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I. The statement

Theorem (Lindström)

There is no logic that is more expressive than classical first order logic and
that satisfies both the Compactness and the Löwenheim-Skolem properties.

From: Per Lindström, On extensions of elementary logic, Theoria 35, p.1-11,
1969
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I. The statement

Theorem (Lindström, 1969)

There is no logic that is more expressive than classical first order logic and
that satisfies both the Compactness and the Löwenheim-Skolem properties.

Plan:
I. The statement (abstract logics, expressivity,
compactness and Löwenheim-Skolem properties)

II. The proof (back-and-forth method, theorem of
Fräıssé, Lindström’s proof)

III. Other variants (different characterizations,
topological reformulation, results for fragments and
extensions of first order logic/modal logics)
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Signatures, S-structures

Definition:

A signature S is a set of relation symbols, function symbols (each with
arities) and constant symbols. S = {R, . . . , f , . . . , c, . . .}

An S-structure is a set M together with interpretations of the
relation/function/constant symbols as actual
relations/functions/constants

Notation for the interpretations of symbols in an S-structure M:
RM, f M, cM...

Example: Let S = {<, s, 0} be a signature with a binary relation, a unary
function symbol and a constant symbol. A well-known S-structure is
Nat := (N, <, succ(−), 0).
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Reducts and isomorphims of S-structures

Definition: Let S0 ⊆ S1, and M an S1-structure. Then M|S0 denotes the
reduct of M to S0, i.e. the S0-structure obtained by forgetting the
interpretations of symbols from S1 \ S0.

Definition: An isomorphism of S-structures M = (M,RM, f M, cM, ...),
N = (N,RN, f N, cN, ...) is a bijection h : M ∼= N such that

(1) RN(h(m1), . . . , h(mk)) iff RM(m1, . . . ,mk) for each
relation symbol R

(2) h(f M(m1, . . . ,mk)) = f N(h(m1), . . . , h(mk)) for
each function symbol f

(3) h(cM) = cN for each constant symbol c
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1st order language

Given a signature S , we can build S-terms from variables, constant symbols
and function symbols.

Atomic first order S-formulas: t1 = t2 or R(t1, . . . , tn) for terms t1, . . . , tn.
General first order S-formulas: Atomic or ¬ϕ,ϕ ∧ ψ,∃xϕ for previously
built formulas ϕ,ψ

A sentence is a formula with no free variables.

 L(S) := {S-sentences} — the set of all first order S-sentences.
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1st order satisfaction relation

For M an S-structure and ϕ ∈ L(S) one defines the satisfaction relation:

Atomic sentences: M � R(t1, . . . , tn) :⇔ RM(tM1 , . . . , t
M
n ) and

M � t1 = t2 :⇔ tM1 = tM2
M � ¬ϕ :⇔ not M � ϕ

M � ϕ ∧ ψ :⇔M � ϕ and M � ψ

M � ∃xϕ(x) :⇔ there exists m ∈ M with M � ϕ(m)

For Φ ⊆ L(S) write M � Φ iff M � ϕ for all ϕ ∈ Φ. One then says that M
is a model of Φ. If Φ has a model, it is called satisfiable.

Two S-structures M, N are called elementary equivalent if
∀ϕ ∈ L(S) : M � ϕ⇔ N � ϕ
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Properties of the 1st order satisfaction relation

Theorem (Downward Löwenheim-Skolem, Löwenheim 1915/Skolem
1920)

If ϕ ∈ L(S) has a model, then it has a countable model.

Reason: One can take a syntactic model. Applications: Smaller models are
better to handle...

See the course by Nate Ackerman (LOW), next in this room

(Stronger version: Let S be a signature, Φ ⊆ L(S) and κ > |S | an infinite
cardinal. If Φ has an infinite model M, then M has a submodel of
cardinality κ)
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Properties of the 1st order satisfaction relation

Theorem (Compactness theorem, Gödel 1930/Maltsev 1936)

Φ ⊆ L(S) is satisfiable if and only if every finite subset of Φ is satisfiable.

Application 1: Let S := {+, ·,−, 0, 1} and ϕ ∈ L(S). If ϕ is satisfied in
every field of characteristic zero, then there exists a p > 0 such that ϕ is
satisfied in every field of characteristic > p.

Proof: {field axioms} ∪ {¬(1 + 1 = 0),¬(1 + 1 + 1 = 0),¬(1 + 1 + 1 + 1 =
0), . . .} ∪ {¬ϕ} is not satisfiable. Hence a finite subset, which w.l.o.g
contains {field axioms} ∪ {¬ϕ}, is not satisfiable. Hence this finite subset
with ¬ϕ removed (which is satisfiable) implies ϕ. �
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Properties of the 1st order satisfaction relation

Theorem (Compactness theorem, Gödel 1930/Maltsev 1936)

Φ ⊆ L(S) is satisfiable if and only if every finite subset of Φ is satisfiable.

Application 1: Let S := {+, ·,−, 0, 1} and ϕ ∈ L(S). If ϕ is satisfied in
every field of characteristic zero, then there exists a p > 0 such that ϕ is
satisfied in every field of characteristic > p.

Application 2: Upward Löwenheim-Skolem: If Φ has an infinite model, then
it has models of arbitrary cardinality. Proof: Add constant symbols and the
axioms ¬(c = c ′)...�

See the course by David Pierce (PAC), 18h, Room I
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Abstract Logics

Definition: An abstract logic L consists of a function L : signatures → sets
(elements of L(S) are called the S-sentences of L) ...
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Abstract Logics

Definition: An abstract logic L consists of a function L : signatures → sets
and a binary relation �L betwen S-structures and elements of L(S) (written
M �L ϕ), such that

(a) If S0 ⊆ S1 then L(S0) ⊆ L(S1)

(b) If M �L ϕ and M ∼= N then N �L ϕ

(c) If S0 ⊆ S1, ϕ ∈ L(S0) and M is an S1-structure,
then M �L ϕ iff M|S0 �L ϕ

For ϕ ∈ L(S) we write ModL(ϕ) := {M ∈ S − structures | M � ϕ}
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Abstract Logics: Examples

(1) First order logic with L(S) and � as defined before.
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Abstract Logics: Examples

(2) The second order logic L2nd :

For L2nd(S)-formulas we adopt the generation rules of first order
S-formulas. Additionally we have relation variables of all arities and declare:
(a) If X is an n-ary relation variable and t1, . . . , tn are terms, then

X (t1, . . . , tn) is an S-formula
(b) If ϕ is an S-formula, and X is a relation variable, then ∃Xϕ is

an S-formula.
(c) An L2nd(S)-sentence is a L2nd(S)-formula without free variables.

Satisfaction relation: For first order formation rules as usual. Additionally
declare for an n-ary relation variable:
M �L2nd ∃Xϕ :⇔ there is an R ⊆ Mn such that M �L2nd ϕ(R/X )
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Abstract Logics: Examples

(3) The logics Lκλ:

For cardinals κ ≥ λ define the Lκλ(S)-formulas as for first order logic, plus:
– for a set {ϕi | i ∈ I}, |I | ≤ κ, one has a formula

∧
ϕi

– for a set of variables {xi | i ∈ I}, |I | ≤ λ and a formula ϕ one has a
formula ∃(xi | i ∈ I )ϕ.

Satisfaction relation: For first order formation rules as usual. Additionally
– M �Lκλ

∧
ϕi :⇔M �Lκλ ϕi for all i ∈ I

– M �Lκλ ∃(xi | i ∈ I )ϕ :⇔ there is {mi | i ∈ I} ⊆ M such that
M �Lκλ ϕ(mi/xi )

1. Note that Lωω is classical first order logic.
2. One also allows the case κ or λ =∞ where one imposes no cardinality
restriction.
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Abstract Logics: Examples

(4) Lωω(Q1) := usual 1st order logic enhanced with the quantifier Q1,
interpreted as “there exist uncountably many”

(5) Lωω(QR) := usual 1st order logic enhanced with the binary quantifier
QR , interpreted as
M `Lωω(QR) QRxy [ϕ(x), ψ(y)] :⇔ card{m ∈ M |M ` Lωω(QR)ϕ(m)} <
card{m ∈ M |M ` Lωω(QR)ψ(m)}

(6) Weak second order logic Lw2nd : Same syntax as L2nd but relation
variables are only interpreted as ranging over finite subsets of Mn.
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Abstract Logics: Non-example

NOT an example: start from a 2nd order signature S containing
relation/function/constant symbols as before, and additionally second order
relation symbols interpreted as relations between subsets of the domain of
interpretation.

There are obvious notions of S-structure, and of isomorphism of
S-structures.

One can set up a language L(S) from such a 2nd order signature S (best
done using sorts) and define the obvious satisfaction relation between
S-structures and L(S)-sentences (example: one can define the theory of
topological spaces).

Our logics always are based on first order signatures!
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Expressivity of abstract logics

Definition: Let L, L′ be abstract logics. We say that L′ has at least the
same expressive power as L, written L′ ≥ L, if for every S and every
ϕ ∈ L(S) there is a ψ ∈ L′(S) with ModL(ϕ) = ModL′(ψ).

We write L′ ∼ L (equal expressive power), if L′ ≥ L and L′ ≤ L. We write
L′ > L if L′ ≥ L and not L′ ∼ L.

Example: In L2nd we can characterize R up to isomorphism by adding to
the theory of ordered fields the sentence
∀X ((∃xX (x) ∧ ∃y∀z(X (z)→ z < y))→ ∃y(∀z(X (z)→ (z < y ∨ z =
y)) ∧ ∀x(x < y → ∃z(x < z ∧ X (z)))))
(“every nonempty subset which is bounded above has a supremum”)

By Löwenheim-Skolem we can not characterize R up to isomorphism in first
order language. Hence L2nd > Lωω.
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Expressivity of abstract logics

Definition: Let L, L′ be abstract logics. We say that L′ has at least the
same expressive power as L, written L′ ≥ L, if for every S and every
ϕ ∈ L(S) there is a ψ ∈ L′(S) with ModL(ϕ) = ModL′(ψ).

We write L′ ∼ L (equal expressive power), if L′ ≥ L and L′ ≤ L. We write
L′ > L if L′ ≥ L and not L′ ∼ L.

Another Example: In Lω1ω we can characterize the class of fields of
characteristic 0 by adding to the theory of fields the sentence∨
{1 + 1 = 0, 1 + 1 + 1 = 0, 1 + 1 + 1 + 1 + 1 = 0, . . .}

By Application 1 of the compactness theorem, there is no first order
sentence characterizing fields of characteristic 0. Hence Lω1ω > Lωω.
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Properties of abstract logics

Definition: For an abstract logic L we abbreviate:

LöSko(L) (“L has the Löwenheim-Skolem property”) :⇔ If ϕ ∈ L(S)
has a model, then it has a model which is at most countable.

Comp(L) (“L has the compactness property”) :⇔ If Φ ⊆ L(S) and
every finite subset of Φ is satisfiable, then Φ is satisfiable.
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Properties of abstract logics

Definition: For an abstract logic L we abbreviate:

Bool(L) (“L contains Boolean connectives”) :⇔
(1) For every ϕ ∈ L(S) there is a χ ∈ L(S) such that for all S-structures M:

M � ϕ⇔ not M � χ
(2) For every ϕ,ψ ∈ L(S) there is a χ ∈ L(S) such that for all S-structures

M: M � χ⇔M � ϕ and M � ψ
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Properties of abstract logics

Definition: For an abstract logic L we abbreviate:

Repl(L) (“L admits replacement of function symbols and constants by
relation symbols”):
From a signature S we get a new signature S r by replacing n-ary
function (resp. constant) symbols with (n + 1)-ary (resp. unary)
relation symbols.
From an S-structure M we get an S r -structure Mr by interpreting the
new relation symbols as the graphs of the functions f M.

Then: Repl(L) :⇔ For every ϕ ∈ L(S) there is a χ ∈ L(S r ) such that
for all S-structures M we have M � ϕ⇔Mr � χ.
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Properties of abstract logics

Definition: For an abstract logic L we abbreviate:

Rel(L) (“L admits relativization”):
For an S-structure M and an S-closed subset A ⊆ M we get a
sub-S-structure M|A with underlying set A.
We also get an S ∪ {U}-structure MU A (U a new unary relation
symbol), with underlying set M, where U is interpreted as the subset A.
Then: Rel(L) :⇔ For every ϕ ∈ L(S) there is a χ ∈ L(S ∪ {U}) such
that M|A � ϕ⇔MU A � χ

Definition: An abstract logic satisfying Bool, Repl and Rel is called regular.
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Lindström’s Theorem

Theorem (Lindström’s Theorem)

For a regular abstract logic L with Lωω ≤ L one has: If LöSko(L) and
Comp(L) then L ∼ Lωω.

Equivalently: Lωω is the most expressive regular abstract logic having the
Löwenheim-Skolem and Compactness properties.

(The first form can be read as a no-go theorem, the second as a
characterization of Lωω)
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Lindström’s Theorem

Idea of the proof: Assume that Lωω < L. Then there exist S and a
ψ ∈ L(S) which is not equivalent to any first order sentence, i.e.
@ϕ ∈ Lωω(S) s.t. ModLωω(ϕ) = ModL(ψ).
We get S-structures M, N with M �L ψ, N �L ¬ψ. By LöSko(L) both M
and N are L-elementary equivalent to countable structures.
From the fact that M and N are indistinguishable by first order formulas we
get M ∼=m N (:=there is a set of partial isomorphisms which are extendable
m times with any choice of argument/value) – here we use Lωω ≤ L and
that L is regular to handle first order formulas inside L.
From compactness we get M ∼=m N⇒M ∼=p N (:= there is a set of
partial isomorphisms extendable countably many times). For countable
structures M ∼=p N implies M ∼= N.
But isomorphic structures behave identically for any abstract logic -
contradiction to M �L ψ, N �L ¬ψ.
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