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Abstract. Using methods from algebraic topology and group cohomology, I

pursue Grothendieck’s question on equality of geometric and cohomological
Brauer groups in the context of complex-analytic spaces. The main result is

that equality holds under suitable assumptions on the fundamental group and
the Pontrjagin dual of the second homotopy group. I apply this to Lie groups,

Hopf manifolds, and complex-analytic surfaces.
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Introduction

The goal of this paper is to pursue Grothendieck’s question on Brauer groups
in the context of complex-analytic spaces, using methods from algebraic topology
and group cohomology. This yields new results on Lie groups, Hopf manifolds, and
surfaces.

Let me recall Grothendieck’s question. Suppose X is a topological space en-
dowed with a sheaf of rings OX . The cohomological Brauer group Br′(X) is defined
as the torsion part of the cohomology group H2(X,O×X). One likes to have a geo-
metric interpretation of such cohomology classes. A possible interpretation is in
terms of principal PGLr-bundles P → X, via the nonabelian coboundary map
H1(X, PGLr(C)) → H2(X,O×X). The group of equivalence classes of principal
PGLr-bundles is called the Brauer group Br(X). The coboundary map yields a
canonical inclusion Br(X) ⊂ Br′(X), and Grothendieck [22] asked whether this
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inclusion is actually a bijection. This is a major open problem in the theory of
Brauer groups.

In algebraic topology, Serre solved Grothendieck’s question if X is a finite CW-
complex and the sheaf of rings is the sheaf of continuous complex functions CX .
It turns out that here Br(X) = Br′(X) equals the torsion part of H3(X, Z). In
contrast, there are only few general results in algebraic geometry. In this context
X is an algebraic scheme and OX is its structure sheaf. Gabber’s Theorem tells us
that Br(X) = Br′(X) for any affine scheme [18]. Grothendieck himself showed that
equality holds for smooth algebraic surfaces [22], and I treated the case of algebraic
surfaces with isolated singularities [50].

Grothendieck’s question shows up in various areas. To mention a few: In moduli
theory, Brauer groups are used in order to determine whether a coarse moduli space
is actually a fine moduli space. In stack theory, Brauer groups are important to
detect quotient stacks, as explained in the work of Edidin, Hassett, Kresch, and
Vistoli [15]. In Homological Mirror Symmetry, Brauer groups are used for twisting
derived categories.

This paper deals with complex-analytic spaces, which are not necessarily al-
gebraic. Here methods of algebraic geometry frequently break down, largely due
to extension problems involving coherent sheaves. In this context there are two
general results: Elencwajg and Narasimhan showed Br(X) = Br′(X) for complex
tori [16], and Huybrechts and myself recently proved it for complex-analytic K3-
surfaces with methods from differential geometry [30]. Here I prove a general result
on complex-analytic Brauer groups that depends only on the homotopy type of the
underlying topological space.

Theorem. Let X be a complex-analytic space. Suppose π1(X) is a good group in
Serre’s sense, and that the subgroup of π1(X)-invariants inside the Pontrjagin dual
Hom(π2(X), Q/Z) is trivial. Then the inclusion Br(X) ⊂ Br′(X) is an equality.

Serre introduced the notion of good groups, which has to do with profinite com-
pletions, in the context of Galois cohomology [54]. I will recall this somewhat
technical concept in Section 3. Note that free groups and polycyclic groups are
good.

The conditions in the theorem appear bizarre, but it applies directly to complex
Lie groups and Hopf manifolds:

Theorem. Let X be a complex Lie group or a Hopf manifold. Then the inclusion
Br(X) ⊂ Br′(X) is an equality.

This generalizes results of Iversen on characterfree algebraic groups [32], and
Hoobler [28], Berkovič [3], and Elencwajg and Narasimhan [16] on abelian varieties
and complex tori. Turning to surfaces, we obtain the second main result of this
paper:

Theorem. Let S be a smooth compact complex-analytic surface with b1 6= 1. Then
the inclusion Br(S) ⊂ Br′(S) is an equality.

Here the main challenge is the case of elliptic surfaces. Usually, such surfaces
do not satisfy the required conditions on π1(S) and π2(S), due to the presence of
singular fibers in the elliptic fibration S → B. However, there is always a Zariski
open subset U ⊂ S with the desired properties. Some additional arguments then
show that this is enough for our purpose. A key ingredient is Hoobler’s result [28],
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see also Gabber [18], that any cohomology class β ∈ Br′(X) mapping into Br(Y )
for some finite flat covering Y → X lies in the Brauer group.

My results for surfaces with b1 = 1 are less definite. Such surfaces are also called
of class VII. To date, this is the only class of surface resisting complete classification.
Any known surface of class VII blows down to one of the three following types: Hopf
surfaces, Inoue surfaces, and surfaces containing a global spherical shell. The latter
is a holomorphic embedding of a thickened 3-sphere with connected complement.

Theorem. We have Br(S) = Br′(S) for any surface with b1 = 1 whose minimal
model is either a Hopf surface, Inoue surface, or a surface containing a global
spherical shell.

According to the GSS-conjecture, any surface of class VII should belong to one of
these classes. If true, this would complete the Kodaira classification. The work of
Dloussky, Oeljeklaus, and Toma gives considerable positive evidence [13], [14]. On
the other hand, there are almost no results on fundamental groups of hypothetical
surfaces of class VII. A notable exception is the work of Carlson and Toledo on
representations of class VII fundamental group in fundamental groups of hyperbolic
Riemannian manifolds [9].

Here is a plan for the paper: In Section 1, I set down some definitions concern-
ing analytic Brauer groups, and also establish some Gaga type facts. In Section
2 we shall see that analytic Brauer groups might differ strongly from algebraic
Brauer groups on noncompact surfaces. I relate this to the Shafarevich Conjecture,
and give an application regarding the existence of nonalgebraic vector bundles on
pointed algebraic surfaces. Section 3 contains a discussion of Serre’s notion of good
groups. I use good groups to prove Br(X) = Br′(X) for certain complex-analytic
spaces in Section 4. As application I discuss the case of complex Lie groups and
Hopf manifolds. To apply the results to complex-analytic surfaces, we still have to
improve them. This happens in Section 5. In Section 6, we then solve the case of
elliptic surfaces. In Section 7, I analyze the case of surfaces of class VII. In Section
8, I combine our result with already known results. There is also a discussion of
open problems.

Acknowledgement. I thank Ingrid Bauer, Frédéric Campana, Fabrizio Catanese,
Raymond Hoobler, Uwe Jannsen, and Thomas Peternell for stimulating discus-
sions. I also thank the referee, who pointed out some mistakes, and whose com-
ments helped to improve the exposition. Moreover, I thank Le Van Ly for careful
proofreading.

1. Analytic Brauer groups

In this section we shall introduce notation and establish some useful facts on
analytic Brauer groups. Throughout, X denotes a complex-analytic space, and
OX is its sheaf of holomorphic functions. One way to define Brauer groups is
in terms of holomorphic principal PGLr(C)-bundles, which is well-suited for our
purposes. Examples of such bundles are projectivisations P = P(E) of locally free
OX -modules E of rank r > 0. The Brauer group measures to which extent there
are other principal bundles as follows:

Suppose P → X is a principal PGLr(C)-bundle, and P ′ → X is a principal
PGLr′(C)-bundle. Using the homomorphism

PGLr(C)× PGLr′(C) −→ PGLrr′(C), (A,A′) 7−→ A⊗A′
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we obtain another principal PGLrr′(C)-bundle P ⊗ P ′. One says that P and P ′

are equivalent if there are locally free OX -modules E ′, E of rank r′, r > 0 so that
P ⊗ P(E ′) and P ′ ⊗ P(E) are isomorphic. The group of equivalence classes is called
the Brauer group Br(X). Addition is given by tensor products, and inverses come
from taking dual bundles.

The Brauer group of a complex-analytic space is hard to handle. More approach-
able is the cohomological Brauer group Br′(X), which is defined as the torsion part
of H2(X,O×X). The group extension

1 −→ O×X −→ GLr(OX) −→ PGLr(OX) −→ 1

yields a nonabelian coboundary map H1(X, PGLr(C)) → H2(X,OX), which in-
duces an inclusion Br(X) ⊂ Br′(X).

It is possible to compute Br′(X) as an abstract group using the exponential
sequence 0→ Z 2πi→ OX

exp→ O×X → 1. The corresponding long exact sequence reads

Pic(X)→ H2(X, Z)→ H2(X,OX)→ H2(X,O×X)→ H3(X, Z)→ H3(X,OX).

Let T = T (X) be the torsion part of H3(X, Z), which is also the image of the
coboundary map Br′(X)→ H3(X, Z). Furthermore, let A = A(X) be the quotient
H2(X, Z)/ Pic(X), which is the image of H2(X, Z) → H2(X,OX) as well. Note
that the torsion free group A is sometimes called the transcendental lattice.

Proposition 1.1. For any complex-analytic space X, the cohomological Brauer
group canonically sits in a short exact sequence 0→ A⊗Q/Z→ Br′(X)→ T → 0.

Proof. We have an exact sequence

(1) 0 −→ A −→ H2(X,OX) −→ H2(X,O×X) −→ H3(X, Z) −→ H3(X,OX).

Set K = H2(X,OX)/A. Applying the functor Tori(·, Q/Z), we obtain an exact
sequence

0 −→ Tor1(K, Q/Z) −→ A⊗Q/Z −→ H2(X,OX)⊗Q/Z.

The term on the right vanishes, being the tensor product of a divisible group with
a torsion group. Let M be the image of H2(X,O×X)→ H3(X, Z). We clearly have
T ⊂M , and T equals the torsion part of M . As above, we have an exact sequence

0 −→ Tor1(K, Q/Z) −→ Tor1(H2(X,O×X), Q/Z) −→ Tor1(M, Q/Z) −→ K ⊗Q/Z

The term on the right vanishes, since K is divisible and Q/Z is torsion. The
assertion now follows from the fact that Tor1(M, Q/Z) is the torsion part of any
abelian group M . �

The short exact sequence 0 → A ⊗ Q/Z → Br′(X) → T → 0 splits, being an
extension by a divisible and hence injective group. We call A ⊗ Q/Z the analytic
part of the cohomological Brauer group, and T the topological part. This is a minor
abuse of notation, because the short exact sequence has no canonical splitting, but
it should not cause any confusion.

For compact complex-analytic spaces we therefore have a noncanonical isomor-
phism Br′(X) ' (Q/Z)b2−ρ ⊕ T , where b2 is the second Betti number and ρ is the
Picard number. The latter is defined as the rank of the image of the coboundary
map c1 : Pic(X)→ H2(X, Z). Hodge theory gives additional information:
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Corollary 1.2. Let X be a smooth compact complex-analytic space. Assume that
X is either Kähler or 2-dimensional. Then the analytic part A⊗Q/Z of the coho-
mological Brauer group Br′(X) vanishes if and only if H2(X,OX) = 0.

Proof. The condition is sufficient according to Proposition 1.1 and the exact se-
quence (1). For the converse we use the fact from Hodge theory that the com-
plexification of the canonical map H2(X, Z)→ H2(X,OX) is surjective. Compare
[2], Chapter IV, Proposition 2.11 for surfaces, and [57], page 161 for Kähler mani-
folds. �

Let me point out that the topological part T of the Brauer group, which is the
torsion part of the cohomology group H3(X, Z), is also isomorphic to the torsion
part of the homology group H2(X, Z), by the Universal Coefficient Theorem.

We next discuss the relation between algebraic and analytic theories. The Brauer
group and the cohomological Brauer group for schemes Y are defined as above, but
one has to use the étale topology instead of the Zariski topology. If Y is an algebraic
C-scheme, we have an associated complex-analytic space X = Y an. For compact
spaces, this does not influence cohomological Brauer groups:

Proposition 1.3. Let Y be an algebraic C-scheme, and X = Y an the associated
complex-analytic space. Then the canonical map Br′(Y )→ Br′(X) is surjective. It
is even bijective provided X is compact.

Proof. Fix an integer n ≥ 0. The Kummer sequence 0 → µn → O×X
n→ O×X → 1

gives a short exact sequence

0 −→ Pic(X)n −→ H2(X, µn) −→ nBr′(X) −→ 0.

Here µn = µn(C) is the group of n-th roots of unity, and nBr′(X) and Pic(X)n

are the kernel and cokernel for multiplication-by-n map. There is a similar short
exact sequence for the étale topology on the algebraic C-scheme Y , and we obtain
a commutative diagram

0 −−−−→ Pic(Y )n −−−−→ H2(Y, µn) −−−−→ nBr′(Y ) −−−−→ 0y y y
0 −−−−→ Pic(X)n −−−−→ H2(X, µn) −−−−→ nBr′(X) −−−−→ 0.

The vertical map in the middle is bijective by comparison results in étale cohomol-
ogy ([24], Exposé XVI, Theorem 4.1). It follows that Br′(S)→ Br′(X) is surjective.

Now suppose in addition that X is compact. It then easily follows from Serre’s
Gaga Theorems ([52], Proposition 18) that Pic(Y )→ Pic(X) is bijective, hence the
assertion. �

Brauer groups behave similarly:

Proposition 1.4. Notation as above. Suppose that X = Y an is compact. Then
the canonical map Br(Y )→ Br(X) is bijective.

Proof. Injectivity follows directly from Proposition 1.3. To check surjectivity, sup-
pose we have a holomorphic PGLr(C)-principal bundle P → X. It comes from a
cocycle λij for some open covering Ui ⊂ X. The problem here is that the open sub-
sets Ui are not necessarily Zariski open, and the holomorphic maps λij → PGLr(C)
are not necessarily algebraic. We sidestep the problems as follows:
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The cocycle λij also defines, via the conjugacy action, a holomorphic Azumaya
algebra A over OX . This means that A is a twisted form of the matrix algebra
Matr(OX). According to Serre’s Gaga Theorem, the underlying locally free OX -
module is algebraic. Moreover, the structure map A⊗A → A defining the algebra
structure is algebraic ([52], Theorem 2). Summing up, the Azumaya OX -algebra
A is isomorphic to B ⊗OY

OX for some locally free OY -algebra B. Since the fibers
B(x) = A(x), x ∈ X are matrix algebras over C, the OY -algebra B is Azumaya. It
follows that the map on Brauer groups is surjective. �

2. Nonpurity results

So far we saw that analytic and algebraic Brauer groups coincide on compact
algebraic spaces. In this section I discuss a striking difference between analytic
and algebraic Brauer groups for noncompact spaces. For simplicity I confine the
discussion to dimension two. Throughout the paper, a surface is a complex-analytic
space S that is irreducible and of complex dimension two.

Proposition 2.1. Let S be a noncompact surface. Then H2(S,O×S ) = H3(S, Z).

Proof. We have H2(S,OS) = 0 according to Siu’s vanishing result for noncompact
spaces [55], and H3(S,OS) = 0 by dimension reasons. The exponential sequence
gives an exact sequence

H2(S,OS) −→ H2(S,O×S ) −→ H3(S, Z) −→ H3(S,OS),

and the assertion follows. �

This means that the analytic part of the cohomological Brauer group vanishes
upon restrictions. The topological part behaves differently:

Proposition 2.2. Let S be a smooth surface, A ⊂ S be a discrete subset, and
U = S − A the open complement. Then the restriction map H3(S, Z) → H3(U, Z)
induces a bijection on torsion parts.

Proof. The long exact sequence for local cohomology groups gives an exact sequence

H3
A(S, Z) −→ H3(S, Z) −→ H3(U, Z) −→ H4

A(S, Z).

The term on the left vanishes and the term on the right is free. This follows
from the Thom isomorphism Hp−4(A, Z)→ Hp

A(S, Z), compare [33], Chapter VIII,
Proposition 2.3. �

It is more difficult to understand the behavior of the topological part if one
removes more that just points. Recall that a complex-analytic space X is called
Stein if Hp(X,F) = 0 for all p ≥ 1 and all coherent OX -modules F . This is the
analogue of affine schemes in complex-analytic geometry. Indeed, any complex-
analytic space is covered by Stein open subsets, and affine algebraic spaces are
Stein.

Proposition 2.3. Suppose S is a complex-analytic surface that is Stein. Then we
have H2(S,O×S ) = 0.

Proof. Again we use the exact sequence

H2(S,OS) −→ H2(S,O×S ) −→ H3(S, Z).
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The term on the left vanishes by the Stein condition. The term on the right also
vanishes: According to Hamm’s result, any Stein space X of dimension n has the
homotopy type of a CW-complex with cells of dimension ≤ n only [25]. �

A complex-analytic space X is called holomorphically convex if there is a Stein
space Y , together with a proper holomorphic map X → Y . This notion is some-
where between compact spaces and Stein spaces. It is a rather important class
of spaces: According to the Shafarevich Conjecture, the universal covering of any
smooth projective space should be holomorphically convex.

Note that we may replace Y by the analytic spectrum of f∗(OX). Then the map
f : X → Y is surjective with connected fibers, and Y is called the Stein reduction
of X.

Proposition 2.4. Let S be a complex-analytic surface that is holomorphically con-
vex with 2-dimensional Stein reduction. Then H2(S,O×S ) = 0.

Proof. Let f : S → Y be the Stein reduction. The spectral sequence

Hp(Y, Rqf∗(OS)) =⇒ Hp+q(S,OS)

together with R2f∗(OS) = 0 and Steinness of Y tells us that H2(S,OS) vanishes.
In light of the exact sequence

H2(S,OS) −→ H2(S,O×S ) −→ H3(S, Z),

it suffices to check that H3(S, Z) = 0. Consider the spectral sequence

Hp(Y,Rqf∗(Z)) =⇒ Hp+q(S, Z).

Note that the fibers Sy = f−1(y) are of complex dimension ≤ 1, and the base
change maps Rnf∗(Z)y → Hn(Sy, Z) are bijective (see [33], Section III, Theorem
6.2). This implies Rqf∗(Z) = 0 for q ≥ 3. Next we use the fact that f : S → Y
is bijective over the complement of a discrete set D ⊂ Y . For q ≥ 1, the sheaves
Rqf∗(Z) are supported on D, and hence Hp(Y, Rqf∗(Z)) = 0 for p, q ≥ 1. We
finally examine the terms Hp(Y, f∗(Z)). Note that f∗(Z) = Z, because f : S → Y
has connected fibers. According to Hamm’s result, Y has the homotopy type of a
CW-complex with cells of dimension ≤ 2 only [25]. This implies Hp(Y, Z) = 0 for
p ≥ 3.

Summing up, the terms Hp(Y, Rqf∗(Z)) in the spectral sequence vanish whenever
p + q = 3, and therefore H3(S, Z) = 0. �

Remark 2.5. As Fabrizio Catanese pointed out to me, the preceding result may
be useful in connection with the Shafarevich Conjecture. Suppose we want to refute
the Shafarevich Conjecture. Then we might try to find a smooth projective surface
S whose universal covering S̃ has 2-dimensional Stein reduction, together with an
Azumaya OS-algebra A that does not become a matrix algebra on S̃. I do not know
whether this is feasible. But it reminds me about the Brauer–Manin obstruction,
which was used to construct counterexamples to the Hasse principle.

Back to the comparison of algebraic and analytic Brauer groups. Suppose that
Y is a smooth proper 2-dimensional C-scheme, and V ⊂ Y is an open subscheme.
According to Grothendieck’s Purity Theorems [22], Section 6, the restriction map
Br′(Y ) → Br′(V ) is injective. In contrast, we just saw that the restriction maps
on the corresponding analytic cohomological Brauer groups is usually not injective.
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In other words, algebraic and analytic Brauer groups might differ dramatically on
noncompact surfaces.

We close this section with an amusing application to holomorphic vector bundles:
Recall that an easy computation with Čech cocycle reveals that the restriction map
of analytic Picard groups

Pic(C2) −→ Pic(C2 − {0})

has infinite cokernel. Such a behavior is rather typical:

Proposition 2.6. Let S be a smooth compact algebraic surface with H2(S,OS) 6= 0.
Fix a point s ∈ S. Then there are infinitely many locally free coherent sheaves EU
on the analytic surface U = S − {s} that do not extend to coherent sheaves on S.

Proof. First note that Br(S) = Br′(S) by Grothendieck’s result on algebraic sur-
faces [22] and Proposition 1.4. The analytic part A ⊗ Q/Z of Br(S) is nontrivial
and hence infinite according to Corollary 1.2. Pick a nonzero class β ∈ Br(S) from
the analytic part and represent it by some Azumaya OS-algebra A. The restriction
βU ∈ Br′(U) vanishes by Proposition 2.1, and this implies that there is a locally
free OU -module EU with AU = End(EU ).

Suppose EU extends to a coherent OS-module E . Passing to double duals, we
may assume that E is locally free. The bijection End(E)U → AU extends to a map
End(E) → A. Its determinant vanishes either nowhere or in codimension one, and
we infer that the map is bijective. A similar argument shows that this map is an
isomorphism of algebras. This implies β = 0, contradiction. �

3. Serre’s good groups

Serre’s notion of good groups plays a crucial role in the sequel, and I want to
recall this concept now. Let G be a group and Ĝ = lim←−G/N be its profinite
completion. Here the inverse limit runs over all normal subgroups N ⊂ G of finite
index. We regard both G and Ĝ as topological groups: the group G carries the
discrete topology, and Ĝ is endowed with the inverse limit topology where the
factors G/N are discrete.

Now let M be a finite G-module. By this I understand a finite abelian group
with discrete topology, and having a G-module structure. The map G → Aut(M)
factors over Ĝ, and we may regard M as a topological Ĝ-module as well. The
canonical map G→ Ĝ induces a restriction map

Hp(Ĝ, M) −→ Hp(G, M), p ≥ 0

on cohomology groups. Note that our cohomology groups are defined in terms of
continuous cochains. Serre showed in [54], Chapter I, §2.6 that these restriction
maps are bijective for p = 0, 1. He calls a group G good if the restriction maps
Hp(Ĝ, M)→ Hp(G, M) are bijective for all integers p ≥ 0 and all finite G-modules
M . Finite groups are clearly good groups. Recall that a group is called almost free
if it contains a free subgroup of finite index.

Proposition 3.1. Almost free groups are good groups.

Proof. First consider the case that G is a free group. Then Hp(G, M) = 0 for
p ≥ 2 and any G-module M , because G is the fundamental group of an Eilenberg–
Maclane space K(G, 1) with cells of dimension ≤ 1 only. On the other hand, we
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have Hp(Ĝ, M) = 0 for p ≥ 2 and any torsion G-module M by [54], Chapter I,
Proposition 16.

Now suppose that G is almost free. Then we find a normal subgroup N ⊂ G
that is free and with Q = G/N finite. According to [49], Lemma in Section 5.1, the
canonical map on profinite completions N̂ → Ĝ is injective with Q = Ĝ/N̂ .

The following is a variant of an argument due to Serre ([54], Section 2.6): Let
M be a finite G-module, and consider the two Hochschild–Serre spectral sequences

Hp(Q,Hq(N,M)) =⇒ Hp+q(G, M), Hp(Q,Hq(N̂ , M)) =⇒ Hp+q(Ĝ, M).

Using that N is free we obtain a long exact sequences

. . .→ Hp(Q,H0(N))→ Hp(G)→ Hp−1(Q,H1(N))→ Hp+1(Q,H0(N))→ . . .

and another long exact sequence

. . .→ Hp(Q,H0(N̂))→ Hp(Ĝ)→ Hp−1(Q,H1(N̂))→ Hp+1(Q,H0(N̂))→ . . . ,

where the coefficient groups are always M . Note that the canonical mappings
Hi(N̂ , M) → Hi(N,M) are always bijective for i = 0, 1. Using the 5-lemma, we
deduce that the canonical map Hp(Ĝ, M)→ Hp(G, M) is bijective. �

Recall that a group G is called polycyclic if there is a finite sequence of subgroups
0 = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G so that Gi−1 ⊂ Gi are normal with cyclic factors
Gi/Gi−1. This are precisely the solvable groups all whose subgroups are finitely
generated. Note that finitely generated nilpotent groups are polycyclic. A group is
called almost polycyclic if it contains a polycyclic subgroup of finite index.

Proposition 3.2. Almost polycyclic groups are good groups.

Proof. Suppose first that G is a polycyclic group. Then the cohomology groups
Hp(G, M) are finite for all finite G-modules M and all integers p ≥ 0. This is
obvious for G cyclic, and follows by induction on the length n of the subnormal
series Gi ⊂ G, together with the Hochschild–Serre spectral sequence.

To proceed, we use a general result of Serre: Let G be an arbitrary group con-
taining a normal subgroup N ⊂ G. Suppose that N and Q = G/N are good, and
that Hp(N,M) are finite for all finite A-modules M and p ≥ 0. Then Serre outlined
in [54], Section 2.6 that this implies that G is also good: He first checks that the
sequence 1 → N̂ → Ĝ → Q̂ → 1 remains a group extension, and then compares
the two Hochschild–Serre spectral sequences. Using this, we easily verify that our
polycyclic group G is good, again by induction on the length n of the subnormal
series Gi ⊂ G.

Now suppose that G is almost polycyclic. Then we find a normal subgroup
N ⊂ G that is polycyclic and with Q = G/N finite. Then N,Q are good, and
Hq(N,M) are finite for all finite G-modules M . Repeating Serre’s argument as
above, we see that G is good. �

Good groups are very useful with respect to Grothendieck’s question on Brauer
groups. Let G be a group. The exact sequence of groups with trivial G-action

1 −→ C× −→ GLr(C) −→ PGLr(C) −→ 1

induces a coboundary map in nonabelian cohomology

(2) H1(G, PGLr(C)) −→ H2(G, C×)
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as explained in [54], Chapter I, §5. In representation theory of finite groups,
H2(G, C×) is also called the Schur multiplier (confer [35]). In this context, Grothen-
dieck’s question is: Given a torsion class β ∈ H2(G, C×), does there exist some
r > 0 so that β lies in the image of the coboundary map (2)?

Proposition 3.3. Let G be a good group. Then any torsion class β ∈ H2(G, C×)
lies in the image of the coboundary map H1(G, PGLr(C)) → H2(G, C×) for some
integer r > 0.

Proof. The idea is to reduce to the case that the group G is finite. Let µn = µn(C)
be the group of complex n-th roots of unity. Using the Kummer sequence, we infer
that β lies in the image of H2(G, µn) → H2(G, C×), whenever nβ = 0. Choose
α ∈ H2(G, µn) mapping to β.

Since G is good, we have

H2(G, µn) = H2(Ĝ, µn) = lim−→H2(G/N, µn).

Replacing G by some suitable G/N , we may assume that the group G is finite.
It is then a fact from representation theory that any factor system comes from a
projective representation (see for example [29], Chapter V, Hilfssatz 24.2), hence
the result. �

4. Applications to complex spaces

We now come back to geometry. Fix a complex-analytic space X. We seek
conditions under which the canonical inclusion Br(X) ⊂ Br′(X) is an equality. The
following result is interesting because it makes only assumptions on the homotopy
type of X:

Theorem 4.1. Let X be a connected complex-analytic space. Suppose that the
fundamental group π1(X) is good, and that the subgroup of π1(X)-invariants in the
Pontrjagin dual Hom(π2(X), Q/Z) vanishes. Then Br(X) = Br′(X).

Proof. Let β ∈ Br′(X), say with nβ = 0, and choose a class α ∈ H2(X, µn)
mapping to β. Let X̃ → X be the universal covering. Then π2(X) = π2(X̃),
and the canonical map H2(X̃, Z) → π2(X̃) is bijective by the Hurewicz Theorem.
Moreover, the canonical map H2(X̃, µn) → Hom(H2(X̃, Z), µn) is bijective by the
Universal Coefficient Theorem. The universal covering yields a spectral sequence

Hp(G, Hq(X̃, µn)) =⇒ Hp+q(X, µn),

where G = π1(X). Since H1(X̃, µn) = 0, this yields a short exact sequence

0 −→ H2(G, µn) −→ H2(X, µn) −→ H0(G, H2(X̃, µn)).

The term on the right vanishes, in light of our assumption on π2(X) and the
inclusion H2(X̃, µn) ⊂ Hom(π2(X), Q/Z). The upshot is that any 2-cohomology
class on X with values in µn comes from group cohomology.

To finish the proof we use the assumption that G = π1(X) is good, which implies

H2(G, µn) = H2(Ĝ, µn) = lim−→H2(G/N, µn).

Hence there is an finite étale covering g : X ′ → X with g∗(β) = 0, and in par-
ticular g∗(α) = 0. Then a result of Hoobler ([28], Section 3), see also Gabber
([18], Lemma 4), tells us that α ∈ Br(X). Alternatively, we could construct a prin-
cipal PGLr(C)-bundle P → X representing β as the principal bundle associated
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with the representation π1(X)→ PGLr(C) constructed in the end of the proof for
Proposition 3.3. �

The preceding Theorem applies in particular if π2(X) = H2(X̃, Z) = 0. This is
made to measure for complex Lie groups:

Corollary 4.2. Let X be any complex Lie group. Then Br(X) = Br′(X).

Proof. We may assume that X is connected. The fundamental group π1(X) is
a finitely generated abelian group, hence good. Indeed: it is abelian because X
is a H-space, and it is finitely generated because X is homotopy equivalent to a
compact differentiable manifold (see [34], Theorem 6). The homotopy group π2(X)
vanishes, according to Browder results on torsion in homology of H-spaces ([8],
Theorem 6.11). Consequently Theorem 4.1 applies. �

This generalizes a result of Iversen on characterfree linear algebraic groups [32].
It also generalizes results of Hoobler [28] and Berkovič [3] on abelian varieties, and
of Elencwajg and Narasimhan on complex tori [16].

It is instructive to look at the case of connected abelian Lie groups. They
have the form X = Cn/Γ for some lattice Γ ⊂ Cn, and are studied in the book
of Abe and Kopfermann [1]. We have Hi(X, Z) = Hom(ΛiΓ, Z), and from this
it is in principle possible to compute the Brauer group Br(X) = Br′(X) as a
quotient of H2(X, Q/Z). The full cohomology group H2(X,O×X), however, can be
tremendously large: As explained in [38], there are lattices Γ such that H2(X,OX)
are infinite dimensional complex vector spaces.

We next apply our result to Hopf manifolds. Recall that a complex space X is
called a Hopf manifold if it is compact and its universal covering X̃ is biholomorphic
to Cn − {0} with n ≥ 2. Hopf manifolds are the simplest examples of compact
complex manifolds that are not Kähler.

Corollary 4.3. Let X be a Hopf manifold. Then Br(X) = Br′(X).

Proof. We obviously have H2(X̃, Z) = 0. Furthermore, Kodaira proved in [40],
Theorem 30 that the fundamental group sits in a central extension

(3) 0 −→ Z −→ π1(X) −→ G −→ 1

for some finite group G. Actually, Kodaira treated the 2-dimensional case, but his
arguments work in all dimensions n ≥ 2. So π1(X) is almost free hence good by
Proposition 3.1, and we conclude with Theorem 4.1. �

Actually, we may compute the Brauer group of a n-dimensional Hopf manifold
X as above: Let c ∈ H2(G, Z) be the extension class of the central extension (3).
It defines homomorphisms c : Hi(G, Z)→ Hi+2(G, Z) via the cup product.

Proposition 4.4. Let X be a Hopf manifold. With the preceding notation, we have
an exact sequence H1(G, Z) c→ H3(G, Z)→ Br(X)→ H2(G, Z) c→ H4(G, Z).

Proof. First note that the analytic part of the Brauer group vanishes, because
H2(X,OX) = 0. The latter is due to Kodaira for Hopf surfaces ([40], Theorem
26), and follows for higher dimensional Hopf manifolds from a result of Mall ([44],
Theorem 3).

We have to compute the topological part of the Brauer group. To simplify
notation, set π1 = π1(X) and m = 2n−1. Note that n ≥ 2 and m ≥ 3. The spectral
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sequence Hp(π1,H
q(X̃, Z))⇒ Hp+q(X, Z) reduces to a long exact sequence

→ Hp−1−m(π1,H
m(X̃))→ Hp(π1,H

0(X̃))→ Hp(X)→ Hp−m(π1,H
m(X̃))→ .

In particular, the edge maps of the spectral sequence Hp(π1,H
0(X̃, Z))→ Hp(X, Z)

are bijective for p < m. For p = m, we obtain an exact sequence

0 −→ Hm(π1,H
0(X̃)) −→ Hm(X) −→ H0(π1,H

m(X̃)).

The term on the right equals Hm(X̃)π1 = Z, because Hm(X̃) = Z and the action
of π1 on X̃ is orientation preserving. Hence the torsion in Hm(X) is contained in
Hm(π1,H

0(X̃)).
To proceed, we view Z = Hm(X̃) as a π1-module with trivial action. The

Hochschild–Serre spectral sequence Hp(G, Hq(Z, Z))⇒ Hp+q(π1, Z) for the central
extension (3) reduces to a long exact sequence

Hp−2(G, H1(Z, Z))→ Hp(G, H0(Z, Z))→ Hp(π1, Z)→ Hp−1(G, H1(Z, Z)),

because Hp(Z,M) = 0 for p ≥ 2 and any Z-module M . Since Hp(G, M) are torsion
groups for p > 0 and any G-module M , the groups Hp(π1, Z) are torsion for p ≥ 2.

Combining the preceding two paragraphs, we infer that H3(π1, Z) is torsion, and
equals the torsion part in H3(X, Z). Using Proposition 1.1, we infer

Br(X) = Br′(X) = H3(π1, Z).

By the Hochschild–Serre spectral sequence, this group sits in an exact sequence

(4) H1(G, Z) −→ H3(G, Z) −→ H3(π1, Z) −→ H2(G, Z) −→ H4(G, Z).

According to [27], Section 6 the outer maps are taking cup products with the
extension class −c ∈ H2(G, Z), hence the assertion. �

To my knowledge, there has been no attempt to classify such group extensions
occurring in Hopf manifolds, except for dimension two: Kato determined all possible
groups π1(S) for Hopf surfaces S in [36], [37]. There are two cases: In the linear
case π1(S) is conjugate to a subgroup of GL2(C), and then G is an extension of
a subgroup K ⊂ SL2(C) by a cyclic group. Such subgroups are classified (cyclic,
dihedral, tetrahedral, octahedral, icosahedral). In the nonlinear case π1(S) is not
conjugate to a subgroup of GL2(C), and G must be cyclic.

5. From open to compact surfaces

In order to tackle smooth compact surfaces, we have to improve Theorem 4.1.
The key result is the following, which works in dimension 2 only:

Theorem 5.1. Let S be a smooth compact surface, and V ⊂ S be a nonempty
Zariski open subset. Suppose that the fundamental group π1(V ) is good, and that
the subgroup of π1(V )-invariants in the Pontrjagin dual Hom(π2(V ), Q/Z) vanishes.
Then Br(S) = Br′(S).

Proof. Fix a class β ∈ Br′(S), say with nβ = 0, and choose a class α ∈ H2(S, µn)
mapping to β. As in the proof of Theorem 4.1, there is a finite étale covering U → V
with αU = 0. By [11], Theorem 3.4 there is a compactification U ⊂ X with some
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compact complex-analytic surface X, so that we have a commutative diagram

U −−−−→ Xy y
V −−−−→ S.

Replacing X by a suitable blowing-up with center in the boundary C = X −U , we
may assume that the compact surface X is smooth, and that C = C1 + . . . + Cm

is a normal crossing divisor with smooth irreducible components (see, for example,
[41], Chapter I and II).

In the next step we use local cohomology groups H2
C(X, µn). Combining the

Kummer sequence with the local cohomology sequence on X, we obtain a diagram

H2
C(X, µn)y

0 −−−−→ Pic(X)n −−−−→ H2(X, µn) −−−−→ nBr′(X) −−−−→ 0y
H2(U, µn)

.

Here nBr′(X) and Pic(X)n are the kernel and cokernel for multiplication-by-n map.
We remark that that the upper vertical map factors over the left horizontal map.
To see this, note that according to [33], Chapter 10, Proposition 2.5, the canonical
map between local cohomology groups

m⊕
i=1

H2
Ci

(X, µn) −→ H2
C(X, µn)

is bijective. The summands H2
Ci

(X, µn) are freely generated by the cycle class
clX(Ci), as explained in [10], Proposition 2.2.6 on page 141 (this class is called the
Thom class in topology). Moreover, the image of clX(Ci) and OX(Ci) in H2(X, µn)
coincide by [17], Chapter II, Proposition 2.2. The upshot is that αU = 0 implies
that αX ≡ 0 modulo Pic(X)n, and hence βX = 0. To finish the proof, it therefore
suffices to verify the following statement:

Lemma 5.2. Let S be a smooth complex-analytic surface, X a normal complex-
analytic surface, and f : X → S be a proper holomorphic surjection. Then Br(S)
contains the kernel of the induced map Br′(S)→ Br′(X).

Proof. First, consider the special case that the proper holomorphic map X → S is
finite. It then follows that it is flat as well, because S is smooth and X is Cohen–
Macauley (this follows from [53], Chapter IV, Theorem 9). Then the result of
Hoobler ([28], Section 3) and Gabber ([18], Lemma 4) tells us that any cohomology
class β ∈ Br′(S) with βX = 0 lies in Br(S).

Now consider the general case. There exist a proper bimeromorphic mapping
f : S′ → S so that the 2-dimensional integral component Y ′ ⊂ X ×S S′ is flat over
S′. This is a special case of Hironaka’s general result on flattening [26]. Here we
need only the 2-dimensional case, which also Maurer [45] worked out. Actually we
only need that Y ′ → S′ is finite. Replacing S′ by a suitable blowing-up, we may
assume that S′ is smooth. The normalization X ′ of Y ′ is finite over S′ as well.
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According to the special case, the preimage βS′ lies in Br(S′). The statement now
follows from the following observation:

Lemma 5.3. Let S, S′ be two smooth surfaces, and f : S′ → S a proper bimero-
morphic map. Then any class β ∈ Br′(S) with βS′ ∈ Br(S′) lies in Br(S).

Proof. As in the proof for Proposition 1.4, it is more convenient to work with
Azumaya algebras than with principal bundles. Let B be an Azumaya OS′ -algebra
representing βS′ . Then the double dual A = f∗(B)∨∨ is coherent reflexive OS-
algebra, which is actually locally free, because any reflexive sheaf on a complex
manifold is locally free in codimension two. I claim that A is Azumaya. For this,
consider the OX -algebra homomorphism

ϕ : A⊗Aop −→ End(A), A⊗A′ 7−→ (B 7→ ABA′).

Both sheaves are locally free, and the map is bijective on S − T , where T ⊂ S is
the discrete subset of all points s ∈ S with 1-dimensional fiber f−1(s). The set of
points where the map is not bijective is a Cartier divisor (choose local holomorphic
bases and take determinants) hence our map ϕ is bijective everywhere on S. This
means that A is an Azumaya algebra by [21], Theorem 5.

It remains to check that the Azumaya algebra A represents the cohomology class
β. This is easy for algebraic surfaces with Grothendieck’s purity results from [23],
Section 6. We already saw, however, that such purity results do not hold true in
the analytic situation. We shall use methods from Čech cohomology instead. The
argument runs as follows:

By Lemma 5.4 below, it suffices to check that the Azumaya OS′ -algebras A′ =
f∗(A) and B have the same cohomology class. We check this by construction explicit
2-cocycles. To do this, we first have to settle some technical points regarding the
existence of 2-cocycles for 2-cohomology classes. Choose an open covering Ui ⊂ S,
i ∈ I so that βUi = 0. After passing to a refinement, we may assume that every
s ∈ T is contained in precisely one Ui. The Azumaya OS′ -algebra B represents the
zero class on each preimage U ′

i = f−1(Ui), hence there is a locally free OU ′
i
-module

Ei and an isomorphism si : BU ′
i
→ End(Ei). The double duals Fi = f∗(Ei)∨∨ are

locally free OUi-modules, and the bijections si induce bijections ti : AUi → End(Fi),
by the same argument as above.

On the overlaps Uij = Ui ∩ Uj there are invertible sheaves Lij defined by the
condition Fi|Uij

⊗ Lij ' Fj |Uij
. We regard Uij 7→ Lij as a 1-cochain with respect

to the open covering U = (Ui)i∈I taking values in the presheaf H1O×S . The latter is
defined by Γ(U,H1O×S ) = Pic(U). As explained in [51], Lemma 3.1 the cochain Lij

is actually a cocycle. Things would be particularly nice if the Lij ∈ Pic(Uij) are
trivial. We can achieve this, for example, by first refining the covering to a covering
with Uij contractible (compare [6], Corollary I.5.2), and then further refining to
a covering that is Stein. However, the following argument works in more general
situations as well: By definition, complex-analytic spaces have a countable basis for
the topology, hence are paracompact. This implies Ȟ1(X,H1O×X) = 0, as explained
in [20], Chapter II, Proposition 5.10.1. So after passing to a refinement, we find
invertible OUi

-modules Li with Li|Uij
⊗Lij ' Lj |Uij

. Replacing Ei by Ei ⊗ f∗(Li),
which replaces Fi by Fi ⊗ Li, we may assume that all Lij are trivial.

Summing up, we placed ourselves into a situation in which there are isomor-
phisms tij : Fj |Uij → Fi|Uij . Choose such bijections subject to the conditions
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tii = id and tijtji = id. Now consider the 2-cochain λ ∈ Z2(U,O×S ) defined by

tjktij = λijktik

on the triple overlaps Uijk = Ui ∩Uj ∩Uk. According to Giraud ([19], Chapter IV,
Section 3.5, see also Chapter V, Section 4) this is a 2-cocycle whose cohomology
class represents the cohomology class of A.

By our construction, the holomorphic map U ′
ij → Uij is biholomorphic whenever

i 6= j. For such pair of indices, the isomorphisms tij may be regarded as isomor-
phisms t′ij : Ei|U ′

ij
→ Ej |U ′

ij
. In case i = j we define t′ii = id. This yields another

2-cocycle λ′ ∈ Z2(U′,O×S′) via

t′jkt′ij = λ′ijkt′ik,

whose cohomology class represents the cohomology class of B. By construction, the
local sections λijk ∈ Γ(Uijk,OS) map to the local section λ′ijk ∈ Γ(U ′

ijk,OS′) under
the canonical map. It follows that the Azumaya OS′ -algebras A′ and B have the
same class. �

It remains to check the following observation:

Lemma 5.4. Let f : S′ → S be a proper bimeromorphic map between smooth
surfaces. Then the canonical map H2(S,O×S )→ H2(S′,O×S′) is bijective.

Proof. Compare the long exact sequence

Pic(S) −→ H2(S, Z) −→ H2(S,OS) −→ H2(S,O×S ) −→ H3(S, Z)

with the corresponding sequence for S′, and use the vanishing Rpf∗(OS′) = 0 for
p > 0 and Rpf∗(Z) = 0 for p 6= 0, 2. �

6. Elliptic surfaces

In this section we apply Theorem 5.1 to elliptic surfaces. Recall that an elliptic
surface is a smooth compact surface S, together with a holomorphic map f : S → B
onto a smooth compact curve B so that almost all fibers Sb = f−1(b), b ∈ B are
elliptic curves. Elliptic surfaces might have any Kodaira dimension κ(S) ≤ 1, and
any algebraic dimension a(S) ≤ 2. Recall that the algebraic dimension a(S) is
the transcendence degree of the field of meromorphic functions on S. Surfaces
with a(S) = 2 are algebraic, surfaces with a(S) = 1 are elliptic, and surfaces with
a(S) = 0 contain only finitely many curves. An algebraic surface might have several
elliptic structures, even infinitely many. In contrast, surfaces with a(S) ≤ 1 have
at most one elliptic structure, if any.

Proposition 6.1. Let S be an elliptic surface. Then Br(S) = Br′(S).

Proof. Fix an elliptic fibration f : S → B. It is possible to compute the fundamental
group π1(S) in terms of this fibration, see [58]. This fundamental group, however,
might be rather small, due to the influence of singular fibers. Things simplify much
if one throws away the singular fibers:

Choose finitely many points b1, . . . , bm ∈ B such that all singular fibers occur
among the fibers Sb1 , . . . , Sbm

, and that the complement V = B − {b1, . . . bm} is
hyperbolic. The latter means that its universal covering space is the upper half
plane Ṽ = H. Set U = S −

⋃m
i=1 Sbi . Then the induced map U → V is proper and
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smooth with elliptic fibers. Let F ⊂ U be any fiber. The long homotopy sequence
reads

π2(V ) −→ π1(F ) −→ π1(U) −→ π1(V ) −→ 0.

By construction, the group π1(V ) is free and π2(V ) = π2(Ṽ ) vanishes. We conclude
that π1(U) is an extension of a free group by Z⊕2. Arguing as in the proof for
Proposition 3.2, we see that π1(U) is good. Moreover, the universal covering Ũ =
H×C is contractible. This means that Proposition 5.1 applies to our situation, and
we conclude Br(S) = Br′(S). �

Let me close this section with some remarks about the relation of the elliptic
surface S → B to the corresponding jacobian elliptic surface X → B. According
to Kodaira [39], any elliptic surface f : S → B (without exceptional curves and
multiple fibers) comes along with two invariants: The homological invariant G =
R1f∗(Z), and the functional invariant j : B → P1. The latter attaches to each point
with smooth fiber the j-invariant of its fiber. Kodaira showed that the jacobian
fibration X → B of S → B has the same homological and functional invariant. By
construction, the jacobian fibration has a section, so X is an algebraic surface. It
is not difficult to see that the topological part of Br(S) and Br(X) coincide. In
contrast, the analytic part might differ drastically due to jumps in Picard numbers.
The situation is simpler for algebraic surfaces S: Here Nori [48] showed that ρ(S) =
ρ(X), and hence Br(S) ' Br(X).

7. Surfaces of class VII

In this section we analyze smooth compact surfaces S of class VII. By definition,
this means b1(S) = 1. Such surfaces are not algebraic, not even Kähler. They form
the only class of surfaces resisting complete classification. We first observe that the
cohomological Brauer group is rather small:

Lemma 7.1. For surfaces S of class VII we have H2(S,O×S ) = H3(S, Z)

Proof. The exponential sequence gives an exact sequence

H2(S,OS) −→ H2(S,O×S ) −→ H3(S, Z) −→ H3(S,OS).

The term on the right vanishes for dimension reason. and the term on the left also
vanishes, as Kodaira showed in [40], Theorem 26. �

Recall that a global spherical shell consists of an holomorphic open embedding
of some U =

{
z ∈ C2 | 1− ε < |z| < 1 + ε

}
with 0 < ε < 1 into S so that the

complement S − U is connected. A surface admitting a global spherical shell is
of class VII. Such surfaces are not very interesting with respect to Grothendieck’s
question on Brauer groups:

Proposition 7.2. Let S be a smooth compact surface containing a global spherical
shell. Then Br(S) = Br′(S) = 0.

Proof. We just saw that the analytic part of Br′(S) vanishes. Using a Mayer–
Vietoris argument, Dloussky showed in [12], Lemma 1.10 that H2(S, Z) is torsion
free. In other words, H3(S, Z) is torsion free, so the topological part of the Brauer
group vanishes as well. �

We now turn to surfaces of class VII with b2 = 0. Such surfaces are indeed
classified. If there is a curve C ⊂ S, then Kodaira proved that S is a Hopf surface
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[40], Theorem 34. We already settled this case in Corollary 4.3. If there is no
curve at all on S, then the classification results of Inoue apply [31]. He showed that
the universal covering is S̃ = H × C and that π1(S) is polycyclic. Actually, Inoue
made an additional technical assumption, namely the existence of a twisted vector
field. Later, the work of Bogomolov [4], Li, Yau, and Zheng [42], [43], and Teleman
[56] revealed that this assumption automatically holds. One refers to surfaces with
b1 = 1 and b2 = 0 without curves as Inoue surfaces. Summing up, we may apply
Theorem 4.1 and deduce:

Proposition 7.3. Let S be a smooth compact surface of class VII whose minimal
model has b2 = 0. Then Br(S) = Br′(S).

Inoue showed that there are precisely three types of Inoue surfaces, which are
denoted by SM , S+

N,p,q,r;t, and S−N,p,q,r. Let us take a closer look at the first type
SM . The parameter M = (mij) is a matrix M ∈ SL3(Z) that, viewed as a complex
matrix, has one real eigenvalue α > 1 and two nonreal eigenvalues β, β̄ ∈ C. The
surfaces S = SM has universal covering H × C, and the fundamental group π1(S)
is a split extension

(5) 0 −→ Z⊕3 −→ π1(S) −→ Z −→ 0.

The generator g ∈ Z of the quotient acts on elements x ∈ Z⊕3 via gxg−1 = Mx.
It requires some notation to describe the action of π1(S) on the universal covering
S̃ = H × C. I do not want to write this down here, and refer to [31], Section 2.
However, note that the condition on the eigenvalues of M ensures that this action
is properly discontinuous.

One easily computes that H1(SM , Z) = πab
1 (SM ) is isomorphic to the abelian

group Z ⊕ coker(M − id), hence Br(SM ) = Br′(SM ) = coker(M − id). To obtain
examples of matrices M ∈ SL3(Z) with required properties, just choose a polyno-
mial p(T ) = T 3 +a2T

2 +a1T +a0 with integral coefficients admitting only one real
root α, and α > 1. This holds, for example, if a0 � 0 with a1, a2 fixed. Now

M =

0 0 −a0

1 0 −a1

0 1 −a2


is a matrix with characteristic polynomial det(T−M) = p(T ), hence has the desired
properties. The greatest common divisor δi of the i-minors of the matrix M − id
are δ1 = δ2 = 1 and δ3 = p(1) = 1 + a0 + a1 + a2. Hence the invariant factors
for the submodule im(M − id) ⊂ Z⊕3 are 1, 1, p(1). The upshot is that Br(SM ) is
cyclic of order |1 + a0 + a1 + a2|, which could be arbitrarily large.

8. Main result and open questions

In this section I gather our results on complex-analytic surfaces. In the following,
let me call a compact smooth surface S hypothetical if it is of class VII, but its min-
imal model is neither Hopf, Inoue, nor contains a global spherical shell. According
to the GSS-Conjecture such surface should not exist.

Theorem 8.1. Let S be a smooth compact surface. Suppose that S is not hypo-
thetical. Then Br(S) = Br′(S).
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Proof. If S is algebraic, this is Grothendieck’s result [22], Section 2. For nonalge-
braic surfaces we have to go through Kodaira’s classification [2], Section IV: If the
algebraic dimension is a(S) = 1, then S is elliptic and Proposition 6.1 applies. If
a(S) = 0, then S is either a K3-surface, a 2-dimensional complex torus, or a surface
of class VII. Huybrechts and myself settled the case of K3-surfaces in [30], whereas
Elencwajg and Narasimhan treated complex tori [16], compare also Corollary 4.2.
We treated nonhypothetical class VII surfaces in Section 7. �

I want to finish the paper by stating some open problems:

(1) Suppose S is a minimal surface of class VII with b2 > 0. Is it possible to prove
that H3(S, Z), or equivalently H2(S, Z) are torsion free, without referring to the
GSS-conjecture? This would entail Br′(S) = 0.

(2) Does Br(S) = Br′(S) hold true for singular compact surfaces?

(3) Suppose S is a smooth compact surface, and P → S is a topological principal
PGLr(C)-bundle. Under what conditions does there exist a holomorphic structure
on P? There is a lot of work on the corresponding question for principal GLr(C)-
bundles. We refer to Br̂ınzănescu’s book [7].

References

[1] Y. Abe, K. Kopfermann: Toroidal groups. Lecture Notes in Math. 1759. Springer, Berlin,

2001.

[2] W. Barth, C. Peters, A. Van de Ven: Compact complex surfaces. Ergeb. Math. Grenzge-
biete (3) 4, Springer, Berlin, 1984.
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[30] D. Huybrechts, S. Schröer: The Brauer group for analytic K3-surfaces. Int. Math. Res.
Not. 50 (2003), 2687–2698.

[31] M. Inoue: On surfaces of Class VII0. Invent. Math. 24 (1974), 269–310.

[32] B. Iversen: Brauer group of a linear algebraic group. J. Algebra 42 (1976), 295–301.
[33] B. Iversen: Cohomology of sheaves. Springer, Berlin, 1986.

[34] K. Iwasawa: On some types of topological groups. Ann. of Math. 50, (1949), 507–558.

[35] G. Karpilovsky: The Schur multiplier. London Math. Soc. Monogr. 2. Clarendon Press,
New York, 1987.

[36] M. Kato: Topology of Hopf surfaces. J. Math. Soc. Japan 27 (1975), 222–238.

[37] M. Kato: Erratum to “Topology of Hopf surfaces”. J. Math. Soc. Japan 41 (1989), 173–174.
[38] H. Kazama: ∂̄ cohomology of (H, C)-groups. Publ. Res. Inst. Math. Sci. 20 (1984), 297–

317.
[39] K. Kodaira: On compact analytic surfaces II. Ann. of Math. 77 (1963), 563–626.

[40] K. Kodaira: On the structure of compact complex analytic surfaces II. Am. J. Math. 88

(1966), 682–721.
[41] H. Laufer: Normal two-dimensional singularities. Annals of Mathematics Studies 71.

Princeton University Press, Princeton, 1971.

[42] J. Li, S.-T. Yau, F. Zheng: A simple proof of Bogomolov’s theorem on class VII0 surfaces
with b2 = 0. Illinois J. Math. 34 (1990), 217–220.

[43] J. Li, S.-T. Yau, F. Zheng: On projectively flat Hermitian manifolds. Comm. Anal. Geom.

2 (1994), 103–109.
[44] D. Mall: The cohomology of line bundles on Hopf manifolds. Osaka J. Math. 28 (1991),

999–1015.

[45] J. Maurer: Auflösung der Entartungen holomorpher Abbildungen zwischen zweidimen-
sionalen Mannigfaltigkeiten. Math. Ann. 234 (1978), 89–95.

[46] J. Milne: Étale cohomology. Princeton Mathematical Series, 33. Princeton University

Press, Princeton, 1980.
[47] R. Narasimhan: On the homology groups of Stein spaces. Invent. Math. 2 (1967) 377–385.
[48] M. Nori: On the lattice of transcendental cycles on an elliptic surface. Math. Z. 193 (1986),

105–112.

[49] H. Schneebeli: Group extensions whose profinite completion is exact. Arch. Math. (Basel)
31 (1978/79), 244–253.
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