tags: number-theory
def: Euler ϕ-function

$$
\phi(n)=\left|(\mathbb{Z} / n)^{\times}\right|
$$

\square
express $n \in \mathbb{N}$ in terms of Euler's ϕ-function

$$
n=\sum_{d \mid n} \phi(d)
$$

(Each element of \mathbb{Z} / n is a generator of one of the subgroups \mathbb{Z} / d with $d \mid n$.)

Refs: Serre: A course in arithmetic, § I.1, Lemma 1

Chevalley-Warning-Theorem

Let \mathbb{F}_{q} be a finite field (q a power of p).
The common vanishing locus of polynomials $f_{\alpha} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ of sufficiently small degree has cardinality a multiple of p. Sufficiently small means that $\sum_{\alpha} \operatorname{deg}\left(f_{\alpha}\right)<n$.

Refs: Serre: A course in arithmetic, § I.2, Theorem 3
prove: Every conic over a finite field has a rational point.
A conic in $\mathbb{P}_{\mathbb{F}_{q}}^{n}$ is defined by a quadratic form f in n variables $(n \geq 3)$. As $\operatorname{deg}(f)=2<n$, the Chevalley-Warning-Theorem implies that f has more zeroes than just the trivial zero.

Refs: Serre: A course in arithmetic, § I.2, Corollary 2
\square
squares in $\mathbb{F}_{q}(q$ a power of $p)$
If $p \neq 2$,

$$
\begin{aligned}
1 \rightarrow\left(\mathbb{F}_{q}^{\times}\right)^{2} \rightarrow \mathbb{F}_{q}^{\times} & \rightarrow\{ \pm 1\} \rightarrow 1 \\
x & \mapsto x^{\frac{q-1}{2}}
\end{aligned}
$$

If $p=2$, all elements of \mathbb{F}_{q} are squares.

Refs: Serre: A course in arithmetic, § I.3, Theorem 4
tags: philosophy

What good is it to argue about whether HOLISM or REDUCTIONISM is right?

The proper way to understand the matter is to transcend the question, by answering MU.

