Algebraic Geometry I

Sheet 6

Excercise 1. Let R be a ring and $n \geq 1$ be some integer. We consider the polynomial ring $S=R[u, v]$ as graded with respect to the monoid $\Lambda=\mathbb{Z} / n \mathbb{Z}$ of congruence classes modulo n, by declaring

$$
\operatorname{deg}(u)=1 \quad \text { and } \quad \operatorname{deg}(v)=-1
$$

Show that the subring S_{0} is isomorphic to $R[x, y, z] /\left(z^{n}-x y\right)$.
Exercise 2. Let $S=\bigoplus_{\lambda \in \Lambda} S_{\lambda}$ be a Λ-graded ring, and $\mathfrak{a} \subset S$ be an ideal. Verify that the subgroup

$$
\mathfrak{a}^{\mathrm{hgs}}=\bigoplus_{\lambda \in \Lambda}\left(\mathfrak{a} \cap S_{\lambda}\right)
$$

inside S is a homogeneous ideal contained in \mathfrak{a}, and indeed the largest such ideal. Furthermore, check that $\mathfrak{p}^{\text {hgs }}$ is prime if \mathfrak{p} is prime, provided $\Lambda=\mathbb{N}$.

Exercise 3. Let $S=\bigoplus_{i \geq 0} S_{i}$ be a graded ring. Show that the homogeneous spectrum $\operatorname{Proj}(S)$ is empty if and only if the irrelevant ideal S_{+}consists only of nilpotent elements.

Exercise 4. Let $S=\bigoplus_{i \geq 0} S_{i}$ be a graded ring. Prove that S is noetherian if and only if S_{0} is noetherian and the S_{0}-algebra S is of finite type.

Abgabe: Bis Donnerstag, den 2. Dezember um 23:55 Uhr über ILIAS.

