Übungen zur Linearen Algebra II

Musterlösung Blatt 1

Aufgabe 1. Es gilt dim $V = n^2$ und dim U = n und nach Vorlesung dim $V/U = \dim V - \dim U$, also dim $V/U = n^2 - n$.

Aufgabe 2.

(i) Reflexivität: Für alle $x \in G$ gilt $x = exe^{-1}$.

Symmetrie: Ist $x' = gxg^{-1}$, dann gilt $x = g^{-1}gxg^{-1}g = g^{-1}x'g = g^{-1}x'(g^{-1})^{-1}$.

Transitivität: Aus $x' = gxg^{-1}$ und $x'' = hx'h^{-1}$ folgt $x'' = ghxh^{-1}g^{-1} = (gh)x(gh)^{-1}$.

(ii) Da K algebraisch abgeschlossen ist, zerfällt das charakteristische Polynom $p_A \in K[t]$. Nach LA 1, ist A daher triagonalisierbar, d.h. es gibt eine invertierbare Matrix $S \in GL(n, K)$ und eine obere Dreiecksmatrix $B \in Mat(n, K)$, so dass $A = SBS^{-1}$ gilt.

Aufgabe 3.

(i) Beachten Sie, dass die Teilmenge $\operatorname{Aut}_K(V) \subset \operatorname{Hom}_K(V,V)$ (bzw. auch $\operatorname{Aut}_K(W) \subset \operatorname{Hom}_K(W,W)$) eine Gruppe ist. Insbesondere ist sie abgeschlossen bezüglich Multiplikation und es jedes Element besitzt ein Inverses.

Reflexivität: Für alle $f \in H$ gilt $f = \operatorname{Id}_W f \operatorname{Id}_V^{-1}$.

Symmetrie: Ist $f' = hfg^{-1}$, dann gilt $f = h^{-1}hfg^{-1}g = h^{-1}f'g = h^{-1}f'(g^{-1})^{-1}$.

Transitivität: Aus $f' = hfg^{-1}$ und $f'' = uf'v^{-1}$ folgt $f'' = uhfg^{-1}v^{-1} = (uh)f(vg)^{-1}$.

(ii) Der Rang einer Abbildung ist auf seiner Ähnlichkeitsklasse eindeutig bestimmt und kann alle Werte zwischen 0 und m annehmen. Das führen wir im folgenden genauer aus.

Da Automorphismen $g \in \operatorname{Aut}_K(V)$, $h \in \operatorname{Aut}_K(W)$ linear und bijektiv sind, bilden sie Basen auf Basen ab. Es gilt daher $\operatorname{rk}(f) = \operatorname{rk}(hfg^{-1})$ für alle $f \in H$. Also ist $\overline{\operatorname{rk}} \colon H/_{\sim} \to \mathbb{N}_0$, $[f] \mapsto \operatorname{rk}(f)$ wohldefiniert.

Nach LA 1 lassen sich für eine Abbildung $f \in H$ jeweils Basen y_1, \ldots, y_k in V und z_1, \ldots, z_l in W finden, so dass

$$(\operatorname{Mat}_{z}^{y}(f))_{ij} = \begin{cases} 1 & \text{wenn } (i,j) = (k,k), k = 1, \dots, \operatorname{rk}(f) \\ 0 & \text{sonst} \end{cases}$$

Haben zwei Abbildungen $f, f' \in H$ den gleichen Rang, so gibt es also Basen $y'_1, \ldots, y'_k \in V$ und $z'_1, \ldots, z'_l \in W$ mit $\operatorname{Mat}_z^y(f) = \operatorname{Mat}_{z'}^{y'}(f')$. Definiere $g \in \operatorname{Aut}(V)$ durch $g(y'_i) = y_i$ und $h \in \operatorname{Aut}(W)$ durch $h(z'_j) = z_j$. Dann gilt $\operatorname{Mat}_z^y(hf'g^{-1}) = \operatorname{Mat}_{z'}^{y'}(f')$, also ist $hf'g^{-1} = f$. Folglich ist $\overline{\operatorname{rk}}(f)$ injektiv und das Bild ist genau $\{0,\ldots,m\}$, da man $f \in H$ durch $\operatorname{Mat}_z^y(f)$ wie oben definieren kann.

Aufgabe 4. Da $f = T^2 + 1$ irreduzibel ist L nach Vorlesung ein Körper. Sei $x \in L \setminus \{0\}$ beliebig gegeben. Wähle einen Repräsentanten $g = \lambda + \mu T \in \mathbb{F}_3[T]$ von x. Da $\deg(g) < \deg(f)$ gibt es $a, b \in \mathbb{F}_3[T]$ mit ag + bf = 1. Dann ist $1_L = [ag + bf] = [a][g]$, also ist [a] das Inverse von [g] = x. Konkret berechnet man:

- (i) Wenn $x = [\lambda]$ mit $\lambda \in \mathbb{F}_3 \setminus \{0\}$ ist $x^{-1} = [\lambda^{-1}]$, also $[1]^{-1} = [1]$ und $[2]^{-1} = [2]$.
- (ii) Für $x = [\mu T]$ mit $\mu \neq 0$ gilt $x^{-1} = [\mu^{-1}T^{-1}] = [-\mu^{-1}T]$, da $[T]^2 + 1 = 0$, also $[T]^{-1} = [2T]$ und folglich $[2T]^{-1} = [T]$
- (iii) Sei x = [T+1]. Dann ist $T^2 + 1 = (T-1)(T+1) + 2$. Also $[T+1]^{-1} = [-2^{-1}(T-1)] = [T+2]$. Folglich gilt auch $[T+2]^{-1} = [T+1]$.
- (iv) Ist x = [2T+1], so folgt $[2T+1]^{-1} = 2^{-1}[T+2]^{-1} = [2(T+1) = [2T+2]$ und schliesslich $[2T+2]^{-1} = [2T+1]$.

Also haben wir alle $3^2 - 1 = 8$ Inverse bestimmt.