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The statement

Theorem (Lindström)

There is no logic that is more expressive than classical first order logic and
that satisfies both the Compactness and the Löwenheim-Skolem properties.

From: Per Lindström, On extensions of elementary logic, Theoria 35, p.1-11,
1969
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Abstract Logics

Definition: An abstract logic L consists of a function L : signatures →
sets and a binary relation �L betwen S-structures and elements of L(S)
(written M �L ϕ), such that

(a) If S0 ⊆ S1 then L(S0) ⊆ L(S1)

(b) If M �L ϕ and M ∼= N then N �L ϕ

(c) If S0 ⊆ S1, ϕ ∈ L(S0) and M is an S1-structure,
then M �L ϕ iff M|S0 �L ϕ

For ϕ ∈ L(S) we write ModL(ϕ) := {M ∈ S − structures | M � ϕ}
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Abstract Logics: Examples

(1) First order logic with L(S) and � as defined before.
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Abstract Logics: Examples

(2) The second order logic L2nd :

For L2nd(S)-formulas we adopt the generation rules of first order
S-formulas. Additionally we have relation variables of all arities and declare:
(a) If X is an n-ary relation variable and t1, . . . , tn are terms, then

X (t1, . . . , tn) is an S-formula
(b) If ϕ is an S-formula, and X is a relation variable, then ∃Xϕ is

an S-formula.
(c) An L2nd(S)-sentence is a L2nd(S)-formula without free variables.

Satisfaction relation: For first order formation rules as usual. Additionally
declare for an n-ary relation variable:
M �L2nd ∃Xϕ :⇔ there is an R ⊆ Mn such that M �L2nd ϕ(R/X )
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Abstract Logics: Examples

(3) The logics Lκλ:

For cardinals κ ≥ λ define the Lκλ(S)-formulas as for first order logic, plus:
– for a set {ϕi | i ∈ I}, |I | ≤ κ, one has a formula

∧
ϕi

– for a set of variables {xi | i ∈ I}, |I | ≤ λ and a formula ϕ one has a
formula ∃(xi | i ∈ I )ϕ.

Satisfaction relation: For first order formation rules as usual. Additionally
– M �Lκλ

∧
ϕi :⇔M �Lκλ ϕi for all i ∈ I

– M �Lκλ ∃(xi | i ∈ I )ϕ :⇔ there is {mi | i ∈ I} ⊆ M such that
M �Lκλ ϕ(mi/xi )

1. Note that Lωω is classical first order logic.
2. One also allows the case κ or λ =∞ where one imposes no cardinality
restriction.
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Abstract Logics: Examples

(4) Lωω(Q1) := usual 1st order logic enhanced with the quantifier Q1,
interpreted as “there exist uncountably many”

(5) Lωω(QR) := usual 1st order logic enhanced with the binary quantifier
QR , interpreted as
M `Lωω(QR) QRxy [ϕ(x), ψ(y)] :⇔ card{m ∈ M |M ` Lωω(QR)ϕ(m)} <
card{m ∈ M |M ` Lωω(QR)ψ(m)}

(6) Weak second order logic Lw2nd : Same syntax as L2nd but relation
variables are only interpreted as ranging over finite subsets of Mn.
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Abstract Logics: Non-example

NOT an example: start from a 2nd order signature S containing
relation/function/constant symbols as before, and additionally second order
relation symbols interpreted as relations between subsets of the domain of
interpretation.

There are obvious notions of S-structure, and of isomorphism of
S-structures.

One can set up a language L(S) from such a 2nd order signature S (best
done using sorts) and define the obvious satisfaction relation between
S-structures and L(S)-sentences (example: one can define the theory of
topological spaces).

Our logics are always based on first order signatures!
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Expressivity of abstract logics

Definition: Let L, L′ be abstract logics.

(1) ϕ ∈ L(S) and ψ ∈ L′(S) are logically equivalent :⇔
ModL(ϕ) = ModL′(ψ)

(2) L′ ≥ L (“L′ has at least the same expressive power as L”) :⇔ for every
ϕ ∈ L(S) there is a ψ ∈ L′(S) which is is logically equivalent to ϕ.

We write L′ ∼ L (equal expressive power), if L′ ≥ L and L′ ≤ L.
We write L′ > L if L′ ≥ L and not L′ ∼ L.
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Expressivity of abstract logics

Example 1: Up to iso R is the only complete ordered field. In L2nd we can
hence characterize R up to isomorphism by adding to the theory of ordered
fields the sentence
∀X ((∃xX (x) ∧ ∃y∀z(X (z)→ z < y))→ ∃y(∀z(X (z)→ (z < y ∨ z =
y)) ∧ ∀x(x < y → ∃z(x < z ∧ X (z)))))
(“every nonempty subset which is bounded above has a supremum”)

By Löwenheim-Skolem we can not characterize R up to isomorphism in first
order language. Hence L2nd > Lωω.

Example 2: In Lω1ω we can characterize the class of fields of characteristic
0 by adding to the theory of fields the sentence∨
{1 + 1 = 0, 1 + 1 + 1 = 0, 1 + 1 + 1 + 1 + 1 = 0, . . .}

By Application 1 of the compactness theorem, there is no first order
sentence characterizing fields of characteristic 0. Hence Lω1ω > Lωω.
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Properties of abstract logics

Definition: For an abstract logic L we abbreviate:

LöSko(L) (“L has the Löwenheim-Skolem property”) :⇔ If ϕ ∈ L(S)
has a model, then it has a model which is at most countable.

Comp(L) (“L has the compactness property”) :⇔ If Φ ⊆ L(S) and
every finite subset of Φ is satisfiable, then Φ is satisfiable.
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Properties of abstract logics

Definition: For an abstract logic L we abbreviate:

Bool(L) (“L contains Boolean connectives”) :⇔
(1) For every ϕ ∈ L(S) there is a χ ∈ L(S) such that for all S-structures M:

M � ϕ⇔ not M � χ
(2) For every ϕ,ψ ∈ L(S) there is a χ ∈ L(S) such that for all S-structures

M: M � χ⇔M � ϕ and M � ψ

Example: Lωω contains Boolean connectives: Take in (1) χ := ¬ϕ and
in (2) χ := ϕ ∧ ψ
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Properties of abstract logics

Definition: For an abstract logic L we abbreviate:

Repl(L) (“L admits replacement of function symbols and constants by
relation symbols”):
From a signature S we get a new signature S r by replacing n-ary
function (resp. constant) symbols with (n + 1)-ary (resp. unary)
relation symbols.
From an S-structure M we get an S r -structure Mr by interpreting the
new relation symbols as the graphs of the functions f M.

Then: Repl(L) :⇔ For every ϕ ∈ L(S) there is a χ ∈ L(S r ) such that
for all S-structures M we have M � ϕ⇔Mr � χ.

Example: Lωω admits replacement; one can take χ as saying that the
new relation symbols are graphs of functions that satisfy the
corresponding statements of ϕ.
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Properties of abstract logics

Definition: For an abstract logic L we abbreviate:

Rel(L) (“L admits relativization”):
For an S-structure M and an S-closed subset A ⊆ M we get a
sub-S-structure M|A with underlying set A.
We also get an S ∪ {U}-structure MU A (U a new unary relation
symbol), with underlying set M, where U is interpreted as the subset A.
Then: Rel(L) :⇔ For every ϕ ∈ L(S) there is a φU ∈ L(S ∪ {U}) such
that M|A � ϕ⇔MU A � φU

Example: Lωω admits relativization; one can take
φU := ∀x (U(x)→ φ)

Definition: An abstract logic satisfying Bool, Repl and Rel is called
regular.
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Lindström’s Theorem

Theorem (Lindström’s Theorem)

For a regular abstract logic L with Lωω ≤ L one has: If LöSko(L) and
Comp(L) then L ∼ Lωω.

Equivalently: Lωω is the most expressive regular abstract logic having the
Löwenheim-Skolem and Compactness properties.
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II. The proof

following Ebbinghaus/Flum/Thomas, Introduction to mathematical logic,
Chapters XII/XIII
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Back and forth method

Definition: (a) A partial isomorphism between S-structures A, B is an
isomorphism between subsets of A and B respecting the
relations/functions/constants. For a partial iso p, dom(p) denotes the
domain of p, and rg(p) the range of p.

(b) An m-isomorphism is a sequence I1, . . . , Im of partial isomorphisms such
that

(i) (forth-property) For every p ∈ In+1 and a ∈ A there is a q ∈ In with
q ⊇ p and a ∈ dom(q)

(ii) (back-property) For every p ∈ In+1 and b ∈ B there is a q ∈ In with
q ⊇ p and b ∈ rg(q)

If there is an m-isomorphism between A and B, we write A ∼=m B

Proposition: If A ∼=m B then A and B satisfy exactly the same sentences
of quantifier rank ≤ m.
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Back and forth method

Remark: The case m = ω is also considered. If A ∼=ω B, one says that A
and B are finitely isomorphic.
Theorem (Fräıssé): A ∼=ω B iff A and B are elementary equivalent (i.e.
satisfy exactly the same first order sentences).

(c) A p-isomorphism is a set I of partial isomorphisms such that

(i) (forth-property) For every p ∈ I and a ∈ A there is a q ∈ I with q ⊇ p
and a ∈ dom(q)

(ii) (back-property) For every p ∈ I and b ∈ B there is a q ∈ I with q ⊇ p
and b ∈ rg(q)

I.e. a p-isomorphism is an ω-isomorphism in which all the sets In are equal.
Notation: A ∼=p B

Proposition: If A ∼=p B and A, B are countable, then A ∼= B
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1st outline of Lindström’s proof: Let L be a regular logic satisfying
LöSko(L) and Comp(L). Assume that Lωω < L.

Then there exists a ψ ∈ L(S) not equivalent to any first order sentence.

1. Show that for all m ∈ N there exist S-structures A, B with A �L ψ,
B �L ¬ψ and A ∼=m B.

2. Using Comp(L) we get p-isomorphic models A, B with A �L ψ,
B �L ¬ψ.

3. By LöSko(L) we can assume w.l.o.g. that A and B are countable. Then
we have A ∼= B but A �L ψ, B �L ¬ψ. This contradicts the isomorphism
invariance of abstract logics!
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Expressing m-isomorphism type in 1st order logic

Let S consist only of relation symbols. Let Lr (S) denote the set of first
order formulas containing at most the variables x0, . . . , xr−1. Define
Φr := {ϕ ∈ Lr (S) | ϕ atomic} ∪ {¬ϕ ∈ Lr (S) | ϕ atomic}. Note that Φr

is finite.

Observation: In first order logic one can define isomorphism types of finite
relational structures.
Proof: For B with B = {b0, . . . , br−1} one can define
ϕ0
B,b0,...,br−1

(x0, . . . , xr−1) :=
∧
{ϕ ∈ Φr | B � ϕ(b0, . . . , br−1)}. Now

introduce constants for the elements of B, say that these are all elements
and that ϕ0

B,b0,...,br−1
(b0, . . . , br−1) holds. �

Since S is relational, from any S-structure B and b0, . . . br−1 ∈ B we get a
substructure {b0, . . . br−1}. Now use this to express the m-isomorphism
type of relational structures.
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Expressing m-isomorphism type in 1st order logic

Remember:
ϕ0
B,b0,...,br−1

:=
∧
{ϕ ∈ Φr | B � ϕ(b0, . . . , br−1)}.

We define Lωω(S)-formulas ϕn
B,b0,...,br−1

(x0, . . . , xr−1) with the following
property:

For any S-structure A and a0, . . . , ar−1 ∈ A we have that if
A � ϕn

B,b0,...,br−1
(a1, . . . , ar−1) then ai 7→ bi defines a partial isomorphism

from {a0, . . . ar−1} to {b0, . . . br−1} which is n times extendable.

Do this by induction on n:

ϕn+1
B,b0,...,br−1

:= ∀xr
∨
{ϕn
B,b0,...,br−1,b | b ∈ B}∧

∧
{∃xrϕ

n
B,b0,...,br−1,b | b ∈ B}

Note: For every n there exist only finitely many ϕn
B,b0,...,br−1

(induction).

Hence ϕn+1
B,b0,...,br−1

is a first order formula.
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Expressing m-isomorphism type in 1st order logic

The first order formula

ϕn
B,b0,...,br−1

:= ∀xr
∨
{ϕn−1
B,b0,...,br−1,b

| b ∈ B}∧
∧
{∃xrϕ

n−1
B,b0,...,br−1,b

| b ∈ B}

we have just defined is a formula in r variables.

Given an S-structure A and a0, . . . , ar−1 ∈ A then
A � ϕn

B,b0,...,br−1
(a0, . . . , ar−1) says that there exists a partial isomorphism

A→ B that sends ai to bi and is n times extendable choosing arbitrary
elements in the domain A or in the image B.

In particular ϕn
B,∅ is a sentence and A � ϕn

B,∅ implies that there exists an
n-isomorphism A→ B.

Informally ϕn
B,∅ says (about an S-structure where it is interpreted):

“This structure is n-isomorphic to B”.
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Step 1. of the proof of Lindström’s theorem

Let L be a regular logic satisfying LöSko(L) and Comp(L). Assume that
Lωω < L.

Then there exists a ψ ∈ L(S) not equivalent to any first order sentence.

By Repl(L) (allowing to replace function symbols with relation symbols) we
can assume w.l.o.g. that S contains only relation symbols. Remember that
we want to prove the following:

Proposition(Step 1): For all m ∈ N and all finite S0 ⊆ S there exist
S-structures A, B with A �L ψ, B �L ¬ψ and A|S0 ∼=m B|S0 .

(Note that we had to pass to a finite subsignature for our m-isomorphism.
This will not be a problem in the course of the proof of Lindström’s
theorem)
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Proposition(Step 1): For all m ∈ N and all finite S0 ⊆ S there exist
S-structures A, B with A �L ψ, B �L ¬ψ and A|S0 ∼=m BS0 .

Proof: Let S0 ⊆ S be finite and m ∈ N. Define ϕ :=
∨
{ϕm

A|S0 ,∅
| A � ψ}

(“this structure is m-isomorphic to A|S0 for an A with A � ψ”)

There is an A with A � ψ, because otherwise ψ would be logically
equivalent to a contradiction (this is what it means to have no models), and
hence a first order formula. So the above disjunction is non-empty. From
the definition of the ϕm

A|S0 ,∅
one can also see that the disjunction is finite, so

ϕ is a first order sentence.

Clearly ψ → ϕ is a valid formula: If an S-structure A satisfies A � ψ, then
it occurs in the disjunction and its S0-reduction is m-isomorphic to itself.

On the other hand ϕ→ ψ (i.e. ¬ϕ ∨ ψ) is not a valid formula, otherwise ψ
would be equivalent to the first order formula ϕ. Hence its negation ϕ ∧ ¬ψ
is satisfiable, i.e. there exists an S-structure B such that B � ϕ and
B � ¬ψ.
The first part, B � ϕ, means exactly that this B|S0 is m-isomorphic to A|S0
for an A satisfying ψ. �
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