Lindström's Theorem

Peter Arndt

Universität Regensburg

Unilog 2015

Slides available at: http://homepages-nw.uni-regensburg.de/~arp13290/

Theorem (Lindström)

There is no logic that is more expressive than classical first order logic and that satisfies both the Compactness and the Löwenheim-Skolem properties.

From: Per Lindström, On extensions of elementary logic, Theoria 35, p.1-11, 1969

Definition: An abstract logic \mathcal{L} consists of a function L: signatures \rightarrow sets and a binary relation $\vDash_{\mathcal{L}}$ between S-structures and elements of L(S) (written $\mathcal{M} \vDash_{\mathcal{L}} \varphi$), such that

For $\varphi \in L(S)$ we write $\operatorname{Mod}_{\mathcal{L}}(\varphi) := \{\mathfrak{M} \in S - \operatorname{structures} \mid \mathfrak{M} \vDash \varphi\}$

(1) First order logic with L(S) and \vDash as defined before.

(2) The second order logic \mathcal{L}^{2nd} :

For L^{2nd}(S)-formulas we adopt the generation rules of first order
S-formulas. Additionally we have *relation variables* of all arities and declare:
(a) If X is an n-ary relation variable and t₁,..., t_n are terms, then X(t₁,..., t_n) is an S-formula
(b) If φ is an S-formula and X is a relation variable, then ∃Xφ is

(b) If φ is an S-formula, and X is a relation variable, then $\exists X \varphi$ is an S-formula.

(c) An $L^{2nd}(S)$ -sentence is a $L^{2nd}(S)$ -formula without free variables.

Satisfaction relation: For first order formation rules as usual. Additionally declare for an n-ary relation variable:

 $\mathfrak{M} \vDash_{\mathcal{L}^{2nd}} \exists X \varphi \ :\Leftrightarrow \text{there is an } R \subseteq M^n \text{ such that } \mathfrak{M} \vDash_{\mathcal{L}^{2nd}} \varphi(R/X)$

(3) The logics $\mathcal{L}_{\kappa\lambda}$:

For cardinals $\kappa \geq \lambda$ define the $L_{\kappa\lambda}(S)$ -formulas as for first order logic, plus: – for a set $\{\varphi_i \mid i \in I\}$, $|I| \leq \kappa$, one has a formula $\bigwedge \varphi_i$ – for a set of variables $\{x_i \mid i \in I\}$, $|I| \leq \lambda$ and a formula φ one has a formula $\exists (x_i \mid i \in I)\varphi$.

Satisfaction relation: For first order formation rules as usual. Additionally $-\mathfrak{M} \models_{\mathcal{L}_{\kappa\lambda}} \bigwedge \varphi_i :\Leftrightarrow \mathfrak{M} \models_{\mathcal{L}_{\kappa\lambda}} \varphi_i$ for all $i \in I$ $-\mathfrak{M} \models_{\mathcal{L}_{\kappa\lambda}} \exists (x_i \mid i \in I) \varphi :\Leftrightarrow$ there is $\{m_i \mid i \in I\} \subseteq M$ such that $\mathfrak{M} \models_{\mathcal{L}_{\kappa\lambda}} \varphi(m_i/x_i)$

1. Note that $\mathcal{L}_{\omega\omega}$ is classical first order logic.

2. One also allows the case κ or $\lambda=\infty$ where one imposes no cardinality restriction.

(4) $\mathcal{L}_{\omega\omega}(Q_1) :=$ usual 1st order logic enhanced with the quantifier Q_1 , interpreted as "there exist uncountably many"

(5) $\mathcal{L}_{\omega\omega}(Q^R) :=$ usual 1st order logic enhanced with the *binary* quantifier Q^R , interpreted as $\mathfrak{M} \vdash_{\mathcal{L}_{\omega\omega}(Q^R)} Q^R xy [\varphi(x), \psi(y)] : \Leftrightarrow card\{m \in M \mid \mathfrak{M} \vdash \mathcal{L}_{\omega\omega}(Q^R)\varphi(m)\} < 0$

 $card\{m \in M \mid \mathfrak{M} \vdash \mathcal{L}_{\omega\omega}(Q^R)\psi(m)\}$

(6) Weak second order logic $\mathcal{L}^{w^{2nd}}$: Same syntax as \mathcal{L}^{2nd} but relation variables are only interpreted as ranging over *finite* subsets of M^n .

NOT an example: start from a *2nd order signature* **S** containing relation/function/constant symbols as before, and additionally second order relation symbols interpreted as relations between *subsets* of the domain of interpretation.

There are obvious notions of ${\bf S}\mbox{-}{\rm structure},$ and of isomorphism of ${\bf S}\mbox{-}{\rm structures}.$

One can set up a language L(S) from such a 2nd order signature **S** (best done using sorts) and define the obvious satisfaction relation between **S**-structures and L(S)-sentences (example: one can define the theory of topological spaces).

Our logics are always based on first order signatures!

Definition: Let \mathcal{L} , \mathcal{L}' be abstract logics.

(1) $\varphi \in L(S)$ and $\psi \in L'(S)$ are logically equivalent : $\Leftrightarrow \operatorname{Mod}_{\mathcal{L}}(\varphi) = \operatorname{Mod}_{\mathcal{L}'}(\psi)$

(2) $\mathcal{L}' \geq \mathcal{L}$ (" \mathcal{L}' has at least the same expressive power as \mathcal{L} ") : \Leftrightarrow for every $\varphi \in L(S)$ there is a $\psi \in L'(S)$ which is is logically equivalent to φ .

We write $\mathcal{L}' \sim \mathcal{L}$ (equal expressive power), if $\mathcal{L}' \geq \mathcal{L}$ and $\mathcal{L}' \leq \mathcal{L}$. We write $\mathcal{L}' > \mathcal{L}$ if $\mathcal{L}' \geq \mathcal{L}$ and not $\mathcal{L}' \sim \mathcal{L}$. *Example 1:* Up to iso \mathbb{R} is the only complete ordered field. In \mathcal{L}^{2nd} we can hence characterize \mathbb{R} up to isomorphism by adding to the theory of ordered fields the sentence

 $\forall X((\exists x X(x) \land \exists y \forall z (X(z) \rightarrow z < y)) \rightarrow \exists y (\forall z (X(z) \rightarrow (z < y \lor z = y)) \land \forall x (x < y \rightarrow \exists z (x < z \land X(z)))))$

("every nonempty subset which is bounded above has a supremum")

By Löwenheim-Skolem we can not characterize \mathbb{R} up to isomorphism in first order language. Hence $\mathcal{L}^{2nd} > \mathcal{L}_{\omega\omega}$.

Example 2: In $\mathcal{L}_{\omega_1\omega}$ we can characterize the class of fields of characteristic 0 by adding to the theory of fields the sentence $\bigvee \{1+1=0, 1+1+1=0, 1+1+1+1+1=0, \ldots\}$

By Application 1 of the compactness theorem, there is no first order sentence characterizing fields of characteristic 0. Hence $\mathcal{L}_{\omega_1\omega} > \mathcal{L}_{\omega\omega}$.

- LöSko(L) ("L has the Löwenheim-Skolem property") :⇔ If φ ∈ L(S) has a model, then it has a model which is at most countable.
- Comp(L) ("L has the compactness property") :⇔ If Φ ⊆ L(S) and every finite subset of Φ is satisfiable, then Φ is satisfiable.

- $\operatorname{Bool}(\mathcal{L})$ (" \mathcal{L} contains Boolean connectives") : \Leftrightarrow
 - (1) For every $\varphi \in L(S)$ there is a $\chi \in L(S)$ such that for all S-structures \mathfrak{M} : $\mathfrak{M} \vDash \varphi \Leftrightarrow \operatorname{not} \mathfrak{M} \vDash \chi$
 - (2) For every φ, ψ ∈ L(S) there is a χ ∈ L(S) such that for all S-structures
 M: M ⊨ χ ⇔ M ⊨ φ and M ⊨ ψ

Example: $\mathcal{L}_{\omega\omega}$ contains Boolean connectives: Take in (1) $\chi := \neg \varphi$ and in (2) $\chi := \varphi \land \psi$

• Repl(\mathcal{L}) (" \mathcal{L} admits replacement of function symbols and constants by relation symbols"):

From a signature S we get a new signature S^r by replacing *n*-ary function (resp. constant) symbols with (n + 1)-ary (resp. unary) relation symbols.

From an S-structure \mathfrak{M} we get an S^r-structure \mathfrak{M}^r by interpreting the new relation symbols as the graphs of the functions $f^{\mathfrak{M}}$.

Then: $\operatorname{Repl}(\mathcal{L}) :\Leftrightarrow$ For every $\varphi \in L(S)$ there is a $\chi \in L(S^r)$ such that for all *S*-structures \mathfrak{M} we have $\mathfrak{M} \vDash \varphi \Leftrightarrow \mathfrak{M}^r \vDash \chi$.

Example: $\mathcal{L}_{\omega\omega}$ admits replacement; one can take χ as saying that the new relation symbols are graphs of functions that satisfy the corresponding statements of φ .

Rel(L) ("L admits relativization"): For an S-structure M and an S-closed subset A ⊆ M we get a sub-S-structure M|_A with underlying set A. We also get an S ∪ {U}-structure M^{U→A} (U a new unary relation symbol), with underlying set M, where U is interpreted as the subset A. Then: Rel(L) :⇔ For every φ ∈ L(S) there is a φ^U ∈ L(S ∪ {U}) such that M|_A ⊨ φ ⇔ M^{U→A} ⊨ φ^U

Example: $\mathcal{L}_{\omega\omega}$ admits relativization; one can take $\phi^U := \forall x (U(x) \rightarrow \phi)$

Definition: An abstract logic satisfying Bool , Repl and Rel is called regular.

Theorem (Lindström's Theorem)

For a regular abstract logic \mathcal{L} with $\mathcal{L}_{\omega\omega} \leq \mathcal{L}$ one has: If $L\ddot{o}Sko(\mathcal{L})$ and $Comp(\mathcal{L})$ then $\mathcal{L} \sim \mathcal{L}_{\omega\omega}$.

Equivalently: $\mathcal{L}_{\omega\omega}$ is the most expressive regular abstract logic having the Löwenheim-Skolem and Compactness properties.

II. The proof

following Ebbinghaus/Flum/Thomas, Introduction to mathematical logic, Chapters XII/XIII

Definition: (a) A partial isomorphism between S-structures \mathfrak{A} , \mathfrak{B} is an isomorphism between subsets of A and B respecting the relations/functions/constants. For a partial iso p, dom(p) denotes the domain of p, and rg(p) the range of p.

(b) An *m*-isomorphism is a sequence I_1, \ldots, I_m of partial isomorphisms such that

- (i) (forth-property) For every $p \in I_{n+1}$ and $a \in A$ there is a $q \in I_n$ with $q \supseteq p$ and $a \in dom(q)$
- (ii) (back-property) For every $p \in I_{n+1}$ and $b \in B$ there is a $q \in I_n$ with $q \supseteq p$ and $b \in rg(q)$

If there is an *m*-isomorphism between \mathfrak{A} and \mathfrak{B} , we write $\mathfrak{A} \cong_m \mathfrak{B}$

Proposition: If $\mathfrak{A} \cong_m \mathfrak{B}$ then \mathfrak{A} and \mathfrak{B} satisfy exactly the same sentences of *quantifier rank* $\leq m$.

Remark: The case $m = \omega$ is also considered. If $\mathfrak{A} \cong_{\omega} \mathfrak{B}$, one says that \mathfrak{A} and \mathfrak{B} are *finitely isomorphic*. *Theorem (Fraïssé):* $\mathfrak{A} \cong_{\omega} \mathfrak{B}$ iff \mathfrak{A} and \mathfrak{B} are *elementary equivalent* (i.e. satisfy exactly the same first order sentences).

(c) A p-isomorphism is a set I of partial isomorphisms such that

- (i) (forth-property) For every $p \in I$ and $a \in A$ there is a $q \in I$ with $q \supseteq p$ and $a \in dom(q)$
- (ii) (back-property) For every $p \in I$ and $b \in B$ there is a $q \in I$ with $q \supseteq p$ and $b \in rg(q)$

I.e. a *p*-isomorphism is an ω -isomorphism in which all the sets I_n are equal. Notation: $\mathfrak{A} \cong_p \mathfrak{B}$

Proposition: If $\mathfrak{A} \cong_{p} \mathfrak{B}$ and A, B are countable, then $\mathfrak{A} \cong \mathfrak{B}$

1st outline of Lindström's proof: Let \mathcal{L} be a regular logic satisfying $\mathrm{L\ddot{o}Sko}(\mathcal{L})$ and $\mathrm{Comp}(\mathcal{L})$. Assume that $\mathcal{L}_{\omega\omega} < \mathcal{L}$.

Then there exists a $\psi \in L(S)$ not equivalent to any first order sentence.

1. Show that for all $m \in \mathbb{N}$ there exist *S*-structures \mathfrak{A} , \mathfrak{B} with $\mathfrak{A} \vDash_{\mathcal{L}} \psi$, $\mathfrak{B} \vDash_{\mathcal{L}} \neg \psi$ and $\mathfrak{A} \cong_{m} \mathfrak{B}$.

2. Using Comp(\mathcal{L}) we get *p*-isomorphic models \mathfrak{A} , \mathfrak{B} with $\mathfrak{A} \models_{\mathcal{L}} \psi$, $\mathfrak{B} \models_{\mathcal{L}} \neg \psi$.

3. By $L\ddot{o}Sko(\mathcal{L})$ we can assume w.l.o.g. that \mathfrak{A} and \mathfrak{B} are *countable*. Then we have $\mathfrak{A} \cong \mathfrak{B}$ but $\mathfrak{A} \models_{\mathcal{L}} \psi$, $\mathfrak{B} \models_{\mathcal{L}} \neg \psi$. This contradicts the isomorphism invariance of abstract logics!

Expressing *m*-isomorphism type in 1st order logic

Let S consist only of relation symbols. Let $L_r(S)$ denote the set of first order formulas containing at most the variables x_0, \ldots, x_{r-1} . Define $\Phi_r := \{\varphi \in L_r(S) \mid \varphi \text{ atomic}\} \cup \{\neg \varphi \in L_r(S) \mid \varphi \text{ atomic}\}$. Note that Φ_r is finite.

Observation: In first order logic one can define isomorphism types of finite relational structures.

Proof: For \mathfrak{B} with $B = \{b_0, \ldots, b_{r-1}\}$ one can define $\varphi^0_{\mathcal{B}, b_0, \ldots, b_{r-1}}(x_0, \ldots, x_{r-1}) := \bigwedge \{\varphi \in \Phi_r \mid \mathfrak{B} \vDash \varphi(b_0, \ldots, b_{r-1})\}$. Now introduce constants for the elements of B, say that these are all elements and that $\varphi^0_{\mathcal{B}, b_0, \ldots, b_{r-1}}(b_0, \ldots, b_{r-1})$ holds. \Box

Since S is relational, from any S-structure \mathfrak{B} and $b_0, \ldots b_{r-1} \in B$ we get a substructure $\{b_0, \ldots b_{r-1}\}$. Now use this to express the *m*-isomorphism type of relational structures.

Peter Arndt (Regensburg)

Expressing *m*-isomorphism type in 1st order logic

Remember:

$$\varphi^0_{\mathcal{B},b_0,\ldots,b_{r-1}} := \bigwedge \{ \varphi \in \Phi_r \mid \mathfrak{B} \vDash \varphi(b_0,\ldots,b_{r-1}) \}.$$

We define $L_{\omega\omega}(S)$ -formulas $\varphi_{\mathcal{B},b_0,\ldots,b_{r-1}}^n(x_0,\ldots,x_{r-1})$ with the following property:

For any S-structure \mathfrak{A} and $a_0, \ldots, a_{r-1} \in A$ we have that if $\mathfrak{A} \models \varphi_{\mathcal{B}, b_0, \ldots, b_{r-1}}^n(a_1, \ldots, a_{r-1})$ then $a_i \mapsto b_i$ defines a partial isomorphism from $\{a_0, \ldots, a_{r-1}\}$ to $\{b_0, \ldots, b_{r-1}\}$ which is *n* times extendable. Do this by induction on *n*:

$$\varphi_{\mathcal{B},b_0,\dots,b_{r-1}}^{n+1} := \forall x_r \bigvee \{\varphi_{\mathcal{B},b_0,\dots,b_{r-1},b}^n \mid b \in B\} \land \bigwedge \{\exists x_r \varphi_{\mathcal{B},b_0,\dots,b_{r-1},b}^n \mid b \in B\}$$

Note: For every *n* there exist only finitely many $\varphi_{\mathcal{B},b_0,\ldots,b_{r-1}}^n$ (induction). Hence $\varphi_{\mathcal{B},b_0,\ldots,b_{r-1}}^{n+1}$ is a first order formula.

Expressing *m*-isomorphism type in 1st order logic

The first order formula

$$\varphi_{\mathcal{B},b_0,\ldots,b_{r-1}}^n := \forall x_r \bigvee \{\varphi_{\mathcal{B},b_0,\ldots,b_{r-1},b}^{n-1} \mid b \in B\} \land \bigwedge \{\exists x_r \varphi_{\mathcal{B},b_0,\ldots,b_{r-1},b}^{n-1} \mid b \in B\}$$

we have just defined is a formula in r variables.

Given an S-structure \mathfrak{A} and $a_0, \ldots, a_{r-1} \in A$ then $\mathfrak{A} \models \varphi_{\mathcal{B}, b_0, \ldots, b_{r-1}}^n(a_0, \ldots, a_{r-1})$ says that there exists a partial isomorphism $\mathfrak{A} \to \mathfrak{B}$ that sends a_i to b_i and is *n* times extendable choosing arbitrary elements in the domain *A* or in the image *B*.

In particular $\varphi_{\mathcal{B},\emptyset}^n$ is a sentence and $\mathfrak{A} \models \varphi_{\mathcal{B},\emptyset}^n$ implies that there exists an *n*-isomorphism $\mathfrak{A} \to \mathfrak{B}$.

Informally $\varphi_{\mathcal{B},\emptyset}^n$ says (about an S-structure where it is interpreted):

"This structure is n-isomorphic to \mathfrak{B} ".

Let \mathcal{L} be a regular logic satisfying $\mathrm{L\ddot{o}Sko}(\mathcal{L})$ and $\mathrm{Comp}(\mathcal{L})$. Assume that $\mathcal{L}_{\omega\omega} < \mathcal{L}$.

Then there exists a $\psi \in L(S)$ not equivalent to any first order sentence.

By $\operatorname{Repl}(\mathcal{L})$ (allowing to replace function symbols with relation symbols) we can assume w.l.o.g. that S contains only relation symbols. Remember that we want to prove the following:

Proposition(Step 1): For all $m \in \mathbb{N}$ and all finite $S_0 \subseteq S$ there exist *S*-structures $\mathfrak{A}, \mathfrak{B}$ with $\mathfrak{A} \models_{\mathcal{L}} \psi, \mathfrak{B} \models_{\mathcal{L}} \neg \psi$ and $\mathfrak{A}|_{S_0} \cong_m \mathfrak{B}|_{S_0}$.

(Note that we had to pass to a finite subsignature for our *m*-isomorphism. This will not be a problem in the course of the proof of Lindström's theorem)

Proposition(Step 1): For all $m \in \mathbb{N}$ and all finite $S_0 \subseteq S$ there exist *S*-structures $\mathfrak{A}, \mathfrak{B}$ with $\mathfrak{A} \models_{\mathcal{L}} \psi, \mathfrak{B} \models_{\mathcal{L}} \neg \psi$ and $\mathfrak{A}|_{S_0} \cong_m \mathfrak{B}_{S_0}$.

Proof: Let $S_0 \subseteq S$ be finite and $m \in \mathbb{N}$. Define $\varphi := \bigvee \{ \varphi^m_{\mathfrak{A}|_{S_0}, \emptyset} \mid \mathfrak{A} \models \psi \}$ ("this structure is *m*-isomorphic to $\mathfrak{A}|_{S_0}$ for an \mathfrak{A} with $\mathfrak{A} \models \psi$ ")

There is an \mathfrak{A} with $\mathfrak{A} \vDash \psi$, because otherwise ψ would be logically equivalent to a contradiction (this is what it means to have no models), and hence a first order formula. So the above disjunction is non-empty. From the definition of the $\varphi_{\mathfrak{A}|_{S_0},\emptyset}^m$ one can also see that the disjunction is finite, so φ is a first order sentence.

Clearly $\psi \to \varphi$ is a valid formula: If an *S*-structure \mathfrak{A} satisfies $\mathfrak{A} \models \psi$, then it occurs in the disjunction and its S_0 -reduction is *m*-isomorphic to itself.

On the other hand $\varphi \to \psi$ (i.e. $\neg \varphi \lor \psi$) is not a valid formula, otherwise ψ would be equivalent to the first order formula φ . Hence its negation $\varphi \land \neg \psi$ is satisfiable, i.e. there exists an *S*-structure \mathfrak{B} such that $\mathfrak{B} \models \varphi$ and $\mathfrak{B} \models \neg \psi$.

The first part, $\mathfrak{B} \models \varphi$, means exactly that this $\mathfrak{B}|_{S_0}$ is *m*-isomorphic to $\mathfrak{A}|_{S_0}$ for an \mathfrak{A} satisfying ψ .