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|. The statement

Theorem (Lindstrom)

There is no logic that is more expressive than classical first order logic and
that satisfies both the Compactness and the Léwenheim-Skolem properties.

From: Per Lindstrém, On extensions of elementary logic, Theoria 35, p.1-11,
1969
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|. The statement

Theorem (Lindstrém, 1969)

There is no logic that is more expressive than classical first order logic and
that satisfies both the Compactness and the Léwenheim-Skolem properties.

Plan:
o |. The statement (abstract logics, expressivity,

compactness and Lowenheim-Skolem properties)

@ Il. The proof (back-and-forth method, theorem of
Fraissé, Lindstrom's proof)

o Ill. Other variants (different characterizations,
topological reformulation, results for fragments and
extensions of first order logic/modal logics)
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Signatures, S-structures

Definition:
e A signature S is a set of relation symbols, function symbols (each with
arities) and constant symbols. S ={R,...,f,...,¢c,...}

@ An S-structure is a set M together with interpretations of the
relation /function/constant symbols as actual
relations/functions/constants

Notation for the interpretations of symbols in an S-structure It:
R™ M M

Example: Let S = {<,s,0} be a signature with a binary relation, a unary
function symbol and a constant symbol. A well-known S-structure is

Nat := (N, <, succ(—),0).
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Reducts and isomorphims of S-structures

Definition: Let Sp C Sy, and 9t an S;-structure. Then 9M1|s, denotes the
reduct of 9 to Sp, i.e. the Sp-structure obtained by forgetting the
interpretations of symbols from 51 \ So.

Definition: An isomorphism of S-structures 9t = (M, R™ ™ ™ ),
N =(N,R™, 1 ™, ..) is a bijection h: M = N such that

(1) R™h(my), ..., h(my)) iff R®(my, ..., my) for each
relation symbol R

(2) h(F™(my,...,my)) = FY(h(my),..., h(m)) for
each function symbol f

(3) h(c™) = c™ for each constant symbol ¢
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1st order language

Given a signature S, we can build S-terms from variables, constant symbols
and function symbols.

Atomic first order S-formulas: t; = tp or R(t1,...,t,) for terms t1,..., t,.
General first order S-formulas: Atomic or —p, ¢ A 1, Ix¢ for previously
built formulas ¢, ¥

A sentence is a formula with no free variables.

~» L(S) := {S-sentences}  — the set of all first order S-sentences.
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1st order satisfaction relation

For 9 an S-structure and ¢ € L(S) one defines the satisfaction relation:
o Atomic sentences: M E R(ty,...,t,) = RT(t", ..., t7) and
MEt; =t & ] =t
o ME —p: = not ME
o MEQAY & ME pand ME b
o M F Ixp(x) :< there exists m € M with MM E p(m)

For @ C L(S) write 9 = & iff M E ¢ for all ¢ € ®. One then says that M
is a model of ®. If ® has a model, it is called satisfiable.

Two S-structures 9, D are called elementary equivalent if
VoeL(S): MEp o NEp
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Properties of the 1st order satisfaction relation

Theorem (Downward Léwenheim-Skolem, Léwenheim 1915/Skolem

1920)
If ¢ € L(S) has a model, then it has a countable model.

Reason: One can take a syntactic model. Applications: Smaller models are
better to handle...

See the course by Nate Ackerman (LOW), next in this room

(Stronger version: Let S be a signature, ® C L(S) and x > |S| an infinite
cardinal. If ® has an infinite model 91, then 9t has a submodel of
cardinality k)
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Properties of the 1st order satisfaction relation

Theorem (Compactness theorem, Godel 1930/Maltsev 1936)

& C L(S) is satisfiable if and only if every finite subset of ® is satisfiable.

Application 1: Let S := {+,-,—,0,1} and ¢ € L(S). If ¢ is satisfied in
every field of characteristic zero, then there exists a p > 0 such that ¢ is
satisfied in every field of characteristic > p.

Proof: {field axioms}U{~(1+1=0),~(1+1+1=0),~(1+1+1+1=
0),...} U{—¢p} is not satisfiable. Hence a finite subset, which w.l.0.g
contains {field axioms} U {—¢}, is not satisfiable. Hence this finite subset
with —¢ removed (which is satisfiable) implies . [
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Properties of the 1st order satisfaction relation

Theorem (Compactness theorem, Godel 1930/Maltsev 1936)

& C L(S) is satisfiable if and only if every finite subset of ® is satisfiable.

Application 1: Let S := {+,-,—,0,1} and ¢ € L(S). If ¢ is satisfied in
every field of characteristic zero, then there exists a p > 0 such that ¢ is
satisfied in every field of characteristic > p.

Application 2: Upward Léwenheim-Skolem: If ® has an infinite model, then
it has models of arbitrary cardinality. Proof: Add constant symbols and the
axioms —(c = ¢’)...00

See the course by David Pierce (PAC), 18h, Room |
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Abstract Logics

Definition: An abstract logic L consists of a function L: signatures — sets
(elements of L(S) are called the S-sentences of L) ...
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Abstract Logics

Definition: An abstract logic L consists of a function L: signatures — sets
and a binary relation =, betwen S-structures and elements of L(S) (written

M Er ¢), such that
(a) If So C Sy then L(So) C L(S1)
(b) If M EL p and M = N then Nk,
(

c) If So C S1, v € L(Sp) and Mt is an Sy-structure,
then M E, ¢ iff M’so Frop

For ¢ € L(S) we write Mod(y) := {9 € S — structures | M F ¢}

Unilog 2015
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Abstract Logics: Examples

(1) First order logic with L(S) and F as defined before.
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Abstract Logics: Examples

(2) The second order logic £2:
For L274(S)-formulas we adopt the generation rules of first order
S-formulas. Additionally we have relation variables of all arities and declare:
(a) If X is an n-ary relation variable and t1,..., t, are terms, then
X(t1,...,tn) is an S-formula
(b) If ¢ is an S-formula, and X is a relation variable, then 3X¢ is
an S-formula.
(c) An L279(S)-sentence is a L?"¢(S)-formula without free variables.

Satisfaction relation: For first order formation rules as usual. Additionally
declare for an n-ary relation variable:
M p2nd X & there is an R € M" such that 9 E 2 o(R/X)
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Abstract Logics: Examples

(3) The logics L;x:

For cardinals k > X define the L,;5(S)-formulas as for first order logic, plus:
—for aset {p; | i€ l}, |l| <k, one has a formula A ¢;

— for a set of variables {x; | i € I}, |I| < X and a formula ¢ one has a
formula 3(x; | i € 1.

Satisfaction relation: For first order formation rules as usual. Additionally
-MEL Npi & MEL,, piforallic]

-MEg,, x| ie€l)p & thereis {m; | i€ I} C M such that

MEL,, p(mi/xi)

1. Note that L, is classical first order logic.
2. One also allows the case x or A = co where one imposes no cardinality
restriction.
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Abstract Logics: Examples

(4) Low(Q1) := usual 1st order logic enhanced with the quantifier Q1,
interpreted as “there exist uncountably many”

(5) Luw(QF) := usual 1st order logic enhanced with the binary quantifier
QR interpreted as

MbEr,.(QR) QR xy [o(x), ¥(y)] :& card{m € M | M F L,,(QF)p(m)} <
card{m € M | M L,.(QF)p(m)}

(6) Weak second order logic £%?"¥: Same syntax as £2"? but relation
variables are only interpreted as ranging over finite subsets of M".
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Abstract Logics: Non-example

NOT an example: start from a 2nd order signature S containing

relation /function /constant symbols as before, and additionally second order
relation symbols interpreted as relations between subsets of the domain of
interpretation.

There are obvious notions of S-structure, and of isomorphism of
S-structures.

One can set up a language L(S) from such a 2nd order signature S (best
done using sorts) and define the obvious satisfaction relation between
S-structures and L(S)-sentences (example: one can define the theory of
topological spaces).

Our logics always are based on first order signatures!
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Expressivity of abstract logics

Definition: Let £, L' be abstract logics. We say that £’ has at least the
same expressive power as L, written £’ > L, if for every S and every

@ € L(S) there is a ¢ € L'(S) with Modz(¢) = Modz/(v)).

We write £’ ~ L (equal expressive power), if £ > £ and £’ < £. We write
L'>Lif L' > L and not L ~ L.

Example: In £2"? we can characterize R up to isomorphism by adding to
the theory of ordered fields the sentence

VX((3xX(x) A3yVz(X(z) = z < y)) = Jy(Vz(X(z) = (z<yVz=
yY)) AVx(x <y — Jz(x < z A X(2)))))

(“every nonempty subset which is bounded above has a supremum”)

By Léwenheim-Skolem we can not characterize R up to isomorphism in first
order language. Hence £2" > L,,.,.
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Expressivity of abstract logics

Definition: Let £, L' be abstract logics. We say that £’ has at least the
same expressive power as L, written £’ > L, if for every S and every
@ € L(S) there is a ¢ € L'(S) with Modz(¢) = Modz/(v)).

We write £’ ~ L (equal expressive power), if £ > £ and £’ < £. We write
L'>Lif L' > L and not L ~ L.

Another Example: In L, we can characterize the class of fields of
characteristic 0 by adding to the theory of fields the sentence
V{i1+1=0,1414+1=0,1414+1+141=0,...}

By Application 1 of the compactness theorem, there is no first order
sentence characterizing fields of characteristic 0. Hence L, > L.
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Properties of abstract logics

Definition: For an abstract logic £ we abbreviate:
e LoSko(L) (“L has the Léwenheim-Skolem property”) :< If ¢ € L(S)
has a model, then it has a model which is at most countable.

e Comp(L) ("L has the compactness property”) < If & C L(S) and
every finite subset of ® is satisfiable, then ¢ is satisfiable.
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Properties of abstract logics

Definition: For an abstract logic £ we abbreviate:
@ Bool(L) ("L contains Boolean connectives”) :<
(1) For every ¢ € L(S) there is a x € L(S) such that for all S-structures 9t

ME < not ME
(2) For every ¢, € L(S) there is a x € L(S) such that for all S-structures

M MEx < MEpand MEY
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Properties of abstract logics

Definition: For an abstract logic £ we abbreviate:

@ Repl(£) ("L admits replacement of function symbols and constants by
relation symbols”):
From a signature S we get a new signature S” by replacing n-ary
function (resp. constant) symbols with (n+ 1)-ary (resp. unary)
relation symbols.
From an S-structure 9t we get an S"-structure 91" by interpreting the
new relation symbols as the graphs of the functions ™.

Then: Repl(L) < For every ¢ € L(S) there is a x € L(S") such that
for all S-structures 9t we have M F o < M" E .
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Properties of abstract logics

Definition: For an abstract logic £ we abbreviate:
e Rel(£) ("L admits relativization”):

For an S-structure 2t and an S-closed subset A C M we get a
sub-S-structure M| 4 with underlying set A.
We also get an S U {U}-structure 9tY~A (U a new unary relation
symbol), with underlying set M, where U is interpreted as the subset A.
Then: Rel(L) :< For every ¢ € L(S) thereis a x € L(SU{U}) such
that Mg F p & MU~AE x

Definition: An abstract logic satisfying Bool, Repl and Rel is called regular.

Peter Arndt (Regensburg) Lindstrém's Theorem Unilog 2015 23 /1



Lindstrom’s Theorem

Theorem (Lindstrom’s Theorem)

For a regular abstract logic L with L., < L one has: If LiSko(L) and
Comp(L) then L ~ L.

Equivalently: L, is the most expressive regular abstract logic having the
Lowenheim-Skolem and Compactness properties.

(The first form can be read as a no-go theorem, the second as a
characterization of L)
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Lindstrom’s Theorem

Idea of the proof: Assume that L, < £. Then there exist S and a

¥ € L(S) which is not equivalent to any first order sentence, i.e.

B € Luw(S) st. Modz,,(9) = Mod(4)).

We get S-structures 0, M with M =, ¢, N, —p. By LoSko(L) both I
and 91 are L-elementary equivalent to countable structures.

From the fact that 9t and 91 are indistinguishable by first order formulas we
get M =, N (:=there is a set of partial isomorphisms which are extendable
m times with any choice of argument/value) — here we use L, < £ and
that £ is regular to handle first order formulas inside L.

From compactness we get 9t =, N = M =, N (:= there is a set of
partial isomorphisms extendable countably many times). For countable
structures I =, N implies N = N

But isomorphic structures behave identically for any abstract logic -
contradiction to M E, ¢, ME, ).
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