Übungen p-adische Zahlen

Blatt 6

Aufgabe 1. Wir betrachten die Folgen

$$a_n = 1/n, \quad b_n = n, \quad c_n = n!, \quad d_n = 1/n!$$

im ultrametrischen Körper \mathbb{Q}_p . Welche dieser Folgen konvergieren? Welche besitzen einen Häufungspunkt?

Aufgabe 2. Zeigen Sie, daß eine Folge $x_n \in X$, $n \geq 0$ in einem ultrametrischen Raum X genau dann eine Cauchy-Folge ist, wenn die reelle Folge $\lambda_n = d(x_{n+1}, x_n) \in \mathbb{R}_{\geq 0}, n \geq 0$ eine Nullfolge ist.

Aufgabe 3. Sei K ein ultrametrischer Körper und $x_n \in K$, $n \geq 0$ eine konvergente Folge mit Grenzwert $x \neq 0$. Zeigen Sie, daß dann $|x| = |x_n|$ für alle $n \gg 0$.

Aufgabe 4. Wir sahen bereits, daß in einem ultrametrischen Raum X die Bälle $B_{<\epsilon}(x) \subset X$ offene und zugleich abgeschlossene Teilmengen sind. Beweisen Sie, daß es in $X = \mathbb{Q}_p$ offene Teilmengen geben muß, die nicht abgeschlossen sind.

Abgabe: Bis Montag den 30.11. um 11:00 Uhr in den Zettelkästen.