Cryptography

Series 1

Problem 1.

(a) Find the greatest common divisor $\operatorname{gcd}(78,34)$.
(b) Find some integer numbers u, v such that $78 u+34 v=\operatorname{gcd}(78,34)$.

Problem 2.

(a) Let a and n be two coprime natural numbers. Prove that there exists a natural number u such that

$$
a u \equiv 1(\bmod n)
$$

(Hint: Use Theorem 1.1 about Euclidean algorithm.)
(b) Find all integer numbers x such that

$$
\left\{\begin{array}{l}
x \equiv 1(\bmod 3), \\
x \equiv 2(\bmod 5), \\
x \equiv 3(\bmod 8)
\end{array}\right.
$$

(Hint: Use Chinese remainder theorem.)

Problem 3. Let F_{n} be the n-th Fibonacci number.
(a) Find the minimal prime number $n>2$ such that F_{n} is not a prime number.
(b) Prove Cassini's identity $F_{n-1} F_{n+1}-F_{n}^{2}=(-1)^{n}$.

