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A topological space X is

Hausdorff if for each x 6= y there are disjoint open sets, one

containing x and the other y

locally compact if for each x and each open set U containing

x there is a compact open set V⊆U containing x

connected if it is not the disjoint union of two open sets

totally disconnected if for each x 6= y, X is the disjoint union

of open sets, one containing x and the other y



G is a topological group if

G is a group and a topological space such that (x, y) 7→ xy−1

is a continuous map (from G×G to G)

Lem: Let G be a locally compact group and G0 the connected

component containing the identity. Then G0 is an open normal

subgroup and G/G0 is totally disconnected.

In other words, to understand locally compact groups you just

need to understand the connected and totally disconnected cases.



Understanding totally disconnected locally compact groups

Any (abstract) group G with the discrete topology is totally

disconnected (and locally compact).

Question: What other (tdlc) topologies can you put on G?



Aut(Cay(G))

If G is finitely generated, let T be the topology on Aut(Cay(G))

with basis

N(x,F) = {y ∈ Aut(Cay(G)) | x.f = y.f ∀ f ∈ F}

where F is a finite set of vertices of Cay(G).



Aut(Cay(G))

In some cases this topology is nondiscrete (eg. nonabelian free

groups)

However, the subspace topology on G, or even the closure of G

in Aut(Cay(G)), is discrete

(for each α 6= e ∈Aut(Cay(G)) there is some v so that α 6∈N(e, {v}) so the intersection of
N(e, {v}) over all v is just {e}).

Instead, here is a trick with commensurated subgroups that

sometimes makes a nondiscrete tdlc group in which G embeds

densely.



Commensurability and commensurated subgroups

Defn: Let G be a group, and H, K subgroups. H and K are

commensurable if H∩K is finite index in both H and K.

Lem: Commensurability is an equivalence relation



Commensurability and commensurated subgroups

Defn: H is commensurated by G if gHg−1 is commensurable with

H for all g ∈G.

Lem: If G is finitely generated, it suffices to check gHg−1 is

commensurable with H just for the generators.



Example 1: Baumslag-Solitar groups

BS(m,n) = 〈a, t | tamt−1 = an〉

the cyclic subgroup 〈a〉 is commensurated



Example 2: tdlc groups

Every tdlc group G has a compact open subgroup (van Dantzig).

An automorphism of a topological group α : G→ G is a group

isomorphism that is also a homeomorphism (α and α−1 are con-

tinuous).

If V is a compact open subgroup of G, then α(V) is also compact

and open, and α(V) ∩ V is open, so its cosets in V are an open

cover, its index is finite

(i.e. α(V) ∩V is commensurated by V)



Scale

Defn: s(α) = min
V compact open

{[V : α(V) ∩V)}

is the scale of the automorphism α.

A subgroup that realises this minimum for a group element is

called minimizing.



Scale

In the case that α is the inner automorphism x 7→ gxg−1,

the scale is a function s : G→ Z+

which satisfies some useful properties:

SPACE • s is continuous

SPACE • s(xn) = s(x)n

SPACE • s(gxg−1) = s(x)

SPACE • the number of prime factors of the scales of a

SPACE • (compactly generated) tdlc group is finite



Recipe

Let G be an abstract group with a commensurated subgroup

H, and suppose H has no subgroup that is normal in G.

Then G acts (faithfully) on G/H by permuting cosets, so

G ≤ Sym(G/H).

if x 6∈ H then xH 6=H

if x ∈ H and xgH= gH for all g ∈G then x ∈
⋂
g∈G

gHg−1 which is normal so must be {e}



Recipe

Let T be the topology on Sym(G/H) with basis

N(x,F) = {y ∈ Sym(G/H) | y(gH) = x(gH) ∀ (gH) ∈ F}

for each x ∈ Sym(G/H) and each finite subset F of G/H.



Recipe

Take the closure of G in Sym(G/H)

which is the intersection of all closed subsets of Sym(G/H) that

contain G.

We denote the closed subgroup by G//H.

(G is dense in G//H)



Locally compact

Since H is commensurated, the orbits of cosets under H are finite,

StabH(gH) = N(e, gH) = H ∩ gHg−1

so the orbit HgH is H/StabH which is finite when H is commensurated

so H acts on G/H by permuting cosets in finite blocks,

so H ≤
∏

Sym(HgH) which is compact by Tychonov’s theorem.

The closure of H is also a subgroup of this compact group, so is
compact. It is open since it is equal to NG//H(e,H).

It follows that G//H is locally compact since each point lies in a
translate of H.



Totally disconnected

Since the action of G on G/H is faithful,

for each x 6= y ∈ G there is a coset gH with xgH 6= ygH.

NG//H(x, gH) is an open set containing x, and its complement

⋃
z 6∈NG//H(x,gH)

NG//H(z, gH) is open and contains y.

So G//H is a tdlc group.



New examples

So given a group G, a subgroup H

TH • having no subgroups normal in G

TH • and commensurated by G

the recipe produces a ready-made tdlc group

Since 〈a〉 is commensurated by BS(m,n), and when |m| 6= |n| has
no subgroup that is normal in BS(m,n),

we get a (nondiscrete) topology on BS(m,n).

(i.e. we have a tdlc group in which BS(m,n) is dense)



Scales of BS(m,n)//〈a〉

Thm (E, Willis): The set of scales for BS(m,n)//〈a〉 for all

m,n 6= 0 is 
(

lcm(m,n)

m

)k
,

(
lcm(m,n)

n

)k
: k ∈ N


Since BS(m,n) is dense in its closure, and s: BS(m,n)//〈a〉 → Z
is continuous, if we show that scales of elements in BS(m,n)

take only these values, the result for BS(m,n)//〈a〉 follows.

See our paper (on arxiv very soon) for more details
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