Coxetergruppen

Übungsblatt 3

Aufgabe 1. (verbesserte Aufgabe 4 aus Übungsblatt 2)

Sei Φ ein Wurzelsystem in \mathbb{R}^n mit dim $(\Phi) = n$. Beweisen Sie folgendes:

- (a) Die Anzahl von einfachen Systemen Δ in Φ ist nicht größer als $\binom{|\Phi|}{n}$.
- (b) $|W_{\Phi}| \leqslant {|\Phi| \choose n} \cdot n!$.

Hinweis. Für (b) benutzen Sie die Behauptung 2) des Satzes 1.4.3 im Kurzskript (im Netz).

Aufgabe 2. Sei e_1, e_2, e_3 die Standardbasis in \mathbb{R}^3 . Aus dem Übungsblatt 1 (Aufgabe 3b) wissen wir, dass das folgende System Ψ ein Wurzelsystem in \mathbb{R}^3 ist:

$$\Psi := \{ \alpha_i e_i + \alpha_j e_j \mid i, j \in \{1, 2, 3\}, i \neq j, \alpha_i, \alpha_j \in \{-1, 1\} \}.$$

1) Beweisen Sie, dass die Weyl-Gruppe W_{Ψ} die folgende Präsentation hat:

$$\langle a, b, c | a^2 = b^2 = c^2 = 1, (ab)^2 = 1, (ac)^3 = 1, (bc)^3 = 1 \rangle.$$

- 2) Wir definieren $w: \mathbb{R}^3 \to \mathbb{R}^3$, w(x) = -x, für alle $x \in \mathbb{R}^3$. Beweisen Sie: $w \notin W_{\Psi}$.
- 3) Beweisen Sie, dass die Symmetriegruppe eines Würfels 48 Elemente hat.
- 4) Beweisen Sie, dass $|W_{\Psi}| = 24$ ist.
- 5) Beweisen Sie, dass $W_{\Psi} \cong S_4$ ist.

Hinweis. Für 2) benutzen Sie die Behauptung 1.7.5 des Kurzskripts im Netz und die Determinante. Leiten Sie 4) aus 2), 3) und aus der Aufgabe 1(d) im Übungsblatt 2 ab.

Aufgabe 3. In der letzten Vorlesung haben wir den folgenden Satz formuliert: Für $\alpha \in \Delta$ und $w \in W$ gilt:

- 1) $w(\alpha) \succ 0 \Rightarrow l(ws_{\alpha}) = l(w) + 1$,
- 2) $w(\alpha) \prec 0 \Rightarrow l(ws_{\alpha}) = l(w) 1$.

Punkt 1) haben wir bewiesen. Leiten Sie 2) aus 1) ab.

Fortsetzung Seite 2.

Aufgabe 4. Seien

- Φ ein Wurzelsystem in V,
- Δ ein einfaches System in Φ ,
- W die Weyl-Gruppe für Φ ,
- $l: W \to \mathbb{N}_0$ die Länge-Funktion bezüglich des Erzeugersystems $\{s_\alpha \mid \alpha \in \Delta\}$.

Für jede Teilmenge $\Delta' \subseteq \Delta$ definieren wir eine Untergruppe und eine Teilmenge von W:

$$W_{\Delta'} := \langle s_{\alpha} \mid \alpha \in \Delta' \rangle,$$

$$W^{\Delta'} := \{ w \in W \mid l(ws_{\alpha}) > l(w) \text{ für alle } \alpha \in \Delta' \}.$$

In der Vorlesung haben wir bewiesen, dass sich jedes $w \in W$ als w = uv mit $u \in W^{\Delta'}$ und $v \in W_{\Delta'}$ aufschreiben läßt. Dabei haben wir u als ein Element in der Nebenklasse $wW_{\Delta'}$ mit minimaler Länge gewählt.

- a) Beweisen Sie, dass l(w) = l(u) + l(v) ist.
- b) Beweisen Sie, dass es nur ein Element in $wW_{\Delta'}$ mit der minimalen Länge gibt.

 $Hinweis\ zu\ a)$: Sei $u=s_1\dots s_q$ mit q=l(u) und sei $v=s_1'\dots s_p'$ mit p=l(v). Dann gilt $w=s_1\dots s_qs_1'\dots s_p'$. Wenn l(w)< l(u)+l(v) ist, dann können Sie Satz 1.7.3 anwenden, um einen Widerspruch zu bekommen. Dabei müssen 3 Fälle für die zwei weggelassenen Buchstaben betrachtet werden.

Keine weitere Aufgaben werden gestellt.