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The statement

Theorem (Lindstrom)

There is no logic that is more expressive than classical first order logic and
that satisfies both the Compactness and the Léwenheim-Skolem properties.

From: Per Lindstrém, On extensions of elementary logic, Theoria 35, p.1-11,
1969
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Il. The proof

following Ebbinghaus/Flum/Thomas, Introduction to mathematical logic,
Chapters XI1/XIII
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1st outline of Lindstrém’s proof: Let £ be a regular logic satisfying
L5Sko(£) and Comp(L). Assume that L, < L.

Then there exists a ¢ € L(S) not equivalent to any first order sentence.

1. Show that for all m € N there exist S-structures 2, B with A =, v,
B E, ) and A =, B.

2. Using Comp(L) we get p-isomorphic S-structures A, B with 2 E, 1),
B Ep .

3. By LoSko(L) we can assume w.l.o.g. that 2 and B are countable. Then
we have 24 =B but A F, ¢, B F, —1p. This contradicts the isomorphism
invariance of abstract logics!
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Step 1. of the proof of Lindstrém’s theorem

Let £ be a regular logic satisfying L6Sko(£) and Comp(L). Assume that
Lo < L.

Then there exists a ¢ € L(S) not equivalent to any first order sentence.

By Repl(L) (allowing to replace function symbols with relation symbols) we
can assume w.l.o.g. that S contains only relation symbols. Remember that
we want to prove the following:

Proposition(Step 1): For all m € N and all finite Sp C S there exist
S-structures A, B with A F, ¢, B Fz 1 and Als, =, Bls,.

(Note that we had to pass to a finite subsignature for our m-isomorphism.

This will not be a problem in the course of the proof of Lindstrom’s
theorem)

Peter Arndt (Regensburg) Lindstrém’s Theorem Unilog 2015 5/35



Proposition(Step 1): For all m € N and all finite So C S there exist
S-structures A, B with A F, ¢, B Fz —1p and A|s, =, Bs,.

Proof: Let Sp C S be finite and m € N. Define ¢ := V{(pgf‘s o | AEY}
07
(“this structure is m-isomorphic to s, for an A with 2 E ")

There is an 2 with 2 F ¢, because otherwise 1 would be logically
equivalent to a contradiction (this is what it means to have no models), and
hence a first order formula. So the above disjunction is non-empty. From
the definition of the goél"'sw@ one can also see that the disjunction is finite, so

@ is a first order sentence.

Clearly 9 — ¢ is a valid formula: If an S-structure 2 satisfies 21 E ¢, then
it occurs in the disjunction and its Sp-reduction is m-isomorphic to itself.

On the other hand ¢ — 1 (i.e. = V1) is not a valid formula, otherwise 1
would be equivalent to the first order formula ¢. Hence its negation o A =)
is satisfiable, i.e. there exists an S-structure B such that 8 £ ¢ and

B E .

The first part, B & ¢, means exactly that this B|s, is m-isomorphic to 2|s,
for an 2l satisfying . O
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Internalizing Step 1

For Step 2, the passage from an m-isomorphism to a p-isomorphism, we
have to express the statement of Step 1, i.e. (for given Sp C S)

IS —str.AB s.t. AEY, BE Y, As, =m Bls,
internally in the language of our abstract logic.

More precisely we will construct a signature S* and an S™-sentence
v € L(ST) such that an ST-structure satisfying v consists of two
S-structures, one satisfying 1, the other =), and an m-isomorphism
between them.
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Define ST :=SU{U,V,W,P,<,1,G,f,c} where U, V, W, P are unary
relation symbols, <,/ are binary relations symbols, G is a ternary relation
symbol, f a unary function symbol and ¢ a constant symbol.

The statement of Step 1 gives us, for all m € N, an S*-structure £,
The underlying set is K, := A]IBI{1,...,m} [ P, where A, B are the
underlying sets of 2, B, P := Jy_; I, (with /, the set of n times
extendable partial isomorphims 20 — B).

— We interpret the symbols U as the subset A, V' as the subset B, W as the
subset {1,...,m} and P as the subset which we already called P above.

— We interpret the binary symbol < as the order relation on

W ={1,...,m} and | C W x P as the relation I(n,p) = p € I,

— We interpret the ternary symbol G as G C P x A x B where

G(p, a,b) 1< a € dom(p),p(a) = b

— We interpret the function symbol f as the predecessor function on W and
the constant symbol ¢ as the maximal element m of W.
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The S*-structure R, satisfies the following first order sentences:

o (W,<,f,c)is a total order with maximal element ¢ and predecessor
function f (where we set f(0) = 0)

o If p € P, then p is a partial isomorphism from 2 to 8.
e If n> 0, p €, then, for any choice of a€ U or b € V there is a
q € l¢(n) extending p and with a € dom(q), resp. b € Im(q).

o ¢V, (—¢)Y hold — here we use the relativization property Rel(£) to
build the formulas ¥V, resp (—¢)" saying that 1), resp =% hold on the
sub-S-structures given by U, resp V. To form =) we use that £
contains Boolean connectives.

These are finitely many sentences (concrete fully formal sentences can be
found in Ebbinghaus/Flum/Thomas) so we can form their conjunction,
using Bool(£), and call the result ~.
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Prop.: For any finite Sy C S there are S-structures 2, B with A F, ),
B Er 1 and A|s, =, Bls, .

Proof: Consider [ := {7y} U { “W has at least m elements” | m € N }.
Since we have the S*-structures £,,, all finite subsets are satisfiable. By
Comp(L) the whole set is satisfiable, i.e. there exists an ST-structure 9
with M ET.

This 9T has W C M an infinite totaly ordered set with maximal element,
and has sub-S-structures 2, B with 2 E v, B E —).

Define I :={p € P | p € lgw) for some n € N} (where f(") means the
n-fold application of the predecessor function). Every p € [ is infinitely
extendable (since W is infinite), so the the set / is a p-isomorphism

[ A =,8. O

Peter Arndt (Regensburg) Lindstrém’s Theorem Unilog 2015 10 / 35



We want to improve the result of Step 2 to saying the following:

For any finite Sg C S there are countable p-isomorphic S-structures 2, 95
with A E, Y, B EF, =), and A|s, =, Bls,. Being p-isomorphic and
countable they will then be isomorphic.

For this it is of no use to apply LoSko(L£) to the structures 2, B directly:
L6Sko(L) merely allows us to replace 2, B with countable, elementarily

equivalent structures, but nothing guarantees that the two outcomes are
p-isomorphic again.
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Instead we take the structure 9t from the proof of Step 2 and apply
LoSko(L) to M to get a countable model of our sentence « from before.
The two substructures 2, B will then also be countable.

The last thing that we have to take care of is that the ordered set that is
the interpretation of W is still infinite (then we can, as in the proof of Step
2, get a p-isomorphism). To this end we enhance the signature S™ by one
more unary predicate Q. In the S*-structure 90t of Step 2 we interpret this
as the set of predecessors of the maximal element ¢ of W. Then M is a
model of the sentence 6 := Q(c) A Vx(Q(x) — ((f(x) < x) A Q(f(x))))
(which says that the set of predecessors of c is infinite).

Now, using L&Sko(L), we pass to a countable model of v A 6. The same
moves as in Step 2 which defined a p-isomorphism, together with the
countability, prove then the following proposition:

Prop. (Step 3): For any finite So C S there are S-structures 2, B with
AEL Y, B EL - and Als, = Bls,.
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Last step

This is not yet a contradiction, since we had to pass to a finite subsignature
S0 € S. We now show that this is enough, since the validity of v itself in
an S-structure 2( depends only on 2A|s, for a finite subsignature So.

Lemma 1: Let & C L(S), ¢ € L(S), ® E, . Then there exists a finite
®g C & such that &g F, .

Proof: Choose —p using Bool(L). Then ® U {—p} is not satisfiable.
Hence there is some finite ®g C & s.t. $g U {—¢} is not satisfiable. Hence
®g Fr . O
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Lemma 2: Let ¢ € L(S). Then there is a finite subset So C S such that
for all S-structures 2, B:
If Als, = Bls,, then (A, ¢ iff B E, ).

Proof: We consider a new signature (SU{U, V, f}) intended to talk about
homomorphisms of S-structures: Given a homomorphism of S-structures
2A — B we can make an (SU{U, V, f})-structure 9t with underlying set
ATl B st. M|a=2A, M|g =B, Uis a unary relation symbol interpreted as
the subset A, V is a unary relation symbol interpreted as the subset B, and
f is a binary relation symbol encoding the homomorphism between the two.

There is a set of sentences ® of first order logic saying that f is an
isomorphism between the S-structures MY and 9tY. Clearly we have that

oEypY o yY

(the right hand formula is built by using the Relativization and Boolean
properties of £, the entailment comes from the isomorphism property of L).
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(Proof continued)

By Lemma 1 there is a finite subset &y C ® such that &g F Y < V. As
®, and hence ®g, consist of first order sentences, there is a finite
subsignature Sy C S such that ®g C L(Sp).

This subsignature S has the desired property: If 2|5, = B|s,, then we have
an (SU{U, V,f})-structure which is a model of (. Because of
do E Y < Y we have A E ¢ iff B E . O
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Proof of Lindstrom’s theorem: Let L, < £, and assume that £ is
regular and satisfies Comp(£) and L6Sko(L£). From Steps 1 — 3 we get a
signature S, a ¢ € L(S) and for all finite subsignatures Sop C S we get
S-structures 2, B such that

2 'Zﬁ 1/% B ':E _'d)v Ql|50 = %|50 (*)

In particular this holds for the finite subsignature Sop C S of Lemma 2. But
by Lemma 2 for this signature (*) is a contradiction. O
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I1l. Other variants

A. More about L,
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Sharpness of the result:

Comp | L6Sko
Low v v
£2nd X X
L in general X X
Loy X v
Eww ( Ql ) v X
L..(QF) X X(?)
£w2nd X v

Thus we can not drop the condition Comp or L6Sko.
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Sharpness of the result (cont.):

Define a logic L by

L(S) := {2nd order sentences of the form 3Xi, ..., X;1) where 9 contains
no 2nd order quantifier }

Satisfaction relation F is that of £2".

Then:
(i) L is an abstract logic
(i) Low < L
(i) LoSko(L), Comp(L), Repl(L), Rel(L£) hold
(iv) Bool(L) does not hold
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Definition: L satisfies countable compactness if, given a countable
® C L(S) then, if all finite subsets are satisfiable, it follows that & is
satisfiable.

Theorem: L, is the most expressive regular abstract logic satisfying
countable compactness and Lowenheim-Skolem.

Theorem: L, is the most expressive regular abstract logic satisfying
countable compactness and the following implication (Karp property): If
A =, B then A =¢ B (i.e. the S-structures 2, B satisfy the same
L(S)-sentences).

For this and the following see: Lindstrém, On characterizing elementary
logic, in: Logical Theory and Semantic Analysis, Synthese Library Volume
63, 1974, pp 129-146

See also Flum, Characterizing logics, Chapter Il of Barwise/Feferman,
Model-theoretic logics, Springer 1985
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Definition: L satisfies the Tarski Union property if, given a chain
Mo <, M1 < My <, ... of L-elementary extensions, the inclusion
M, < U; M is an L-elementary extension for all n.

Theorem (Lindstrom): L, is the most expressive regular abstract logic
satisfying compactness and the Tarski Union property.
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There is a property (+), roughly saying that one can take a sentence

¢ € L(S), replace all n-ary relation symbols in there by (n+ 1)-ary relation
symbols, and then make it into a sentence again by binding the newly
gained variable with a Vx.

Theorem (Lindstrém): Suppose L, < £, L satisfies property (+) and

for all S-structures one has that 20 = B (elementary equivalence in L)
implies A =, B (elementary equivalence in £). Then L, ~ L.
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Definition: From a relational signature S create a new sighature S by
replacing each n-ary P € S with an (n+ 1)-ary PT. From an S*-structure
2 and an a € A we get an S-structure 2(?) with the same underlying set A
by setting P2 = {(a,a1,...,a,) | AE P*(a,a1,...,an)}.

Then L satisfies the property (+), if for every ¢ € L(S) there is a

o1 € L(S™T) such that for every S*-structure 2 one has: 2 F o iff

A E o, for all a € A.

Remark: In the usual logics this is the following: From ¢ one obtains ¢'(x)
by replacing P(x1,...,X,) with PT(x,x1,...,x,) everywhere. Then

o7 = Vxy'(x). Indeed, property (+) follows from some extra functoriality
on signatures which allows to replace relation symbols in a formula with
symbols of higher arity together with the existence of quantifiers.

Theorem (Lindstrom): Suppose L., < L, L satisfies (+) and for all
S-structures one has that 2 = B (elementary equivalence in L) implies
A =, B (elementary equivalence in £). Then L, ~ L.
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Definition: L satisfies the upward Léwenheim-Skolem property if every
@ € L(S) that has an infinite model, has an uncountable model.

Theorem (Lindstrom): Among the regular abstract logics with the
property (+), L, is the most expressive satisfying the upward and the
downward Léwenheim-Skolem properties.
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Effective versions: Suppose now that L(S) is made of strings of symbols
from some finite alphabet.

Definition: (a) L satisfies completeness if the set of valid sentences is
recursively enumerable (i.e. there is some complete proof procedure).

(b) L has effective negation and conjunction if the negations and
disjunction in the previous sense can be computed effectively.

(c) £ <efr L means that there is an effective procedure associating to each
p € L ag €l'(S) which has the same models (i.e. is logically equivalent).

Theorem (Lindstrom): Suppose L, <. L, L has the downward
Lowenheim property, is complete and has effective negation and conjunction.
Then ﬁww ~eff L

One can define what it means to have an effective tableau method for
determining the valid sentences.

Theorem (Lindstrom): Suppose L, <er £, L has an effective tableau
method and has effective negation and conjunction. Then L, ~ef L.

Peter Arndt (Regensburg) Lindstrém’s Theorem Unilog 2015 25 /35



Remark: L, is the most expressive regular abstract logic satisfying a
version of the Omitting types theorem.

(See: Flum, Characterizing logics, Thm 2.2.2. Originally: Lindstrom,
Omitting uncountable types and extensions of elementary logic. Theoria 44
(1978), no. 3, 152-156 but only considering extensions of L, by
quantifiers)

Open question: Is £, the most expressive regular abstract logic
satisfying compactness and Craig interpolation?

See Vaananen, Lindstrom’s theorem,
www.math.helsinki.fi/logic/opetus/It/lindstrom_theorem1.pdf
Vaananen, The Craig Interpolation Theorem in abstract model theory,
Synthese, 10/2008; 164(3):401-420.

Makowsky /Shelah, The theorems of Beth and Craig in abstract model
theory I, Trans. Amer. Math. Soc. 256, 1979
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l1l. Other variants

B. Other logics
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Definition: A logic £ is bounded, if for any S containing a binary relation
< and any ¢ € L(S) having only models with < a well-ordering, there is an
ordinal a, such that the order type of < in any model is always smaller than
.

Theorem: L., is the most expressive regular logic that is bounded and
has the Karp property (i.e. if A =, B then A =, B).

See Flum, Characterizing Logics, Thm. 3.1. The Karp property is a
substitute for downward Lowenheim-Skolem, the boundedness is a
substitute for compactness.
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Definition: (a) A logic £ has occurrence number «, if « is the smallest
cardinal such that for all S one has L(S) ={L(T)| TCS,|T|<a}.
Notation: oc(L)

(b) Consider all ¢ € L(S) having only models with < a well-ordering, and
for which there is an ordinal «, such that the order type of < in every
model is smaller than a. The supremum of all a occurring thus is called the
well-ordering number, wo(L).

Theorem: L, is the most expressive regular logic that is bounded, has the

Karp property and has oc(£) < x and wo(L) < k.

See Flum, Characterizing Logics, Thm. 3.2
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Topological reformulation of Lindstrom’s Theorem

Definition: For a signature S denote by S — Str the class of S-structures.
The elementary topology is the topology on S — Str with the elementary
classes Mod(p) = {M | M ¢} as open basis.

Because we have negation, it is also a closed basis (i.e. a clopen basis). It
follows that the topology is regular, i.e. a closed set and a point outside of
it can be separated by disjoint open sets.

Facts:

— The open sets are closed under isomorphism of S-structures (=:the
topology is invariant).

— The reduction map S; — Str — Sg — Str coming from an inclusion of
signatures So C S is continuous (also “renamings”).
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Some reformulations:

Compactness theorem < S — Str is compact < every ultrafilter has a limit
< to8's theorem

Downward Lowenheim-Skolem < the countable S-structures are dense

Topological Lindstrom theorem (Caicedo): For each S let ['s be a
regular, invariant topology on S — Str such that the countable structures
are dense, reduct and renaming maps are continuous, the I's are compact
and at least as fine as the elementary topology. Then the s are the
elementary topologies.

See Caicedo, Lindstrom's Theorem for Positive Logics, a Topological View;
in: Logic Without Borders: Essays on Set Theory, Model Theory,
Philosophical Logic and Philosophy of Mathematics. De Gruyter. 73-90
(2015)
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Lindstrom's theorem for positive logics

Definition: L is a weak extension of £ (£ <,, L) :iff each sentence of
L(S) is equivalent to a theory of L'(S). Write £ ~,, L' for L <,, L' and
L>, L.

Consider logics without negation. Denote by L6Skos the following version
of downward Lowenheim-Skolem: A sentence that is true in all countable
models of a theory is true in all models of that theory. We define a new
topology on S-Str by declaring the classes Mod () to be a sub-basis of
closed classes.

Theorem (Caicedo): Any regular (now meaning: induces a regular

topology on each class S-Str), compact logic with L, <, L, having
disjunctions and satisfying L6Sko, satisfies £ ~,, L,
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Lindstrom theorems for modal logics

New issues arise for modal logics:

1. They are fragments of first order logic — we cannot import 1st order
formulas in the proofs, as before.

2. They are interpreted in other structures, coming with their own notions
of (partial) isomorphisms, back and forth etc.

Definition: (a) A Kripke model is an S-structure 90 for the signature
S:={A R, Ry, Rs,...} (M the set of worlds, A™ the accessibility relation,
R™ encodes a valuation for the variable x; at each world)

(b) A pointed Kripke model is a pair (I, w € M)

(c) An abstract modal logic is a pair L = (Fmg, ) where Fmy is a set
("L-formulas”) and . is a relation between pointed Kripke models and

L-formulas.

Standing assumption: L-formulas are invariant under isomorphism, £ has
Boolean operations, we have renaming and relativization.
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Definition: (a) A bisimulation between Kripke models 9, 9 is a binary
relation Z between M and N, such that:

(i) If wZv then R™(w) < R(v)
(i) If wZv and wA™w’ there is a v/ s.t. vA™V and w/Zv/

(iii) If wZv and vA™V' there is a w’ s.t. wA"'w/ and w'ZV/

(b) Two pointed Kripke models (90, w), (M, v) are bisimilar if there exists a
bisimulation Z with wZv.

(c) A formula ¢ is bisimulation invariant if, given bisimilar (90, w), (91, v)
one has (M, w)F o < (M, v) Ep

(d) A logic is bisimulation invariant if all its formulas are.
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A Lindstrom theorem for modal logic

Theorem(van Benthem, 2007): An abstract modal logic extending basic
modal logic and satisfying compactness and bisimulation invariance is
equally expressive as the basic modal logic K.

See ten Cate/Vaandnen/van Benthem: Lindstrém theorems for fragments
of first order logic, Logical Methods in Computer Science 5(3): 3 (2009)

Further results: Lindstrom theorem by S. Enqvist for Kripke frames
axiomatizable by “strict first order Horn clauses” (2013), Lindstrom theorems
for coalgebra semantics (Kurz/Venema, Enqvist), other results by de Rijke,
Otto/Piro, Vukovi¢, ...
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