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The statement

Theorem (Lindstrom)

There is no logic that is more expressive than classical first order logic and
that satisfies both the Compactness and the Léwenheim-Skolem properties.

From: Per Lindstrém, On extensions of elementary logic, Theoria 35, p.1-11,
1969
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Abstract Logics

Definition: An abstract logic L consists of a function L: signatures —
sets and a binary relation F, betwen S-structures and elements of L(S)

(written M £ ), such that
(a) If So C S; then L(So) - L(Sl)
(b) If MEL ¢ and M =2 N then NE, ¢

(c) If So C 51, ¢ € L(So) and M is an Sp-structure,
then M E, ¢ iff M’so Frop

For ¢ € L(S) we write Mod(yp) := {9 € S — structures | M F ¢}
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Abstract Logics: Examples

(1) First order logic with L(S) and F as defined before.
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Abstract Logics: Examples

(2) The second order logic £2:
For L274(S)-formulas we adopt the generation rules of first order
S-formulas. Additionally we have relation variables of all arities and declare:
(a) If X is an n-ary relation variable and t1,..., t, are terms, then
X(t1,...,tn) is an S-formula
(b) If ¢ is an S-formula, and X is a relation variable, then 3X¢ is
an S-formula.
(c) An L279(S)-sentence is a L?"¢(S)-formula without free variables.

Satisfaction relation: For first order formation rules as usual. Additionally
declare for an n-ary relation variable:
M p2nd X & there is an R € M" such that 9 E 2 o(R/X)
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Abstract Logics: Examples

(3) The logics L;x:

For cardinals k > X define the L,;5(S)-formulas as for first order logic, plus:
—for aset {p; | i€ l}, |l| <k, one has a formula A ¢;

— for a set of variables {x; | i € I}, |I| < X and a formula ¢ one has a
formula 3(x; | i € 1.

Satisfaction relation: For first order formation rules as usual. Additionally
-MEL Npi & MEL,, piforallic]

-MEg,, x| ie€l)p & thereis {m; | i€ I} C M such that

MEL,, p(mi/xi)

1. Note that L, is classical first order logic.
2. One also allows the case x or A = co where one imposes no cardinality
restriction.
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Abstract Logics: Examples

(4) Low(Q1) := usual 1st order logic enhanced with the quantifier Q1,
interpreted as “there exist uncountably many”

(5) Luw(QF) := usual 1st order logic enhanced with the binary quantifier
QR interpreted as

MbEr,.(QR) QR xy [o(x), ¥(y)] :& card{m € M | M F L,,(QF)p(m)} <
card{m € M | M L,.(QF)p(m)}

(6) Weak second order logic £%?"¥: Same syntax as £2"? but relation
variables are only interpreted as ranging over finite subsets of M".
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Abstract Logics: Non-example

NOT an example: start from a 2nd order signature S containing

relation /function /constant symbols as before, and additionally second order
relation symbols interpreted as relations between subsets of the domain of
interpretation.

There are obvious notions of S-structure, and of isomorphism of
S-structures.

One can set up a language L(S) from such a 2nd order signature S (best
done using sorts) and define the obvious satisfaction relation between
S-structures and L(S)-sentences (example: one can define the theory of
topological spaces).

Our logics are always based on first order signatures!
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Expressivity of abstract logics

Definition: Let £, £ be abstract logics.

(1) p € L(S) and ¢ € L'(S) are logically equivalent :<
MOdL(gO) = MOdﬁ/(’l]D)

(2) L > L ("L’ has at least the same expressive power as L") :< for every
@ € L(S) there is a ¢ € L'(S) which is is logically equivalent to ¢.

We write £ ~ L (equal expressive power), if L' > £ and L' < L.
We write £/ > L if £ > £ and not £' ~ L.
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Expressivity of abstract logics

Example 1: Up to iso R is the only complete ordered field. In £2"¢ we can
hence characterize R up to isomorphism by adding to the theory of ordered
fields the sentence

VX((3xX(x) A IyVz(X(z) = z < y)) = Jy(Vz(X(z) = (z<yVz=

y) AVx(x <y — 3Jz(x < z A X(2)))))

(“every nonempty subset which is bounded above has a supremum”)

By Léwenheim-Skolem we can not characterize R up to isomorphism in first
order language. Hence £2" > L,,.,.

Example 2: In Ly, we can characterize the class of fields of characteristic
0 by adding to the theory of fields the sentence
V{i1+1=0,1414+1=0,141+1+141=0,...}

By Application 1 of the compactness theorem, there is no first order
sentence characterizing fields of characteristic 0. Hence L, > L.
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Properties of abstract logics

Definition: For an abstract logic £ we abbreviate:
e LoSko(L) (“L has the Léwenheim-Skolem property”) :< If ¢ € L(S)
has a model, then it has a model which is at most countable.

e Comp(L) ("L has the compactness property”) < If & C L(S) and
every finite subset of ® is satisfiable, then ¢ is satisfiable.
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Properties of abstract logics

Definition: For an abstract logic £ we abbreviate:
@ Bool(L) ("L contains Boolean connectives”) :<

(1) For every ¢ € L(S) there is a x € L(S) such that for all S-structures 9t
ME < not ME

(2) For every ¢, 9 € L(S) there is a x € L(S) such that for all S-structures
M MEx < MEpand MEY

Example: L, contains Boolean connectives: Take in (1) y := = and
in(2) x =pAY
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Properties of abstract logics

Definition: For an abstract logic £ we abbreviate:

@ Repl(£L) (“L admits replacement of function symbols and constants by
relation symbols”):
From a signature S we get a new signature S” by replacing n-ary
function (resp. constant) symbols with (n+ 1)-ary (resp. unary)
relation symbols.
From an S-structure 9t we get an S"-structure 9" by interpreting the
new relation symbols as the graphs of the functions ™.

Then: Repl(L) :< For every ¢ € L(S) thereis a x € L(S") such that
for all S-structures 9t we have M F p < M" E .

Example: L. admits replacement; one can take x as saying that the
new relation symbols are graphs of functions that satisfy the
corresponding statements of .
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Properties of abstract logics

Definition: For an abstract logic £ we abbreviate:

e Rel(£) ("L admits relativization”):
For an S-structure 9t and an S-closed subset A C M we get a
sub-S-structure M| 4 with underlying set A.
We also get an S U {U}-structure 9Y~A (U a new unary relation
symbol), with underlying set M, where U is interpreted as the subset A.
Then: Rel(£) :< For every ¢ € L(S) there is a ¢V € L(S U {U}) such
that M[a F p & MU~A E ¢V

Example: L, admits relativization; one can take
oV = Vx(U(x) = ¢)

Definition: An abstract logic satisfying Bool, Repl and Rel is called
regular.
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Lindstrom’s Theorem

Theorem (Lindstrom’s Theorem)

For a regular abstract logic L with L., < L one has: If L6Sko(L) and
Comp(L) then L ~ L.

Equivalently: L, is the most expressive regular abstract logic having the
Lowenheim-Skolem and Compactness properties.
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Il. The proof

following Ebbinghaus/Flum/Thomas, Introduction to mathematical logic,
Chapters XI1/XIII
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Back and forth method

Definition: (a) A partial isomorphism between S-structures 2, B is an
isomorphism between subsets of A and B respecting the
relations/functions/constants. For a partial iso p, dom(p) denotes the
domain of p, and rg(p) the range of p.

(b) An m-isomorphism is a sequence I, ..., Iy, of partial isomorphisms such
that

(i) (forth-property) For every p € I,+1 and a € A there is a g € I, with
g 2 p and a € dom(q)

(ii) (back-property) For every p € I,41 and b € B there is a g € I, with
g2 pand b e rg(q)

If there is an m-isomorphism between 2l and B, we write 2 =,,, B

Proposition: If 2l =,,, B then 2 and B satisfy exactly the same sentences
of quantifier rank < m.
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Back and forth method

Remark: The case m = w is also considered. If 24 =, B, one says that 2l
and B are finitely isomorphic.

Theorem (Fraissé): A =, B iff A and B are elementary equivalent (i.e.
satisfy exactly the same first order sentences).

(c) A p-isomorphism is a set | of partial isomorphisms such that

(i) (forth-property) For every p € [ and a € A thereisa g € | with g D p
and a € dom(q)

(ii) (back-property) For every p € | and b € B thereisa g € | with ¢ 2 p
and b € rg(q)

l.e. a p-isomorphism is an w-isomorphism in which all the sets /,, are equal.
Notation: 2 =, B

Proposition: If 2 =, B and A, B are countable, then 2 = B

Peter Arndt (Regensburg) Lindstrém's Theorem Unilog 2015 18/1



1st outline of Lindstrém’s proof: Let £ be a regular logic satisfying
L5Sko(£) and Comp(L). Assume that L, < L.

Then there exists a ¢ € L(S) not equivalent to any first order sentence.

1. Show that for all m € N there exist S-structures 2, B with A =, v,
B E, ) and A =, B.

2. Using Comp(L) we get p-isomorphic models 2, B with A F, 1),
B Ep .

3. By LoSko(L) we can assume w.l.o.g. that 2 and B are countable. Then
we have 24 =B but A F, ¢, B F, —1p. This contradicts the isomorphism
invariance of abstract logics!
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Expressing m-isomorphism type in 1st order logic

Let S consist only of relation symbols. Let L,(S) denote the set of first
order formulas containing at most the variables xp, ..., x,_1. Define

o, :={p e L(S)]| ¢ atomic} U{=p € L,(S) | ¢ atomic}. Note that ®,
is finite.

Observation: In first order logic one can define isomorphism types of finite
relational structures.

Proof: For 8 with B = {by, ..., b,_1} one can define

SOOB,bo,A..,b,_l(XO’ o Xe—1) = NMe € O | BE ¢(bo, ..., b—1)}. Now
introduce constants for the elements of B, say that these are all elements
and that ¢, (bo, ..., b—1) holds. [J

Since S is relational, from any S-structure B and by, ... b,—1 € B we get a
substructure {bg,...b,—1}. Now use this to express the m-isomorphism
type of relational structures.
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Expressing m-isomorphism type in 1st order logic

Remember:
by = N €O [ BE@(bo, ..., b1)}.

We define L, (S)-formulas ¢, (x0,...,X-—1) with the following
property:

For any S-structure 2 and ag,...,a,_1 € A we have that if

AF ©f by b,_,(a1,---,ar—1) then a; — b; defines a partial isomorphism
from {ag,...a,—1} to {bo,...b,—1} which is n times extendable.

Do this by induction on n:

OB br s = VX \{B gt 16 | D€ BIANNEX R by, 16 | b E B}

Note: For every n there exist only finitely many ¢z, (induction).

Hence ngrbt,...,brq is a first order formula.
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Expressing m-isomorphism type in 1st order logic

The first order formula

OBty = % {516 | D€ BN\ 0E b 6| bE B}

we have just defined is a formula in r variables.

Given an S-structure 2 and ag,...,a,_1 € A then

A ‘P%,bo,,..,b,,l(aov ...,ar—1) says that there exists a partial isomorphism
2 — B that sends a; to b; and is n times extendable choosing arbitrary
elements in the domain A or in the image B.

In particular @3, is a sentence and 2L F ¢, implies that there exists an
n-isomorphism 24 — 8.

Informally @7, says (about an S-structure where it is interpreted):

“This structure is n-isomorphic to B".
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Step 1. of the proof of Lindstrém’s theorem

Let £ be a regular logic satisfying L6Sko(£) and Comp(L). Assume that
Lo < L.

Then there exists a ¢ € L(S) not equivalent to any first order sentence.

By Repl(L) (allowing to replace function symbols with relation symbols) we
can assume w.l.o.g. that S contains only relation symbols. Remember that
we want to prove the following:

Proposition(Step 1): For all m € N and all finite Sp C S there exist
S-structures A, B with A F, ¢, B Fz 1 and Als, =, Bls,.

(Note that we had to pass to a finite subsignature for our m-isomorphism.

This will not be a problem in the course of the proof of Lindstrom’s
theorem)
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Proposition(Step 1): For all m € N and all finite So C S there exist
S-structures A, B with A F, ¢, B Fz —1p and A|s, =, Bs,.

Proof: Let Sp C S be finite and m € N. Define ¢ := V{(pgf‘s o | AEY}
07
(“this structure is m-isomorphic to s, for an A with 2 E ")

There is an 2 with 2 F ¢, because otherwise 1 would be logically
equivalent to a contradiction (this is what it means to have no models), and
hence a first order formula. So the above disjunction is non-empty. From
the definition of the goél"'sw@ one can also see that the disjunction is finite, so

@ is a first order sentence.

Clearly 9 — ¢ is a valid formula: If an S-structure 2 satisfies 21 E ¢, then
it occurs in the disjunction and its Sp-reduction is m-isomorphic to itself.

On the other hand ¢ — 1 (i.e. = V1) is not a valid formula, otherwise 1
would be equivalent to the first order formula ¢. Hence its negation o A =)
is satisfiable, i.e. there exists an S-structure B such that 8 £ ¢ and

B E .

The first part, B & ¢, means exactly that this B|s, is m-isomorphic to 2|s,
for an 2l satisfying . O
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