Bewertete Körper Hausaufgabe 1

Sei $|\cdot|: K \to \mathbb{R}_{>0}$ ein Betrag auf einem Körper K.

Aufgabe 1. (2 Punkte) Seien $a, b \in K$. Zeige, dass

$$|a| < |b| \Rightarrow |a - b| = |b|,$$

falls $|\cdot|$ nichtarchimedisch ist.

Aufgabe 2. (2 Punkte) Falsch oder wahr?

- (1) Jede Cauchyfolge konvergiert, falls der Absolutbetrag trivial ist.
- (2) Der Absolutbetrag trivial ist, falls Jede Cauchyfolge konvergiert.

Aufgabe 3. (2 Punkte) Sei $(a_n)_{n\in\mathbb{N}}$ eine Cauchyfolge. Zeige, dass die Folge der reellen Zahlen $(|a_n|)_{n\in\mathbb{N}}$ eine Cauchyfolge ist.

Aufgabe 4. (4 Punkte) Sei \mathcal{C} die Menge von Cauchyfolgen aus K (Schauen sie die Definition auf Seite 9 des Buches). Seien mit + und \cdot eine Summe und eine Multiplikation auf C koordinatenweise definiert. Zeige, dass \mathcal{C} ein Ring (mit Eins) ist.

Aufgabe 5. Sei \mathcal{C} wie in Aufgabe 4. Sei

$$\mathcal{N} = \{(a_n)_{n \in \mathbb{N}} \in \mathcal{C} : \lim_{n \to \infty} a_n = 0\}.$$

- (1) (3 Punkte) Zeige, dass \mathcal{N} ein maximales Ideal von \mathcal{C} ist.
- (2) (3 Punkte) Zeige, dass die Abbildung $\iota: K \to \mathcal{C}/\mathcal{N}$

$$x \to (a_n)_{n \in \mathbb{N}} / \mathcal{N}$$
 mit $a_n = x$ für alle $n \in \mathbb{N}$

ein Einbettung ist.

Aufgabe 6. (4 Punkte) Seien $|\cdot|_1, \dots, |\cdot|_n$ nichttriviale nicharchimedische und paarweise nichtäquivalent Beträge auf einem Körper K. Zeige, dass für $a_1, \dots, a_n \in K$ ein $x \in K$ gibt, so dass

$$|x|_i = |a_i|_i$$
 für $i = 1, ..., n$.

(Abgabe 20.04.22)