Übungen p-adische Zahlen

Blatt 8

Aufgabe 1. Finden Sie ein $\epsilon > 0$ so, daß im Körper $\mathbb{Q}_2^{\text{alg}}$ gilt:

$$x \in B_{<\epsilon}(\sqrt{-1}) \implies \sqrt{-1} \in \mathbb{Q}_2(x).$$

Aufgabe 2. Sei K ein Körper von Charakteristik Null und $K \subset E$ eine endliche Körpererweiterung. Zeigen Sie, daß diese Körpererweiterung in einer endlichen Galois-Erweiterung $K \subset L$ enthalten ist.

Aufgabe 3. Sei $f_n \in \mathbb{Q}_p[X]$, $n \geq 0$ eine Folge von normierten Polynomen vom festen Grad $d \geq 1$, die koeffizientenweise gegen ein Polynom $f \in \mathbb{Q}_p[X]$ konvergiert. Sei $a \in \mathbb{Q}_p^{\text{alg}}$ eine Wurzel von f. Zeigen Sie, daß es für alle $n \gg 0$ Elemente $a_n \in \mathbb{Q}_p(a)$ mit folgenden Eigenschaften gibt: $f_n(a_n) = 0$ und $\lim_{n \to \infty} (a_n) = a$.

Aufgabe 4. Sei $K = \mathbb{C}_p$. Zeigen Sie, daß es im Bewertungsring $O_K = B_{\leq 1}(0)$ eine Folge $a_n, n \geq 0$ geben muss, die keinen Häufungspunkt besitzt.

Abgabe: Bis Montag den 14.12. um 11:00 Uhr in den Zettelkästen.