Übungen zur Vorlesung Lineare Algebra II

Blatt 6

Aufgabe 1. (i) Sei $h = aT^2 + bT + c \in K[T]$ ein quadratisches Polynom und $h' \in K[T]$ seine formale Ableitung. Berechnen Sie mit dem euklidischen Algorithmus

$$g = ggT(h, h').$$

Folgern Sie, dass h separabel ist genau dann, wenn die Diskriminante

$$\Delta = b^2 - 4ac \in K$$

nicht verschwindet. Machen Sie dabei die Fallunterscheidung $p \neq 2$ und p=2 für die Charakteristik $p \geq 0$ des Körpers K.

(ii) Schliessen Sie damit, dass eine Matrix $A \in \operatorname{Mat}_2(K)$, die keine Skalarmatrix ist, genau dann halbeinfach ist, wenn $\operatorname{Tr}(A)^2 \neq 4 \det(A)$ gilt.

Aufgabe 2. Sei K ein Körper und

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \in \text{Mat}_3(K).$$

- (i) Berechnen Sie das charakteristische Polynom $\chi_A(T) \in K[T]$.
- (ii) Zerlegen Sie es in Linearfaktoren, indem Sie Eigenwerte raten.
- (iii) Machen Sie eine Liste der möglichen Minimalpolynome.
- (iv) Bestimmen Sie das Minimalpolynom $\mu_A \in K[T]$, indem Sie in die möglichen Polynome einsetzen.
- (v) Entscheiden Sie, ob A trigonalisierbar oder diagonalisierbar ist.

Aufgabe 3. Gegeben sei eine Matrix

$$A \in \operatorname{Mat}_3(\mathbb{R}),$$

die über $K=\mathbb{R}$ nicht trigonalisierbar ist. Zeigen Sie, dass sie über $K=\mathbb{C}$ diagonalisierbar sein muss. Geben Sie ein explizites Beispiel an. Gilt diese Eigenschaft auch für reelle 4×4 -Matrizen?

Aufgabe 4. Sei V ein endlich-dimensionaler K-Vektorraum,

$$f: V \longrightarrow V$$

ein Endomorphismus und $U\subset V$ ein f-invarianter Untervektorraum. Beweisen Sie: Wenn $f:V\to V$ trigonalisierbar oder diagonalisierbar ist, so gilt die entsprechende Eigenschaft auch für die induzierten Endomorphismen

$$U \longrightarrow U$$
 und $V/U \longrightarrow V/U$.

Abgabe: Bis Donnerstag, den 21.5. um 8:25 Uhr im Zettelkasten.