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The statement

Theorem (Lindström)

There is no logic that is more expressive than classical first order logic and
that satisfies both the Compactness and the Löwenheim-Skolem properties.

From: Per Lindström, On extensions of elementary logic, Theoria 35, p.1-11,
1969
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II. The proof

following Ebbinghaus/Flum/Thomas, Introduction to mathematical logic,
Chapters XII/XIII
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1st outline of Lindström’s proof: Let L be a regular logic satisfying
LöSko(L) and Comp(L). Assume that Lωω < L.

Then there exists a ψ ∈ L(S) not equivalent to any first order sentence.

1. Show that for all m ∈ N there exist S-structures A, B with A �L ψ,
B �L ¬ψ and A ∼=m B.

2. Using Comp(L) we get p-isomorphic S-structures A, B with A �L ψ,
B �L ¬ψ.

3. By LöSko(L) we can assume w.l.o.g. that A and B are countable. Then
we have A ∼= B but A �L ψ, B �L ¬ψ. This contradicts the isomorphism
invariance of abstract logics!
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Step 1. of the proof of Lindström’s theorem

Let L be a regular logic satisfying LöSko(L) and Comp(L). Assume that
Lωω < L.

Then there exists a ψ ∈ L(S) not equivalent to any first order sentence.

By Repl(L) (allowing to replace function symbols with relation symbols) we
can assume w.l.o.g. that S contains only relation symbols. Remember that
we want to prove the following:

Proposition(Step 1): For all m ∈ N and all finite S0 ⊆ S there exist
S-structures A, B with A �L ψ, B �L ¬ψ and A|S0

∼=m B|S0 .

(Note that we had to pass to a finite subsignature for our m-isomorphism.
This will not be a problem in the course of the proof of Lindström’s
theorem)
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Proposition(Step 1): For all m ∈ N and all finite S0 ⊆ S there exist
S-structures A, B with A �L ψ, B �L ¬ψ and A|S0

∼=m BS0 .

Proof: Let S0 ⊆ S be finite and m ∈ N. Define ϕ :=
∨
{ϕm

A|S0 ,∅
| A � ψ}

(“this structure is m-isomorphic to A|S0 for an A with A � ψ”)

There is an A with A � ψ, because otherwise ψ would be logically
equivalent to a contradiction (this is what it means to have no models), and
hence a first order formula. So the above disjunction is non-empty. From
the definition of the ϕm

A|S0 ,∅
one can also see that the disjunction is finite, so

ϕ is a first order sentence.

Clearly ψ → ϕ is a valid formula: If an S-structure A satisfies A � ψ, then
it occurs in the disjunction and its S0-reduction is m-isomorphic to itself.

On the other hand ϕ→ ψ (i.e. ¬ϕ ∨ ψ) is not a valid formula, otherwise ψ
would be equivalent to the first order formula ϕ. Hence its negation ϕ ∧ ¬ψ
is satisfiable, i.e. there exists an S-structure B such that B � ϕ and
B � ¬ψ.
The first part, B � ϕ, means exactly that this B|S0 is m-isomorphic to A|S0

for an A satisfying ψ. �
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Internalizing Step 1

For Step 2, the passage from an m-isomorphism to a p-isomorphism, we
have to express the statement of Step 1, i.e. (for given S0 ⊆ S)

∃ S − str . A,B s.t. A � ψ, B � ¬ψ, A|S0
∼=m B|S0

internally in the language of our abstract logic.

More precisely we will construct a signature S+ and an S+-sentence
γ ∈ L(S+) such that an S+-structure satisfying γ consists of two
S-structures, one satisfying ψ, the other ¬ψ, and an m-isomorphism
between them.
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Define S+ := S ∪ {U,V ,W ,P, <, I ,G , f , c} where U,V ,W ,P are unary
relation symbols, <, I are binary relations symbols, G is a ternary relation
symbol, f a unary function symbol and c a constant symbol.

The statement of Step 1 gives us, for all m ∈ N, an S+-structure Km:

The underlying set is Km := A
∐

B
∐
{1, . . . ,m}

∐
P, where A,B are the

underlying sets of A, B, P :=
⋃m

n=1 In (with In the set of n times
extendable partial isomorphims A→ B).

– We interpret the symbols U as the subset A, V as the subset B, W as the
subset {1, . . . ,m} and P as the subset which we already called P above.

– We interpret the binary symbol < as the order relation on
W = {1, . . . ,m} and I ⊆W × P as the relation I (n, p) :⇔ p ∈ In

– We interpret the ternary symbol G as G ⊆ P × A× B where
G (p, a, b) :⇔ a ∈ dom(p), p(a) = b

– We interpret the function symbol f as the predecessor function on W and
the constant symbol c as the maximal element m of W .
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The S+-structure Km satisfies the following first order sentences:

(W , <, f , c) is a total order with maximal element c and predecessor
function f (where we set f (0) = 0)

If p ∈ P, then p is a partial isomorphism from A to B.

If n > 0, p ∈ In then, for any choice of a ∈ U or b ∈ V there is a
q ∈ If (n) extending p and with a ∈ dom(q)

”
resp. b ∈ Im(q).

ψU , (¬ψ)V hold — here we use the relativization property Rel(L) to
build the formulas ψU , resp (¬ψ)V saying that ψ, resp ¬ψ hold on the
sub-S-structures given by U, resp V . To form ¬ψ we use that L
contains Boolean connectives.

These are finitely many sentences (concrete fully formal sentences can be
found in Ebbinghaus/Flum/Thomas) so we can form their conjunction,
using Bool(L), and call the result γ.
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Step 2

Prop.: For any finite S0 ⊆ S there are S-structures A, B with A �L ψ,
B �L ¬ψ and A|S0

∼=p B|S0 .

Proof: Consider Γ := {γ} ∪ {“W has at least m elements” | m ∈ N }.
Since we have the S+-structures Km, all finite subsets are satisfiable. By
Comp(L) the whole set is satisfiable, i.e. there exists an S+-structure M
with M � Γ.

This M has W ⊆ M an infinite totaly ordered set with maximal element,
and has sub-S-structures A, B with A � ψ, B � ¬ψ.

Define I := {p ∈ P | p ∈ If (n)(c) for some n ∈ N} (where f (n) means the
n-fold application of the predecessor function). Every p ∈ I is infinitely
extendable (since W is infinite), so the the set I is a p-isomorphism
I : A ∼=p B. �
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Step 3

We want to improve the result of Step 2 to saying the following:

For any finite S0 ⊆ S there are countable p-isomorphic S-structures A, B
with A �L ψ, B �L ¬ψ, and A|S0

∼=p B|S0 . Being p-isomorphic and
countable they will then be isomorphic.

For this it is of no use to apply LöSko(L) to the structures A, B directly:
LöSko(L) merely allows us to replace A, B with countable, elementarily
equivalent structures, but nothing guarantees that the two outcomes are
p-isomorphic again.
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Instead we take the structure M from the proof of Step 2 and apply
LöSko(L) to M to get a countable model of our sentence γ from before.
The two substructures A, B will then also be countable.

The last thing that we have to take care of is that the ordered set that is
the interpretation of W is still infinite (then we can, as in the proof of Step
2, get a p-isomorphism). To this end we enhance the signature S+ by one
more unary predicate Q. In the S+-structure M of Step 2 we interpret this
as the set of predecessors of the maximal element c of W . Then M is a
model of the sentence θ := Q(c) ∧ ∀x(Q(x)→ ((f (x) < x) ∧ Q(f (x))))
(which says that the set of predecessors of c is infinite).

Now, using LöSko(L), we pass to a countable model of γ ∧ θ. The same
moves as in Step 2 which defined a p-isomorphism, together with the
countability, prove then the following proposition:

Prop. (Step 3): For any finite S0 ⊆ S there are S-structures A, B with
A �L ψ, B �L ¬ψ and A|S0

∼= B|S0 .
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Last step

This is not yet a contradiction, since we had to pass to a finite subsignature
S0 ⊆ S . We now show that this is enough, since the validity of ψ itself in
an S-structure A depends only on A|S0 for a finite subsignature S0.

Lemma 1: Let Φ ⊆ L(S), ϕ ∈ L(S), Φ �L ϕ. Then there exists a finite
Φ0 ⊆ Φ such that Φ0 �L ϕ.

Proof: Choose ¬ϕ using Bool(L). Then Φ ∪ {¬ϕ} is not satisfiable.
Hence there is some finite Φ0 ⊆ Φ s.t. Φ0 ∪ {¬ϕ} is not satisfiable. Hence
Φ0 �L ϕ. �
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Lemma 2: Let ψ ∈ L(S). Then there is a finite subset S0 ⊆ S such that
for all S-structures A, B:
If A|S0

∼= B|S0 , then (A �L ψ iff B �L ψ).

Proof: We consider a new signature (S ∪ {U,V , f }) intended to talk about
homomorphisms of S-structures: Given a homomorphism of S-structures
A→ B we can make an (S ∪ {U,V , f })-structure M with underlying set
A

∐
B s.t. M|A = A, M|B = B, U is a unary relation symbol interpreted as

the subset A, V is a unary relation symbol interpreted as the subset B, and
f is a binary relation symbol encoding the homomorphism between the two.

There is a set of sentences Φ of first order logic saying that f is an
isomorphism between the S-structures MU and MV . Clearly we have that

Φ � ψU ↔ ψV

(the right hand formula is built by using the Relativization and Boolean
properties of L, the entailment comes from the isomorphism property of L).
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(Proof continued)

By Lemma 1 there is a finite subset Φ0 ⊆ Φ such that Φ0 � ψU ↔ ψV . As
Φ, and hence Φ0, consist of first order sentences, there is a finite
subsignature S0 ⊆ S such that Φ0 ⊆ L(S0).

This subsignature S0 has the desired property: If A|S0
∼= B|S0 , then we have

an (S ∪ {U,V , f })-structure which is a model of Φ0. Because of
Φ0 � ψU ↔ ψV we have A � ψ iff B � ψ. �
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Proof of Lindström’s theorem: Let Lωω < L, and assume that L is
regular and satisfies Comp(L) and LöSko(L). From Steps 1 – 3 we get a
signature S , a ψ ∈ L(S) and for all finite subsignatures S0 ⊆ S we get
S-structures A, B such that

A �L ψ, B �L ¬ψ, A|S0
∼= B|S0 (∗)

In particular this holds for the finite subsignature S0 ⊆ S of Lemma 2. But
by Lemma 2 for this signature (∗) is a contradiction. �
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III. Other variants

A. More about Lωω
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Sharpness of the result:

Comp LöSko

Lωω X X
L2nd 7 7

Lκλ in general 7 7

Lω1ω 7 X
Lωω(Q1) X 7

Lωω(QR) 7 7(?)

Lw2nd 7 X

Thus we can not drop the condition Comp or LöSko.
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Sharpness of the result (cont.):

Define a logic L by
L(S) := {2nd order sentences of the form ∃X1, . . . ,Xnψ where ψ contains
no 2nd order quantifier }
Satisfaction relation �L is that of L2nd .

Then:

(i) L is an abstract logic

(ii) Lωω < L
(iii) LöSko(L),Comp(L),Repl(L),Rel(L) hold

(iv) Bool(L) does not hold
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Definition: L satisfies countable compactness if, given a countable
Φ ⊆ L(S) then, if all finite subsets are satisfiable, it follows that Φ is
satisfiable.

Theorem: Lωω is the most expressive regular abstract logic satisfying
countable compactness and Löwenheim-Skolem.
Theorem: Lωω is the most expressive regular abstract logic satisfying
countable compactness and the following implication (Karp property): If
A ∼=p B then A ≡L B (i.e. the S-structures A,B satisfy the same
L(S)-sentences).

For this and the following see: Lindström, On characterizing elementary
logic, in: Logical Theory and Semantic Analysis, Synthese Library Volume
63, 1974, pp 129–146

See also Flum, Characterizing logics, Chapter III of Barwise/Feferman,
Model-theoretic logics, Springer 1985
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Definition: L satisfies the Tarski Union property if, given a chain
M0 ≤L M1 ≤L M2 ≤L . . . of L-elementary extensions, the inclusion
Mn ≤L

⋃
i Mi is an L-elementary extension for all n.

Theorem (Lindström): Lωω is the most expressive regular abstract logic
satisfying compactness and the Tarski Union property.
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There is a property (+), roughly saying that one can take a sentence
ϕ ∈ L(S), replace all n-ary relation symbols in there by (n + 1)-ary relation
symbols, and then make it into a sentence again by binding the newly
gained variable with a ∀x .

Theorem (Lindström): Suppose Lωω ≤ L, L satisfies property (+) and
for all S-structures one has that A ≡ B (elementary equivalence in Lωω)
implies A ≡L B (elementary equivalence in L). Then Lωω ∼ L.
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Definition: From a relational signature S create a new signature S+ by
replacing each n-ary P ∈ S with an (n + 1)-ary P+. From an S+-structure
A and an a ∈ A we get an S-structure A(a) with the same underlying set A
by setting PA(a)

:= {(a, a1, . . . , an) | A � P+(a, a1, . . . , an)}.
Then L satisfies the property (+), if for every ϕ ∈ L(S) there is a
ϕ+ ∈ L(S+) such that for every S+-structure A one has: A � ϕ+ iff
A(a) � ϕ for all a ∈ A.

Remark: In the usual logics this is the following: From ϕ one obtains ϕ′(x)
by replacing P(x1, . . . , xn) with P+(x , x1, . . . , xn) everywhere. Then
ϕ+ = ∀xϕ′(x). Indeed, property (+) follows from some extra functoriality
on signatures which allows to replace relation symbols in a formula with
symbols of higher arity together with the existence of quantifiers.

Theorem (Lindström): Suppose Lωω ≤ L, L satisfies (+) and for all
S-structures one has that A ≡ B (elementary equivalence in Lωω) implies
A ≡L B (elementary equivalence in L). Then Lωω ∼ L.
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Definition: L satisfies the upward Löwenheim-Skolem property if every
ϕ ∈ L(S) that has an infinite model, has an uncountable model.

Theorem (Lindström): Among the regular abstract logics with the
property (+), Lωω is the most expressive satisfying the upward and the
downward Löwenheim-Skolem properties.
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Effective versions: Suppose now that L(S) is made of strings of symbols
from some finite alphabet.

Definition: (a) L satisfies completeness if the set of valid sentences is
recursively enumerable (i.e. there is some complete proof procedure).
(b) L has effective negation and conjunction if the negations and
disjunction in the previous sense can be computed effectively.
(c) L ≤eff L′ means that there is an effective procedure associating to each
ϕ ∈ L a ϕ′ ∈ L′(S) which has the same models (i.e. is logically equivalent).

Theorem (Lindström): Suppose Lωω ≤eff L, L has the downward
Löwenheim property, is complete and has effective negation and conjunction.
Then Lωω ∼eff L

One can define what it means to have an effective tableau method for
determining the valid sentences.

Theorem (Lindström): Suppose Lωω ≤eff L, L has an effective tableau
method and has effective negation and conjunction. Then Lωω ∼eff L.
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Remark: Lωω is the most expressive regular abstract logic satisfying a
version of the Omitting types theorem.

(See: Flum, Characterizing logics, Thm 2.2.2. Originally: Lindström,
Omitting uncountable types and extensions of elementary logic. Theoria 44
(1978), no. 3, 152–156 but only considering extensions of Lωω by
quantifiers)

Open question: Is Lωω the most expressive regular abstract logic
satisfying compactness and Craig interpolation?

See Väänänen, Lindström’s theorem,
www.math.helsinki.fi/logic/opetus/lt/lindstrom theorem1.pdf
Väänänen, The Craig Interpolation Theorem in abstract model theory,
Synthese, 10/2008; 164(3):401-420.
Makowsky/Shelah, The theorems of Beth and Craig in abstract model
theory I, Trans. Amer. Math. Soc. 256, 1979

Peter Arndt (Regensburg) Lindström’s Theorem Unilog 2015 26 / 35



III. Other variants

B. Other logics
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Definition: A logic L is bounded, if for any S containing a binary relation
< and any ϕ ∈ L(S) having only models with < a well-ordering, there is an
ordinal α, such that the order type of < in any model is always smaller than
α.

Theorem: L∞ω is the most expressive regular logic that is bounded and
has the Karp property (i.e. if A ∼=p B then A ≡L B).

See Flum, Characterizing Logics, Thm. 3.1. The Karp property is a
substitute for downward Löwenheim-Skolem, the boundedness is a
substitute for compactness.
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Definition: (a) A logic L has occurrence number α, if α is the smallest
cardinal such that for all S one has L(S) = {L(T ) | T ⊆ S , |T | < α}.
Notation: oc(L)
(b) Consider all ϕ ∈ L(S) having only models with < a well-ordering, and
for which there is an ordinal α, such that the order type of < in every
model is smaller than α. The supremum of all α occurring thus is called the
well-ordering number, wo(L).

Theorem: Lκω is the most expressive regular logic that is bounded, has the
Karp property and has oc(L) ≤ κ and wo(L) ≤ κ.

See Flum, Characterizing Logics, Thm. 3.2
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Topological reformulation of Lindström’s Theorem

Definition: For a signature S denote by S − Str the class of S-structures.
The elementary topology is the topology on S − Str with the elementary
classes Mod(ϕ) = {M | M � ϕ} as open basis.

Because we have negation, it is also a closed basis (i.e. a clopen basis). It
follows that the topology is regular, i.e. a closed set and a point outside of
it can be separated by disjoint open sets.

Facts:
– The open sets are closed under isomorphism of S-structures (=:the
topology is invariant).
– The reduction map S1 − Str → S0 − Str coming from an inclusion of
signatures S0 ⊆ S1 is continuous (also “renamings”).
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Some reformulations:

Compactness theorem ⇔ S − Str is compact ⇔ every ultrafilter has a limit
⇔  Loš’s theorem

Downward Löwenheim-Skolem ⇔ the countable S-structures are dense

Topological Lindström theorem (Caicedo): For each S let ΓS be a
regular, invariant topology on S − Str such that the countable structures
are dense, reduct and renaming maps are continuous, the ΓS are compact
and at least as fine as the elementary topology. Then the ΓS are the
elementary topologies.

See Caicedo, Lindström’s Theorem for Positive Logics, a Topological View;
in: Logic Without Borders: Essays on Set Theory, Model Theory,
Philosophical Logic and Philosophy of Mathematics. De Gruyter. 73–90
(2015)
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Lindström’s theorem for positive logics

Definition: L is a weak extension of L (L ≤w L′) :iff each sentence of
L(S) is equivalent to a theory of L′(S). Write L ∼w L′ for L ≤w L′ and
L ≥w L′.

Consider logics without negation. Denote by LöSko2 the following version
of downward Löwenheim-Skolem: A sentence that is true in all countable
models of a theory is true in all models of that theory. We define a new
topology on S-Str by declaring the classes Mod(ϕ) to be a sub-basis of
closed classes.

Theorem (Caicedo): Any regular (now meaning: induces a regular
topology on each class S-Str), compact logic with Lωω ≤w L, having
disjunctions and satisfying LöSko2 satisfies L ∼w Lωω
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Lindström theorems for modal logics

New issues arise for modal logics:

1. They are fragments of first order logic – we cannot import 1st order
formulas in the proofs, as before.
2. They are interpreted in other structures, coming with their own notions
of (partial) isomorphisms, back and forth etc.

Definition: (a) A Kripke model is an S-structure M for the signature
S := {A,R1,R2,R3, . . .} (M the set of worlds, AM the accessibility relation,
RM

i encodes a valuation for the variable xi at each world)
(b) A pointed Kripke model is a pair (M,w ∈ M)
(c) An abstract modal logic is a pair L = (FmL,�L) where FmL is a set
(“L-formulas”) and �L is a relation between pointed Kripke models and
L-formulas.

Standing assumption: L-formulas are invariant under isomorphism, L has
Boolean operations, we have renaming and relativization.
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Definition: (a) A bisimulation between Kripke models M, N is a binary
relation Z between M and N, such that:

(i) If wZv then RM
i (w)⇔ RN

i (v)

(ii) If wZv and wAMw ′ there is a v ′ s.t. vANv ′ and w ′Zv ′

(iii) If wZv and vANv ′ there is a w ′ s.t. wANw ′ and w ′Zv ′

(b) Two pointed Kripke models (M,w), (N, v) are bisimilar if there exists a
bisimulation Z with wZv .

(c) A formula ϕ is bisimulation invariant if, given bisimilar (M,w), (N, v)
one has (M,w) � ϕ⇔ (N, v) � ϕ

(d) A logic is bisimulation invariant if all its formulas are.
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A Lindström theorem for modal logic

Theorem(van Benthem, 2007): An abstract modal logic extending basic
modal logic and satisfying compactness and bisimulation invariance is
equally expressive as the basic modal logic K .

See ten Cate/Väänänen/van Benthem: Lindström theorems for fragments
of first order logic, Logical Methods in Computer Science 5(3): 3 (2009)

Further results: Lindström theorem by S. Enqvist for Kripke frames
axiomatizable by“strict first order Horn clauses” (2013), Lindström theorems
for coalgebra semantics (Kurz/Venema, Enqvist), other results by de Rijke,
Otto/Piro, Vuković, ...
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