New examples of totally disconnected locally compact groups

Murray Elder, George Willis

GACGTA 2012, Düsseldorf

A topological space X is

Hausdorff if for each $x \neq y$ there are disjoint open sets, one containing x and the other y

locally compact if for each x and each open set U containing x there is a compact open set V \subseteq U containing x

connected if it is not the disjoint union of two open sets

totally disconnected if for each $x \neq y$, X is the disjoint union of open sets, one containing x and the other y

G is a topological group if

G is a group and a topological space such that $(x, y) \mapsto xy^{-1}$ is a continuous map (from G×G to G)

Lem: Let G be a locally compact group and G_0 the **connected** component containing the identity. Then G_0 is an open normal subgroup and G/G_0 is **totally disconnected**.

In other words, to understand locally compact groups you just need to understand the *connected* and *totally disconnected* cases.

Understanding totally disconnected locally compact groups

Any (abstract) group G with the *discrete topology* is totally disconnected (and locally compact).

Question: What other (tdlc) topologies can you put on G?

Aut(Cay(G))

If G is finitely generated, let \mathcal{T} be the topology on Aut(Cay(G)) with basis

$$N(x, F) = \{ y \in Aut(Cay(G)) \mid x \cdot f = y \cdot f \quad \forall f \in F \}$$

where F is a finite set of vertices of Cay(G).

Aut(Cay(G))

In some cases this topology is nondiscrete (*eg.* nonabelian free groups)

However, the subspace topology on G, or even the closure of G in Aut(Cay(G)), is discrete

(for each $\alpha \neq e \in Aut(Cay(G))$ there is some v so that $\alpha \notin N(e, \{v\})$ so the intersection of $N(e, \{v\})$ over all v is just $\{e\}$).

Instead, here is a trick with **commensurated subgroups** that sometimes makes a nondiscrete tdlc group in which G embeds densely.

Commensurability and commensurated subgroups

Defn: Let G be a group, and H, K subgroups. H and K are commensurable if $H \cap K$ is finite index in both H and K.

Lem: Commensurability is an equivalence relation

Commensurability and commensurated subgroups

Defn: H is *commensurated by* G if gHg^{-1} is commensurable with H for all $g \in G$.

Lem: If G is finitely generated, it suffices to check gHg^{-1} is commensurable with H just for the generators.

Example 1: Baumslag-Solitar groups

$$\mathsf{BS}(m,n) = \langle a,t \mid ta^m t^{-1} = a^n \rangle$$

the cyclic subgroup $\langle a \rangle$ is commensurated

Example 2: tdlc groups

Every tdlc group G has a compact open subgroup (van Dantzig).

An **automorphism** of a topological group $\alpha : G \to G$ is a group isomorphism that is also a homeomorphism (α and α^{-1} are continuous).

If V is a compact open subgroup of G, then $\alpha(V)$ is also compact and open, and $\alpha(V) \cap V$ is open, so its cosets in V are an open cover, its index is finite

(*i.e.* $\alpha(V) \cap V$ is commensurated by V)

Scale

Defn:
$$s(\alpha) = \min_{\mathsf{V} \text{ compact open}} \{ [\mathsf{V} : \alpha(\mathsf{V}) \cap \mathsf{V}) \}$$

is the scale of the automorphism α .

A subgroup that realises this minimum for a group element is called **minimizing**.

Scale

In the case that α is the inner automorphism $x \mapsto gxg^{-1}$, the scale is a function $s : \mathbf{G} \to \mathbb{Z}^+$

which satisfies some useful properties:

- $\bullet~s$ is continuous
- $s(x^n) = s(x)^n$
- $s(gxg^{-1}) = s(x)$
- the number of prime factors of the scales of a (compactly generated) tdlc group is finite

Recipe

Let G be an abstract group with a **commensurated** subgroup H, and suppose H has **no subgroup that is normal in G**.

Then G acts (faithfully) on G/H by permuting cosets, so $G \leq Sym(G/H)$.

if $x \notin H$ then $xH \neq H$

if $x \in H$ and xgH = gH for all $g \in G$ then $x \in \bigcap_{g \in G} gHg^{-1}$ which is normal so must be $\{e\}$

Recipe

Let \mathcal{T} be the topology on Sym(G/H) with basis

 $N(x, F) = \{ y \in Sym(G/H) \mid y(gH) = x(gH) \forall (gH) \in F \}$

for each $x \in Sym(G/H)$ and each finite subset F of G/H.

Recipe

Take the **closure** of G in Sym(G/H)

which is the intersection of all closed subsets of Sym(G/H) that contain G.

We denote the closed subgroup by G//H.

(G is dense in $G/\!\!/H$)

Locally compact

Since H is commensurated, the orbits of cosets under H are finite,

 $Stab_{H}(gH) = N(e, gH) = H \cap gHg^{-1}$ so the orbit HgH is $H/Stab_{H}$ which is finite when H is commensurated

so H acts on G/H by permuting cosets in finite blocks,

so $H \leq \prod Sym(H_gH)$ which is compact by **Tychonov's theorem**.

The closure of H is also a subgroup of this compact group, so is **compact**. It is **open** since it is equal to $N_{G/H}(e,H)$.

It follows that G//H is locally compact since each point lies in a translate of \overline{H} .

Totally disconnected

Since the action of G on G/H is faithful,

for each $x \neq y \in G$ there is a coset gH with $xgH \neq ygH$.

 $N_{G/H}(x, gH)$ is an open set containing x, and its complement

 $\bigcup_{z \notin N_{G/\!\!/H}(x,gH)} N_{G/\!\!/H}(z,gH) \text{ is open and contains } y.$

So G//H is a tdlc group.

New examples

So given a group G, a subgroup H

- having no subgroups normal in G
- and commensurated by G

the recipe produces a ready-made tdlc group

Since $\langle a \rangle$ is commensurated by BS(m, n), and when $|m| \neq |n|$ has no subgroup that is normal in BS(m, n),

we get a (nondiscrete) topology on BS(m, n).

(*i.e.* we have a tdlc group in which BS(m, n) is dense)

Scales of BS $(m, n) // \langle a \rangle$

Thm (E, Willis): The set of scales for $BS(m,n)//\langle a \rangle$ for all $m, n \neq 0$ is

$$\left\{ \left(\frac{\operatorname{\mathsf{lcm}}(m,n)}{m}\right)^k, \left(\frac{\operatorname{\mathsf{lcm}}(m,n)}{n}\right)^k : k \in \mathbb{N} \right\}$$

Since BS(m,n) is dense in its closure, and $s: BS(m,n)//\langle a \rangle \to \mathbb{Z}$ is continuous, if we show that scales of elements in BS(m,n) take only these values, the result for $BS(m,n)//\langle a \rangle$ follows.

See our paper (on arxiv very soon) for more details

Thanks and References

U. Baumgartner, R. Möller and G. Willis, **Hyperbolic groups have flat-rank at most 1**, arXiv:0911.4461

M. Elder and G. Willis, **Totally disconnected groups from Baumslag-Solitar groups**, arXiv:soon

R. Möller, Structure theory of totally disconnected locally compact groups via graphs and permutations, Canad J Math 54(2002), 795–827

Y. Shalom and G. Willis, **Commensurated subgroups of arithmetic groups, totally disconnected groups and adelic rigidity**, arXiv:0911.1966

G. Willis, **The structure of totally disconnected, locally compact groups**, Mathematische Annalen 300(1994), 341–363

G. Willis, **Further properties of the scale function on totally disconnected groups**, J. Algebra 237(2001), 142–164

G. Willis, **A canonical form for automorphisms of totally disconnected locally compact groups**, Random walks and geometry, 2004, 295–316