Lindström’s Theorem

Peter Arndt

Universität Regensburg

Unilog 2015

Slides available at: http://homepages-nw.uni-regensburg.de/~arp13290/
Theorem (Lindström)

There is no logic that is more expressive than classical first order logic and that satisfies both the Compactness and the Löwenheim-Skolem properties.

II. The proof

following Ebbinghaus/Flum/Thomas, Introduction to mathematical logic, Chapters XII/XIII
1st outline of Lindström’s proof: Let \mathcal{L} be a regular logic satisfying LöSko(\mathcal{L}) and Comp(\mathcal{L}). Assume that $\mathcal{L}_{\omega\omega} < \mathcal{L}$.

Then there exists a $\psi \in L(S)$ not equivalent to any first order sentence.

1. Show that for all $m \in \mathbb{N}$ there exist S-structures A, B with $A \models_{\mathcal{L}} \psi$, $B \models_{\mathcal{L}} \neg \psi$ and $A \approx_m B$.

2. Using Comp(\mathcal{L}) we get p-isomorphic S-structures A, B with $A \models_{\mathcal{L}} \psi$, $B \models_{\mathcal{L}} \neg \psi$.

3. By LöSko(\mathcal{L}) we can assume w.l.o.g. that A and B are countable. Then we have $A \cong B$ but $A \models_{\mathcal{L}} \psi$, $B \models_{\mathcal{L}} \neg \psi$. This contradicts the isomorphism invariance of abstract logics!
Step 1. of the proof of Lindström’s theorem

Let \mathcal{L} be a regular logic satisfying LöSko(\mathcal{L}) and Comp(\mathcal{L}). Assume that $\mathcal{L}_{\omega} < \mathcal{L}$.

Then there exists a $\psi \in L(S)$ not equivalent to any first order sentence.

By Repl(\mathcal{L}) (allowing to replace function symbols with relation symbols) we can assume w.l.o.g. that S contains only relation symbols. Remember that we want to prove the following:

Proposition (Step 1): For all $m \in \mathbb{N}$ and all finite $S_0 \subseteq S$ there exist S-structures \mathcal{A}, \mathcal{B} with $\mathcal{A} \models \mathcal{L} \psi$, $\mathcal{B} \models \mathcal{L} \neg \psi$ and $\mathcal{A}|_{S_0} \cong^m \mathcal{B}|_{S_0}$.

(Note that we had to pass to a finite subsignature for our m-isomorphism. This will not be a problem in the course of the proof of Lindström’s theorem)
Proposition (Step 1): For all $m \in \mathbb{N}$ and all finite $S_0 \subseteq S$ there exist S-structures \mathcal{A}, \mathcal{B} with $\mathcal{A} \models \mathcal{L} \psi$, $\mathcal{B} \models \mathcal{L} \neg \psi$ and $\mathcal{A}|_{S_0} \cong_m \mathcal{B}|_{S_0}$.

Proof: Let $S_0 \subseteq S$ be finite and $m \in \mathbb{N}$. Define $\varphi := \bigvee \{ \varphi^m_{\mathcal{A}|_{S_0}, \emptyset} \mid \mathcal{A} \models \psi \}$ ("this structure is m-isomorphic to $\mathcal{A}|_{S_0}$ for an \mathcal{A} with $\mathcal{A} \models \psi$")

There is an \mathcal{A} with $\mathcal{A} \models \psi$, because otherwise ψ would be logically equivalent to a contradiction (this is what it means to have no models), and hence a first order formula. So the above disjunction is non-empty. From the definition of the $\varphi^m_{\mathcal{A}|_{S_0}, \emptyset}$ one can also see that the disjunction is finite, so φ is a first order sentence.

Clearly $\psi \rightarrow \varphi$ is a valid formula: If an S-structure \mathcal{A} satisfies $\mathcal{A} \models \psi$, then it occurs in the disjunction and its S_0-reduction is m-isomorphic to itself.

On the other hand $\varphi \rightarrow \psi$ (i.e. $\neg \varphi \lor \psi$) is not a valid formula, otherwise ψ would be equivalent to the first order formula φ. Hence its negation $\varphi \land \neg \psi$ is satisfiable, i.e. there exists an S-structure \mathcal{B} such that $\mathcal{B} \models \varphi$ and $\mathcal{B} \models \neg \psi$.

The first part, $\mathcal{B} \models \varphi$, means exactly that this $\mathcal{B}|_{S_0}$ is m-isomorphic to $\mathcal{A}|_{S_0}$ for an \mathcal{A} satisfying ψ. \qed
Internalizing Step 1

For Step 2, the passage from an \(m\)-isomorphism to a \(p\)-isomorphism, we have to express the statement of Step 1, i.e. (for given \(S_0 \subseteq S\))

\[
\exists S - \text{str. } A, B \text{ s.t. } A \models \psi, \ B \models \neg \psi, \ A|_{S_0} \cong_m B|_{S_0}
\]

internally in the language of our abstract logic.

More precisely we will construct a signature \(S^+\) and an \(S^+\)-sentence \(\gamma \in L(S^+)\) such that an \(S^+\)-structure satisfying \(\gamma\) consists of two \(S\)-structures, one satisfying \(\psi\), the other \(\neg \psi\), and an \(m\)-isomorphism between them.
Define $S^+ := S \cup \{U, V, W, P, <, I, G, f, c\}$ where U, V, W, P are unary relation symbols, $<, I$ are binary relations symbols, G is a ternary relation symbol, f a unary function symbol and c a constant symbol.

The statement of Step 1 gives us, for all $m \in \mathbb{N}$, an S^+-structure \mathcal{K}_m:

The underlying set is $K_m := A \uplus B \uplus \{1, \ldots, m\} \uplus P$, where A, B are the underlying sets of $\mathfrak{A}, \mathfrak{B}$, $P := \bigcup_{n=1}^{m} I_n$ (with I_n the set of n times extendable partial isomorphisms $\mathfrak{A} \to \mathfrak{B}$).

– We interpret the symbols U as the subset A, V as the subset B, W as the subset $\{1, \ldots, m\}$ and P as the subset which we already called P above.
– We interpret the binary symbol $<$ as the order relation on $W = \{1, \ldots, m\}$ and $I \subseteq W \times P$ as the relation $I(n, p) :\iff p \in I_n$
– We interpret the ternary symbol G as $G \subseteq P \times A \times B$ where $G(p, a, b) :\iff a \in dom(p), p(a) = b$
– We interpret the function symbol f as the predecessor function on W and the constant symbol c as the maximal element m of W.
The S^+-structure \mathcal{R}_m satisfies the following first order sentences:

- $(\mathcal{W}, <, f, c)$ is a total order with maximal element c and predecessor function f (where we set $f(0) = 0$)
- If $p \in P$, then p is a partial isomorphism from \mathcal{A} to \mathcal{B}.
- If $n > 0$, $p \in I_n$ then, for any choice of $a \in U$ or $b \in V$ there is a $q \in I_{f(n)}$ extending p and with $a \in \text{dom}(q)$, resp. $b \in \text{Im}(q)$.
- ψ^U, $(\neg \psi)^V$ hold — here we use the relativization property $\text{Rel}(\mathcal{L})$ to build the formulas ψ^U, resp $(\neg \psi)^V$ saying that ψ, resp $\neg \psi$ hold on the sub-S-structures given by U, resp V. To form $\neg \psi$ we use that \mathcal{L} contains Boolean connectives.

These are finitely many sentences (concrete fully formal sentences can be found in Ebbinghaus/Flum/Thomas) so we can form their conjunction, using $\text{Bool}(\mathcal{L})$, and call the result γ.
Prop.: For any finite $S_0 \subseteq S$ there are S-structures A, B with $A \models L \psi$, $B \models L \neg \psi$ and $A|_{S_0} \cong_p B|_{S_0}$.

Proof: Consider $\Gamma := \{\gamma\} \cup \{\text{"W has at least } m \text{ elements"} \mid m \in \mathbb{N}\}$. Since we have the S^+-structures \mathcal{K}_m, all finite subsets are satisfiable. By Comp(L) the whole set is satisfiable, i.e. there exists an S^+-structure M with $M \models \Gamma$.

This M has $W \subseteq M$ an infinite totaly ordered set with maximal element, and has sub-S-structures A, B with $A \models \psi$, $B \models \neg \psi$.

Define $I := \{p \in P \mid p \in I_{f(n)}(c) \text{ for some } n \in \mathbb{N}\}$ (where $f^{(n)}$ means the n-fold application of the predecessor function). Every $p \in I$ is infinitely extendable (since W is infinite), so the the set I is a p-isomorphism $I : A \cong_p B$. □
We want to improve the result of Step 2 to saying the following:

For any finite $S_0 \subseteq S$ there are \textit{countable} p-isomorphic S-structures \mathcal{A}, \mathcal{B} with $\mathcal{A} \models L\psi$, $\mathcal{B} \models L\neg\psi$, and $\mathcal{A}|_{S_0} \cong_p \mathcal{B}|_{S_0}$. Being p-isomorphic and countable they will then be isomorphic.

For this it is of no use to apply $\text{L"osko}(L)$ to the structures \mathcal{A}, \mathcal{B} directly: $\text{L"osko}(L)$ merely allows us to replace \mathcal{A}, \mathcal{B} with countable, elementarily equivalent structures, but nothing guarantees that the two outcomes are p-isomorphic again.
Instead we take the structure M from the proof of Step 2 and apply LöSko(\mathcal{L}) to M to get a countable model of our sentence γ from before. The two substructures A, B will then also be countable.

The last thing that we have to take care of is that the ordered set that is the interpretation of \mathcal{W} is still infinite (then we can, as in the proof of Step 2, get a p-isomorphism). To this end we enhance the signature S^+ by one more unary predicate Q. In the S^+-structure M of Step 2 we interpret this as the set of predecessors of the maximal element c of \mathcal{W}. Then M is a model of the sentence $\theta := Q(c) \land \forall x (Q(x) \rightarrow ((f(x) < x) \land Q(f(x))))$ (which says that the set of predecessors of c is infinite).

Now, using LöSko(\mathcal{L}), we pass to a countable model of $\gamma \land \theta$. The same moves as in Step 2 which defined a p-isomorphism, together with the countability, prove then the following proposition:

Prop. (Step 3): For any finite $S_0 \subseteq S$ there are S-structures A, B with $A \models L \psi$, $B \models L \neg \psi$ and $A|_{S_0} \cong B|_{S_0}$.
This is not yet a contradiction, since we had to pass to a finite subsignature $S_0 \subseteq S$. We now show that this is enough, since the validity of ψ itself in an S-structure \mathcal{A} depends only on $\mathcal{A}|_{S_0}$ for a finite subsignature S_0.

Lemma 1: Let $\Phi \subseteq L(S)$, $\varphi \in L(S)$, $\Phi \models \mathcal{L} \varphi$. Then there exists a finite $\Phi_0 \subseteq \Phi$ such that $\Phi_0 \models \mathcal{L} \varphi$.

Proof: Choose $\neg \varphi$ using $\text{Bool}(\mathcal{L})$. Then $\Phi \cup \{ \neg \varphi \}$ is not satisfiable. Hence there is some finite $\Phi_0 \subseteq \Phi$ s.t. $\Phi_0 \cup \{ \neg \varphi \}$ is not satisfiable. Hence $\Phi_0 \models \mathcal{L} \varphi$. \square
Lemma 2: Let $\psi \in L(S)$. Then there is a finite subset $S_0 \subseteq S$ such that for all S-structures A, B:
If $A|_{S_0} \cong B|_{S_0}$, then $(A \models_L \psi \iff B \models_L \psi)$.

Proof: We consider a new signature $(S \cup \{U, V, f\})$ intended to talk about homomorphisms of S-structures: Given a homomorphism of S-structures $A \rightarrow B$ we can make an $(S \cup \{U, V, f\})$-structure M with underlying set $A \sqcup B$ s.t. $M|_A = A$, $M|_B = B$, U is a unary relation symbol interpreted as the subset A, V is a unary relation symbol interpreted as the subset B, and f is a binary relation symbol encoding the homomorphism between the two.

There is a set of sentences Φ of first order logic saying that f is an isomorphism between the S-structures M^U and M^V. Clearly we have that

$$\Phi \models \psi^U \leftrightarrow \psi^V$$

(the right hand formula is built by using the Relativization and Boolean properties of L, the entailment comes from the isomorphism property of L).
(Proof continued)

By Lemma 1 there is a finite subset $\Phi_0 \subseteq \Phi$ such that $\Phi_0 \models \psi^U \leftrightarrow \psi^V$. As Φ, and hence Φ_0, consist of first order sentences, there is a finite subsignature $S_0 \subseteq S$ such that $\Phi_0 \subseteq L(S_0)$.

This subsignature S_0 has the desired property: If $A|_{S_0} \cong B|_{S_0}$, then we have an $(S \cup \{U, V, f\})$-structure which is a model of Φ_0. Because of $\Phi_0 \models \psi^U \leftrightarrow \psi^V$ we have $A \models \psi$ iff $B \models \psi$. \qed
Proof of Lindström's theorem: Let $\mathcal{L}_{\omega\omega} < \mathcal{L}$, and assume that \mathcal{L} is regular and satisfies $\text{Comp}(\mathcal{L})$ and $\text{LöSk}(\mathcal{L})$. From Steps 1 – 3 we get a signature S, a $\psi \in L(S)$ and for all finite subsignatures $S_0 \subseteq S$ we get S-structures A, B such that

$$A \models_\mathcal{L} \psi, \quad B \models_\mathcal{L} \neg \psi, \quad A|_{S_0} \cong B|_{S_0} \quad (*)$$

In particular this holds for the finite subsignature $S_0 \subseteq S$ of Lemma 2. But by Lemma 2 for this signature $(*)$ is a contradiction. \square
III. Other variants

A. More about $L_{\omega\omega}$
Sharpness of the result:

<table>
<thead>
<tr>
<th></th>
<th>Comp</th>
<th>LöSko</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{L}_{\omega\omega}$</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>\mathcal{L}^{2nd}</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>$\mathcal{L}_{\kappa\lambda}$ in general</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>$\mathcal{L}_{\omega_1\omega}$</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>$\mathcal{L}_{\omega\omega}(Q_1)$</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>$\mathcal{L}_{\omega\omega}(Q^R)$</td>
<td>✗</td>
<td>✗(?)</td>
</tr>
<tr>
<td>$\mathcal{L}_{\omega 2nd}$</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

Thus we can not drop the condition Comp or LöSko.
Sharpness of the result (cont.):

Define a logic \mathcal{L} by
\[
\mathcal{L}(S) := \{ \text{2nd order sentences of the form } \exists X_1, \ldots, X_n \psi \text{ where } \psi \text{ contains no 2nd order quantifier} \}
\]
Satisfaction relation $\models_{\mathcal{L}}$ is that of \mathcal{L}^{2nd}.

Then:

(i) \mathcal{L} is an abstract logic
(ii) $\mathcal{L}_{\omega \omega} < \mathcal{L}$
(iii) LöSko(\mathcal{L}), Comp(\mathcal{L}), Repl(\mathcal{L}), Rel(\mathcal{L}) hold
(iv) Bool(\mathcal{L}) does not hold
Definition: \mathcal{L} satisfies *countable compactness* if, given a *countable* $\Phi \subseteq L(S)$ then, if all finite subsets are satisfiable, it follows that Φ is satisfiable.

Theorem: $L_{\omega \omega}$ is the most expressive regular abstract logic satisfying *countable compactness* and Löwenheim-Skolem.

Theorem: $L_{\omega \omega}$ is the most expressive regular abstract logic satisfying countable compactness and the following implication (Karp property): If $\mathcal{A} \equiv_p \mathcal{B}$ then $\mathcal{A} \equiv_L \mathcal{B}$ (i.e. the S-structures \mathcal{A}, \mathcal{B} satisfy the same $L(S)$-sentences).

For this and the following see: Lindström, On characterizing elementary logic, in: *Logical Theory and Semantic Analysis*, Synthese Library Volume 63, 1974, pp 129–146

See also Flum, Characterizing logics, Chapter III of Barwise/Feferman, Model-theoretic logics, Springer 1985
Definition: \mathcal{L} satisfies the *Tarski Union property* if, given a chain $M_0 \leq_{\mathcal{L}} M_1 \leq_{\mathcal{L}} M_2 \leq_{\mathcal{L}} \ldots$ of \mathcal{L}-elementary extensions, the inclusion $M_n \leq_{\mathcal{L}} \bigcup_i M_i$ is an \mathcal{L}-elementary extension for all n.

Theorem (Lindström): $L_{\omega\omega}$ is the most expressive regular abstract logic satisfying compactness and the Tarski Union property.
There is a property \((+) \), roughly saying that one can take a sentence \(\varphi \in L(S) \), replace all \(n \)-ary relation symbols in there by \((n + 1) \)-ary relation symbols, and then make it into a sentence again by binding the newly gained variable with a \(\forall x \).

Theorem (Lindström): Suppose \(L_{\omega\omega} \leq L \), \(L \) satisfies property \((+) \) and for all \(S \)-structures one has that \(\mathcal{A} \equiv \mathcal{B} \) (elementary equivalence in \(L_{\omega\omega} \)) implies \(\mathcal{A} \equiv_L \mathcal{B} \) (elementary equivalence in \(L \)). Then \(L_{\omega\omega} \sim L \).
Definition: From a relational signature S create a new signature S^+ by replacing each n-ary $P \in S$ with an $(n+1)$-ary P^+. From an S^+-structure \mathcal{A} and an $a \in A$ we get an S-structure $\mathcal{A}^{(a)}$ with the same underlying set A by setting $P^{\mathcal{A}^{(a)}} := \{ (a, a_1, \ldots, a_n) | \mathcal{A} \models P^+(a, a_1, \ldots, a_n) \}$. Then \mathcal{L} satisfies the property (+), if for every $\varphi \in L(S)$ there is a $\varphi^+ \in L(S^+)$ such that for every S^+-structure \mathcal{A} one has: $\mathcal{A} \models \varphi^+$ iff $\mathcal{A}^{(a)} \models \varphi$ for all $a \in A$.

Remark: In the usual logics this is the following: From φ one obtains $\varphi'(x)$ by replacing $P(x_1, \ldots, x_n)$ with $P^+(x, x_1, \ldots, x_n)$ everywhere. Then $\varphi^+ = \forall x \varphi'(x)$. Indeed, property (+) follows from some extra functoriality on signatures which allows to replace relation symbols in a formula with symbols of higher arity together with the existence of quantifiers.

Theorem (Lindström): Suppose $\mathcal{L}_{\omega\omega} \leq \mathcal{L}$, \mathcal{L} satisfies (+) and for all S-structures one has that $\mathcal{A} \equiv \mathcal{B}$ (elementary equivalence in $\mathcal{L}_{\omega\omega}$) implies $\mathcal{A} \equiv_{\mathcal{L}} \mathcal{B}$ (elementary equivalence in \mathcal{L}). Then $\mathcal{L}_{\omega\omega} \sim \mathcal{L}$.
Definition: \mathcal{L} satisfies the *upward Löwenheim-Skolem property* if every $\varphi \in \mathcal{L}(S)$ that has an infinite model, has an uncountable model.

Theorem (Lindström): Among the regular abstract logics with the property (+), $\mathcal{L}_{\omega\omega}$ is the most expressive satisfying the upward and the downward Löwenheim-Skolem properties.
Effective versions: Suppose now that $L(S)$ is made of strings of symbols from some finite alphabet.

Definition: (a) L satisfies completeness if the set of valid sentences is recursively enumerable (i.e. there is some complete proof procedure).
(b) L has effective negation and conjunction if the negations and disjunction in the previous sense can be computed effectively.
(c) $L \leq_{\text{eff}} L'$ means that there is an effective procedure associating to each $\varphi \in L$ a $\varphi' \in L'(S)$ which has the same models (i.e. is logically equivalent).

Theorem (Lindström): Suppose $L_{\omega\omega} \leq_{\text{eff}} L$, L has the downward Löwenheim property, is complete and has effective negation and conjunction. Then $L_{\omega\omega} \sim_{\text{eff}} L$.

One can define what it means to have an effective tableau method for determining the valid sentences.

Theorem (Lindström): Suppose $L_{\omega\omega} \leq_{\text{eff}} L$, L has an effective tableau method and has effective negation and conjunction. Then $L_{\omega\omega} \sim_{\text{eff}} L$.
Remark: $L_{\omega\omega}$ is the most expressive regular abstract logic satisfying a version of the Omitting types theorem.

(See: Flum, Characterizing logics, Thm 2.2.2. Originally: Lindström, Omitting uncountable types and extensions of elementary logic. Theoria 44 (1978), no. 3, 152–156 but only considering extensions of $L_{\omega\omega}$ by quantifiers)

Open question: Is $L_{\omega\omega}$ the most expressive regular abstract logic satisfying compactness and Craig interpolation?

III. Other variants

B. Other logics
Definition: A logic \mathcal{L} is *bounded*, if for any S containing a binary relation $<$ and any $\varphi \in L(S)$ having only models with $<$ a well-ordering, there is an ordinal α, such that the order type of $<$ in any model is always smaller than α.

Theorem: $\mathcal{L}_\infty \omega$ is the most expressive regular logic that is bounded and has the Karp property (i.e. if $\mathcal{A} \cong_p \mathcal{B}$ then $\mathcal{A} \equiv_\mathcal{L} \mathcal{B}$).

See Flum, Characterizing Logics, Thm. 3.1. The Karp property is a substitute for downward Löwenheim-Skolem, the boundedness is a substitute for compactness.
Definition: (a) A logic \mathcal{L} has occurrence number α, if α is the smallest cardinal such that for all S one has $L(S) = \{L(T) \mid T \subseteq S, |T| < \alpha\}$.
Notation: $oc(\mathcal{L})$
(b) Consider all $\varphi \in L(S)$ having only models with $<$ a well-ordering, and for which there is an ordinal α, such that the order type of $<$ in every model is smaller than α. The supremum of all α occurring thus is called the well-ordering number, $wo(\mathcal{L})$.

Theorem: $\mathcal{L}_{\kappa\omega}$ is the most expressive regular logic that is bounded, has the Karp property and has $oc(\mathcal{L}) \leq \kappa$ and $wo(\mathcal{L}) \leq \kappa$.

See Flum, Characterizing Logics, Thm. 3.2
Definition: For a signature S denote by $S – Str$ the class of S-structures. The *elementary topology* is the topology on $S – Str$ with the elementary classes $\text{Mod}(\varphi) = \{M | M \models \varphi\}$ as open basis.

Because we have negation, it is also a closed basis (i.e. a clopen basis). It follows that the topology is *regular*, i.e. a closed set and a point outside of it can be separated by disjoint open sets.

Facts:
- The open sets are closed under isomorphism of S-structures (=:the topology is *invariant*).
- The reduction map $S_1 – Str \to S_0 – Str$ coming from an inclusion of signatures $S_0 \subseteq S_1$ is continuous (also “renamings”).
Some reformulations:

Compactness theorem ⇔ $S - Str$ is compact ⇔ every ultrafilter has a limit ⇔ Łoś’s theorem

Downward Löwenheim-Skolem ⇔ the countable S-structures are dense

Topological Lindström theorem (Caicedo): For each S let Γ_S be a regular, invariant topology on $S - Str$ such that the countable structures are dense, reduct and renaming maps are continuous, the Γ_S are compact and at least as fine as the elementary topology. Then the Γ_S are the elementary topologies.

Definition: \(\mathcal{L} \) is a weak extension of \(\mathcal{L} (\mathcal{L} \leq_w \mathcal{L}') \) :iff each sentence of \(\mathcal{L}(S) \) is equivalent to a theory of \(\mathcal{L}'(S) \). Write \(\mathcal{L} \sim_w \mathcal{L}' \) for \(\mathcal{L} \leq_w \mathcal{L}' \) and \(\mathcal{L} \geq_w \mathcal{L}' \).

Consider logics without negation. Denote by \(\text{LöSko}_2 \) the following version of downward Löwenheim-Skolem: A sentence that is true in all countable models of a theory is true in all models of that theory. We define a new topology on \(S\text{-Str} \) by declaring the classes \(\text{Mod}(\varphi) \) to be a sub-basis of *closed* classes.

Theorem (Caicedo): Any regular (now meaning: induces a regular topology on each class \(S\text{-Str} \)), compact logic with \(\mathcal{L}_{\omega\omega} \leq_w \mathcal{L} \), having disjunctions and satisfying \(\text{LöSko}_2 \) satisfies \(\mathcal{L} \sim_w \mathcal{L}_{\omega\omega} \).
Lindström theorems for modal logics

New issues arise for modal logics:
1. They are fragments of first order logic – we cannot import 1st order formulas in the proofs, as before.
2. They are interpreted in other structures, coming with their own notions of (partial) isomorphisms, back and forth etc.

Definition:

(a) A *Kripke model* is an S-structure \mathcal{M} for the signature

\[S := \{ A, R_1, R_2, R_3, \ldots \} \]

(M the set of worlds, $A^\mathcal{M}$ the accessibility relation, $R_i^\mathcal{M}$ encodes a valuation for the variable x_i at each world)

(b) A *pointed Kripke model* is a pair $(\mathcal{M}, w \in M)$

(c) An *abstract modal logic* is a pair $\mathcal{L} = (Fm_\mathcal{L}, \models_\mathcal{L})$ where $Fm_\mathcal{L}$ is a set ("\mathcal{L}-formulas") and $\models_\mathcal{L}$ is a relation between pointed Kripke models and \mathcal{L}-formulas.

Standing assumption: \mathcal{L}-formulas are invariant under isomorphism, \mathcal{L} has Boolean operations, we have renaming and relativization.
Definition: (a) A *bisimulation* between Kripke models \mathcal{M}, \mathcal{N} is a binary relation Z between M and N, such that:

(i) If wZv then $R^m_i(w) \iff R^n_i(v)$

(ii) If wZv and $wA^m w'$ there is a v' s.t. $vA^n v'$ and $w'Zv'$

(iii) If wZv and $vA^n v'$ there is a w' s.t. $wA^m w'$ and $w'Zv'$

(b) Two pointed Kripke models (\mathcal{M}, w), (\mathcal{N}, v) are *bisimilar* if there exists a bisimulation Z with wZv.

(c) A formula φ is *bisimulation invariant* if, given bisimilar (\mathcal{M}, w), (\mathcal{N}, v) one has $(\mathcal{M}, w) \models \varphi \iff (\mathcal{N}, v) \models \varphi$

(d) A logic is *bisimulation invariant* if all its formulas are.
Theorem (van Benthem, 2007): An abstract modal logic extending basic modal logic and satisfying compactness and bisimulation invariance is equally expressive as the basic modal logic K.

See ten Cate/Väänänen/van Benthem: Lindström theorems for fragments of first order logic, Logical Methods in Computer Science 5(3): 3 (2009)

Further results: Lindström theorem by S. Enqvist for Kripke frames axiomatizable by “strict first order Horn clauses” (2013), Lindström theorems for coalgebra semantics (Kurz/Venema, Enqvist), other results by de Rijke, Otto/Piro, Vuković, ...