Algebraic Geometry I

Sheet 2

Excercise 1. Let X be a scheme, R be a ring, and $\varphi : R \to \Gamma(X, \mathscr{O}_X)$ be a homomorphism. For $x \in X$ we define $f(x) \in \operatorname{Spec}(R)$ as the point corresponding to the kernel for the composition

$$R \xrightarrow{\varphi} \Gamma(X, \mathscr{O}_X) \xrightarrow{\mathrm{res}} \mathscr{O}_{X,x} \xrightarrow{\mathrm{pr}} \mathscr{O}_{X,x} / \mathfrak{m}_x = \kappa(x).$$

Check that the resulting map $f: X \to \operatorname{Spec}(R)$ is continuous.

Exercise 2. Let X be a scheme. Show that X is quasiseparated if and only if there is an affine open covering $X = \bigcup_{\lambda \in L} W_{\lambda}$ such that the intersections $W_{\lambda\mu} = W_{\lambda} \cap W_{\mu}$ are quasicompact.

Exercise 3. Let (U, \mathcal{O}_U) and (V, \mathcal{O}_V) be two schemes. Suppose we have open sets $U' \subset U$ and $V' \subset V$, together with an isomorphism of schemes

$$(f,\varphi): (U',\mathscr{O}_{U'}) \longrightarrow (V',\mathscr{O}_{V'}).$$

Endow the set-theoretic union $X = U \cup V$, where the points $x \in U'$ are identified with $f(x) \in V'$, with a canonical scheme structure, by declaring a topology and defining the structure sheaf.

Exercise 4. Let T_0 and T_1 be indeterminates. The projective line $X = \mathbb{P}^1_R$ over a ring R is defined by the above gluing construction for $U = \operatorname{Spec} R[T_0]$ and $V = \operatorname{Spec} R[T_1]$, and

$$U' = \operatorname{Spec} R[T_0^{\pm 1}]$$
 and $V' = \operatorname{Spec} R[T_1^{\pm 1}])$ and $\varphi(T_1) = T_0^{-1}$.

Prove that the affinization of this scheme is given by

$$(\mathbb{P}^1_R)^{\mathrm{aff}} = \mathrm{Spec}(R),$$

by computing the ring of global sections $\Gamma(X, \mathscr{O}_X)$ with the sheaf axiom.

Abgabe: Bis Donnerstag, den 4. November um 23:55 Uhr über ILIAS.