and G. Willis, Commensurated subgroups of arithmetic groups, totally disconnected groups and adelic rigidity, arXiv:0911.1966

G. Willis, The structure of totally disconnected, locally compact groups, Mathematische Annalen 300(1994), 341–363

G. Willis, Further properties of the scale function on totally disconnected groups, J. Algebra 237(2001), 142–164

G. Willis, A canonical form for automorphisms of totally disconnected locally compact groups, Random walks and geometry, 2004, 295–316