Algebraic Geometry I

Sheet 6

Excercise 1. Let R be a ring and $n \ge 1$ be some integer. We consider the polynomial ring S = R[u, v] as graded with respect to the monoid $\Lambda = \mathbb{Z}/n\mathbb{Z}$ of congruence classes modulo n, by declaring

$$\deg(u) = 1$$
 and $\deg(v) = -1$.

Show that the subring S_0 is isomorphic to $R[x, y, z]/(z^n - xy)$.

Exercise 2. Let $S = \bigoplus_{\lambda \in \Lambda} S_{\lambda}$ be a Λ -graded ring, and $\mathfrak{a} \subset S$ be an ideal. Verify that the subgroup

$$\mathfrak{a}^{\mathrm{hgs}} = \bigoplus_{\lambda \in \Lambda} (\mathfrak{a} \cap S_{\lambda})$$

inside S is a homogeneous ideal contained in \mathfrak{a} , and indeed the largest such ideal. Furthermore, check that \mathfrak{p}^{hgs} is prime if \mathfrak{p} is prime, provided $\Lambda = \mathbb{N}$.

Exercise 3. Let $S = \bigoplus_{i \ge 0} S_i$ be a graded ring. Show that the homogeneous spectrum $\operatorname{Proj}(S)$ is empty if and only if the irrelevant ideal S_+ consists only of nilpotent elements.

Exercise 4. Let $S = \bigoplus_{i \ge 0} S_i$ be a graded ring. Prove that S is noetherian if and only if S_0 is noetherian and the S_0 -algebra S is of finite type.

Abgabe: Bis Donnerstag, den 2. Dezember um 23:55 Uhr über ILIAS.