Lindström's Theorem

Peter Arndt

Universität Regensburg

Unilog 2015

Slides available at: http://homepages-nw.uni-regensburg.de/~arp13290/

I. The statement

Theorem (Lindström)

There is no logic that is more expressive than classical first order logic and that satisfies both the Compactness and the Löwenheim-Skolem properties.

From: Per Lindström, On extensions of elementary logic, Theoria 35, p.1-11, 1969

I. The statement

Theorem (Lindström, 1969)

There is no logic that is more expressive than classical first order logic and that satisfies both the Compactness and the Löwenheim-Skolem properties.

Plan:

- I. The statement (abstract logics, expressivity, compactness and Löwenheim-Skolem properties)
- II. The proof (back-and-forth method, theorem of Fraïssé, Lindström's proof)
- III. Other variants (different characterizations, topological reformulation, results for fragments and extensions of first order logic/modal logics)

Signatures, S-structures

Definition:

- A signature S is a set of relation symbols, function symbols (each with arities) and constant symbols. $S = \{R, \dots, f, \dots, c, \dots\}$
- An S-structure is a set M together with interpretations of the relation/function/constant symbols as actual relations/functions/constants

Notation for the interpretations of symbols in an S-structure \mathfrak{M} : $R^{\mathfrak{M}}$, $f^{\mathfrak{M}}$, $c^{\mathfrak{M}}$...

Example: Let $S = \{<, s, 0\}$ be a signature with a binary relation, a unary function symbol and a constant symbol. A well-known S-structure is $\mathfrak{Nat} := (\mathbb{N}, <, succ(-), 0)$.

Reducts and isomorphims of S-structures

Definition: Let $S_0 \subseteq S_1$, and \mathfrak{M} an S_1 -structure. Then $\mathfrak{M}|_{S_0}$ denotes the reduct of \mathfrak{M} to S_0 , i.e. the S_0 -structure obtained by forgetting the interpretations of symbols from $S_1 \setminus S_0$.

Definition: An isomorphism of S-structures $\mathfrak{M} = (M, R^{\mathfrak{M}}, f^{\mathfrak{M}}, c^{\mathfrak{M}}, ...),$ $\mathfrak{N} = (N, R^{\mathfrak{N}}, f^{\mathfrak{N}}, c^{\mathfrak{N}}, ...)$ is a bijection $h: M \cong N$ such that

- (1) $R^{\mathfrak{N}}(h(m_1), \ldots, h(m_k))$ iff $R^{\mathfrak{M}}(m_1, \ldots, m_k)$ for each relation symbol R
- (2) $h(f^{\mathfrak{M}}(m_1,\ldots,m_k)) = f^{\mathfrak{N}}(h(m_1),\ldots,h(m_k))$ for each function symbol f
- (3) $h(c^{\mathfrak{M}}) = c^{\mathfrak{N}}$ for each constant symbol c

1st order language

Given a signature S, we can build S-terms from variables, constant symbols and function symbols.

Atomic first order S-formulas: $t_1=t_2$ or $R(t_1,\ldots,t_n)$ for terms t_1,\ldots,t_n . General first order S-formulas: Atomic or $\neg\varphi,\varphi\wedge\psi,\exists x\varphi$ for previously built formulas φ,ψ

A sentence is a formula with no free variables.

$$\rightarrow$$
 $L(S) := \{S\text{-sentences}\}$ — the set of all first order S -sentences.

1st order satisfaction relation

For $\mathfrak M$ an S-structure and $\varphi \in L(S)$ one defines the satisfaction relation:

- Atomic sentences: $\mathfrak{M} \models R(t_1, \ldots, t_n) :\Leftrightarrow R^{\mathfrak{M}}(t_1^{\mathfrak{M}}, \ldots, t_n^{\mathfrak{M}})$ and $\mathfrak{M} \models t_1 = t_2 :\Leftrightarrow t_1^{\mathfrak{M}} = t_2^{\mathfrak{M}}$
- $\mathfrak{M} \vDash \neg \varphi : \Leftrightarrow \operatorname{not} \mathfrak{M} \vDash \varphi$
- $\mathfrak{M} \vDash \varphi \land \psi : \Leftrightarrow \mathfrak{M} \vDash \varphi$ and $\mathfrak{M} \vDash \psi$
- $\mathfrak{M} \models \exists x \varphi(x) : \Leftrightarrow$ there exists $m \in M$ with $\mathfrak{M} \models \varphi(m)$

For $\Phi \subseteq L(S)$ write $\mathfrak{M} \models \Phi$ iff $\mathfrak{M} \models \varphi$ for all $\varphi \in \Phi$. One then says that \mathfrak{M} is a model of Φ . If Φ has a model, it is called *satisfiable*.

Two S-structures \mathfrak{M} , \mathfrak{N} are called *elementary equivalent* if $\forall \varphi \in L(S): \ \mathfrak{M} \vDash \varphi \Leftrightarrow \mathfrak{N} \vDash \varphi$

Properties of the 1st order satisfaction relation

Theorem (Downward Löwenheim-Skolem, Löwenheim 1915/Skolem 1920)

If $\varphi \in L(S)$ has a model, then it has a countable model.

Reason: One can take a syntactic model. Applications: Smaller models are better to handle...

See the course by Nate Ackerman (LOW), next in this room

(Stronger version: Let S be a signature, $\Phi \subseteq L(S)$ and $\kappa > |S|$ an infinite cardinal. If Φ has an infinite model \mathfrak{M} , then \mathfrak{M} has a submodel of cardinality κ)

Properties of the 1st order satisfaction relation

Theorem (Compactness theorem, Gödel 1930/Maltsev 1936)

 $\Phi \subseteq L(S)$ is satisfiable if and only if every finite subset of Φ is satisfiable.

Application 1: Let $S := \{+, \cdot, -, 0, 1\}$ and $\varphi \in L(S)$. If φ is satisfied in every field of characteristic zero, then there exists a p > 0 such that φ is satisfied in every field of characteristic > p.

Proof: $\{\mathit{field\ axioms}\} \cup \{\neg(1+1=0), \neg(1+1+1=0), \neg(1+1+1+1=0), \dots\} \cup \{\neg\varphi\}$ is not satisfiable. Hence a finite subset, which w.l.o.g contains $\{\mathit{field\ axioms}\} \cup \{\neg\varphi\}$, is not satisfiable. Hence this finite subset with $\neg\varphi$ removed (which $\mathit{is}\ satisfiable$) implies φ . \square

Properties of the 1st order satisfaction relation

Theorem (Compactness theorem, Gödel 1930/Maltsev 1936)

 $\Phi \subseteq L(S)$ is satisfiable if and only if every finite subset of Φ is satisfiable.

Application 1: Let $S := \{+, \cdot, -, 0, 1\}$ and $\varphi \in L(S)$. If φ is satisfied in every field of characteristic zero, then there exists a p > 0 such that φ is satisfied in every field of characteristic > p.

Application 2: Upward Löwenheim-Skolem: If Φ has an infinite model, then it has models of arbitrary cardinality. Proof: Add constant symbols and the axioms $\neg(c=c')...\square$

See the course by David Pierce (PAC), 18h, Room I

Abstract Logics

Definition: An abstract logic $\mathcal L$ consists of a function L: signatures \to sets (elements of L(S) are called the S-sentences of $\mathcal L$) ...

Abstract Logics

Definition: An abstract logic $\mathcal L$ consists of a function L: signatures \to sets and a binary relation $\vDash_{\mathcal L}$ between S-structures and elements of L(S) (written $\mathcal M \vDash_{\mathcal L} \varphi$), such that

- (a) If $S_0 \subseteq S_1$ then $L(S_0) \subseteq L(S_1)$
- (b) If $\mathfrak{M} \vDash_{\mathcal{L}} \varphi$ and $\mathfrak{M} \cong \mathfrak{N}$ then $\mathfrak{N} \vDash_{\mathcal{L}} \varphi$
- (c) If $S_0 \subseteq S_1$, $\varphi \in L(S_0)$ and \mathfrak{M} is an S_1 -structure, then $\mathcal{M} \vDash_{\mathcal{L}} \varphi$ iff $\mathcal{M}|_{S_0} \vDash_{\mathcal{L}} \varphi$

For $\varphi \in L(S)$ we write $\operatorname{Mod}_{\mathcal{L}}(\varphi) := \{ \mathfrak{M} \in S - \text{structures} \mid \mathfrak{M} \vDash \varphi \}$

(1) First order logic with L(S) and \vdash as defined before.

- (2) The second order logic \mathcal{L}^{2nd} :
- For $L^{2nd}(S)$ -formulas we adopt the generation rules of first order S-formulas. Additionally we have *relation variables* of all arities and declare:
- (a) If X is an n-ary relation variable and t_1,\ldots,t_n are terms, then $X(t_1,\ldots,t_n)$ is an S-formula
- (b) If φ is an S-formula, and X is a relation variable, then $\exists X \varphi$ is an S-formula.
- (c) An $L^{2nd}(S)$ -sentence is a $L^{2nd}(S)$ -formula without free variables.

Satisfaction relation: For first order formation rules as usual. Additionally declare for an n-ary relation variable:

 $\mathfrak{M} \vDash_{\mathcal{L}^{2nd}} \exists X \varphi :\Leftrightarrow \text{there is an } R \subseteq M^n \text{ such that } \mathfrak{M} \vDash_{\mathcal{L}^{2nd}} \varphi(R/X)$

(3) The logics $\mathcal{L}_{\kappa\lambda}$:

For cardinals $\kappa \geq \lambda$ define the $L_{\kappa\lambda}(S)$ -formulas as for first order logic, plus:

- for a set $\{\varphi_i \mid i \in I\}$, $|I| \leq \kappa$, one has a formula $\bigwedge \varphi_i$
- for a set of variables $\{x_i \mid i \in I\}$, $|I| \leq \lambda$ and a formula φ one has a formula $\exists (x_i \mid i \in I)\varphi$.

Satisfaction relation: For first order formation rules as usual. Additionally

- $-\mathfrak{M} \vDash_{\mathcal{L}_{\kappa\lambda}} \bigwedge \varphi_i :\Leftrightarrow \mathfrak{M} \vDash_{\mathcal{L}_{\kappa\lambda}} \varphi_i \text{ for all } i \in I$
- $-\mathfrak{M} \vDash_{\mathcal{L}_{\kappa\lambda}} \exists (x_i \mid i \in I)\varphi : \Leftrightarrow \text{there is } \{m_i \mid i \in I\} \subseteq M \text{ such that } \mathfrak{M} \vDash_{\mathcal{L}_{\kappa\lambda}} \varphi(m_i/x_i)$
- 1. Note that $\mathcal{L}_{\omega\omega}$ is classical first order logic.
- 2. One also allows the case κ or $\lambda=\infty$ where one imposes no cardinality restriction.

- (4) $\mathcal{L}_{\omega\omega}(Q_1):=$ usual 1st order logic enhanced with the quantifier Q_1 , interpreted as "there exist uncountably many"
- (5) $\mathcal{L}_{\omega\omega}(Q^R)$:= usual 1st order logic enhanced with the *binary* quantifier Q^R , interpreted as

$$\mathfrak{M} \vdash_{\mathcal{L}_{\omega\omega}(Q^R)} Q^R xy \left[\varphi(x), \psi(y) \right] : \Leftrightarrow \operatorname{card} \{ m \in M \mid \mathfrak{M} \vdash \mathcal{L}_{\omega\omega}(Q^R) \varphi(m) \} < \operatorname{card} \{ m \in M \mid \mathfrak{M} \vdash \mathcal{L}_{\omega\omega}(Q^R) \psi(m) \}$$

(6) Weak second order logic $\mathcal{L}^{w^{2nd}}$: Same syntax as \mathcal{L}^{2nd} but relation variables are only interpreted as ranging over *finite* subsets of M^n .

Abstract Logics: Non-example

NOT an example: start from a 2nd order signature $\bf S$ containing relation/function/constant symbols as before, and additionally second order relation symbols interpreted as relations between subsets of the domain of interpretation.

There are obvious notions of **S**-structure, and of isomorphism of **S**-structures.

One can set up a language $L(\mathbf{S})$ from such a 2nd order signature \mathbf{S} (best done using sorts) and define the obvious satisfaction relation between \mathbf{S} -structures and $L(\mathbf{S})$ -sentences (example: one can define the theory of topological spaces).

Our logics always are based on first order signatures!

Expressivity of abstract logics

Definition: Let \mathcal{L} , \mathcal{L}' be abstract logics. We say that \mathcal{L}' has at least the same expressive power as \mathcal{L} , written $\mathcal{L}' \geq \mathcal{L}$, if for every S and every $\varphi \in L(S)$ there is a $\psi \in L'(S)$ with $\mathrm{Mod}_{\mathcal{L}}(\varphi) = \mathrm{Mod}_{\mathcal{L}'}(\psi)$.

We write $\mathcal{L}' \sim \mathcal{L}$ (equal expressive power), if $\mathcal{L}' \geq \mathcal{L}$ and $\mathcal{L}' \leq \mathcal{L}$. We write $\mathcal{L}' > \mathcal{L}$ if $\mathcal{L}' > \mathcal{L}$ and not $\mathcal{L}' \sim \mathcal{L}$.

Example: In \mathcal{L}^{2nd} we can characterize \mathbb{R} up to isomorphism by adding to the theory of ordered fields the sentence

$$\forall X((\exists x X(x) \land \exists y \forall z (X(z) \rightarrow z < y)) \rightarrow \exists y (\forall z (X(z) \rightarrow (z < y \lor z = y)) \land \forall x (x < y \rightarrow \exists z (x < z \land X(z)))))$$
""overy parametry subset which is bounded above has a supremum")

("every nonempty subset which is bounded above has a supremum")

By Löwenheim-Skolem we can not characterize $\mathbb R$ up to isomorphism in first order language. Hence $\mathcal L^{2nd}>\mathcal L_{\omega\omega}$.

Expressivity of abstract logics

Definition: Let \mathcal{L} , \mathcal{L}' be abstract logics. We say that \mathcal{L}' has at least the same expressive power as \mathcal{L} , written $\mathcal{L}' \geq \mathcal{L}$, if for every S and every $\varphi \in L(S)$ there is a $\psi \in L'(S)$ with $\mathrm{Mod}_{\mathcal{L}}(\varphi) = \mathrm{Mod}_{\mathcal{L}'}(\psi)$.

We write $\mathcal{L}' \sim \mathcal{L}$ (equal expressive power), if $\mathcal{L}' \geq \mathcal{L}$ and $\mathcal{L}' \leq \mathcal{L}$. We write $\mathcal{L}' > \mathcal{L}$ if $\mathcal{L}' \geq \mathcal{L}$ and not $\mathcal{L}' \sim \mathcal{L}$.

Another Example: In $\mathcal{L}_{\omega_1\omega}$ we can characterize the class of fields of characteristic 0 by adding to the theory of fields the sentence $\bigvee\{1+1=0,1+1+1=0,1+1+1+1+1=0,\ldots\}$

By Application 1 of the compactness theorem, there is no first order sentence characterizing fields of characteristic 0. Hence $\mathcal{L}_{\omega_1\omega} > \mathcal{L}_{\omega\omega}$.

Definition: For an abstract logic \mathcal{L} we abbreviate:

- $L\ddot{o}Sko(\mathcal{L})$ (" \mathcal{L} has the Löwenheim-Skolem property") : \Leftrightarrow If $\varphi \in L(S)$ has a model, then it has a model which is at most countable.
- $\operatorname{Comp}(\mathcal{L})$ (" \mathcal{L} has the compactness property") : \Leftrightarrow If $\Phi \subseteq L(S)$ and every finite subset of Φ is satisfiable, then Φ is satisfiable.

Definition: For an abstract logic $\mathcal L$ we abbreviate:

- $Bool(\mathcal{L})$ (" \mathcal{L} contains Boolean connectives") : \Leftrightarrow
 - (1) For every $\varphi \in L(S)$ there is a $\chi \in L(S)$ such that for all S-structures \mathfrak{M} : $\mathfrak{M} \vDash \varphi \Leftrightarrow \operatorname{not} \mathfrak{M} \vDash \chi$
 - (2) For every $\varphi, \psi \in L(S)$ there is a $\chi \in L(S)$ such that for all S-structures $\mathfrak{M} \colon \mathfrak{M} \vDash \chi \Leftrightarrow \mathfrak{M} \vDash \varphi$ and $\mathfrak{M} \vDash \psi$

Definition: For an abstract logic \mathcal{L} we abbreviate:

• $Repl(\mathcal{L})$ (" \mathcal{L} admits replacement of function symbols and constants by relation symbols"):

From a signature S we get a new signature S^r by replacing n-ary function (resp. constant) symbols with (n+1)-ary (resp. unary) relation symbols.

From an S-structure \mathfrak{M} we get an S^r -structure \mathfrak{M}^r by interpreting the new relation symbols as the graphs of the functions $f^{\mathfrak{M}}$.

Then: Repl(\mathcal{L}): \Leftrightarrow For every $\varphi \in L(S)$ there is a $\chi \in L(S^r)$ such that for all S-structures \mathfrak{M} we have $\mathfrak{M} \models \varphi \Leftrightarrow \mathfrak{M}^r \models \chi$.

Definition: For an abstract logic \mathcal{L} we abbreviate:

• Rel(\mathcal{L}) (" \mathcal{L} admits relativization"): For an S-structure \mathfrak{M} and an S-closed subset $A\subseteq M$ we get a sub-S-structure $\mathfrak{M}|_{\mathcal{A}}$ with underlying set A. We also get an $S\cup \{U\}$ -structure $\mathfrak{M}^{U \leadsto A}$ (U a new unary relation symbol), with underlying set M, where U is interpreted as the subset A. Then: Rel(\mathcal{L}): \Leftrightarrow For every $\varphi \in L(S)$ there is a $\chi \in L(S \cup \{U\})$ such that $\mathfrak{M}|_{A} \vDash \varphi \Leftrightarrow \mathfrak{M}^{U \leadsto A} \vDash \chi$

Definition: An abstract logic satisfying Bool, Repl and Rel is called regular.

Lindström's Theorem

Theorem (Lindström's Theorem)

For a regular abstract logic \mathcal{L} with $\mathcal{L}_{\omega\omega} \leq \mathcal{L}$ one has: If $L\ddot{o}Sko(\mathcal{L})$ and $Comp(\mathcal{L})$ then $\mathcal{L} \sim \mathcal{L}_{\omega\omega}$.

Equivalently: $\mathcal{L}_{\omega\omega}$ is the most expressive regular abstract logic having the Löwenheim-Skolem and Compactness properties.

(The first form can be read as a no-go theorem, the second as a characterization of $\mathcal{L}_{\omega\omega}$)

Lindström's Theorem

Idea of the proof: Assume that $\mathcal{L}_{\omega\omega} < \mathcal{L}$. Then there exist S and a $\psi \in L(S)$ which is not equivalent to any first order sentence, i.e. $\nexists \varphi \in L_{\omega\omega}(S)$ s.t. $\operatorname{Mod}_{\mathcal{L}(\omega)}(\varphi) = \operatorname{Mod}_{\mathcal{L}}(\psi)$.

We get S-structures \mathfrak{M} , \mathfrak{N} with $\mathfrak{M} \models_{\mathcal{L}} \psi$, $\mathfrak{N} \models_{\mathcal{L}} \neg \psi$. By $L\ddot{o}Sko(\mathcal{L})$ both \mathfrak{M} and \mathfrak{N} are \mathcal{L} -elementary equivalent to countable structures.

From the fact that $\mathfrak M$ and $\mathfrak N$ are indistinguishable by first order formulas we get $\mathfrak M\cong_m\mathfrak N$ (:=there is a set of partial isomorphisms which are extendable m times with any choice of argument/value) – here we use $\mathcal L_{\omega\omega}\leq \mathcal L$ and that $\mathcal L$ is regular to handle first order formulas inside $\mathcal L$.

From compactness we get $\mathfrak{M}\cong_m\mathfrak{N}\Rightarrow\mathfrak{M}\cong_p\mathfrak{N}$ (:= there is a set of partial isomorphisms extendable countably many times). For countable structures $\mathfrak{M}\cong_p\mathfrak{N}$ implies $\mathfrak{M}\cong\mathfrak{N}$.

But isomorphic structures behave identically for any abstract logic -contradiction to $\mathfrak{M} \vDash_{\mathcal{L}} \psi$, $\mathfrak{N} \vDash_{\mathcal{L}} \neg \psi$.