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What is a branch group?

What is a branch group?

2 definitions:
Algebraic Groups whose lattice of subnormal subgroups is similar to the

structure of a regular rooted tree.
Geometric Groups acting level-transitively on a spherically homogeneous

rooted tree T and having a subnormal subgroup structure
similar to that of Aut(T ).
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What is a branch group?

Definition
(mn)n≥0 sequence of integers ≥ 2.
T is a spherically homogeneous rooted tree of type (mn)n if T is a
tree with root v0 of degree m0 s.t. every vertex at distance n ≥ 1 from v0
has degree mn + 1.

Ln = vertices at distance n from root

v0

...

. . .
...

...

. . .
...

. . .

. . .

v

...

. . .
...

m0

m1

L0

L1

L2

Tv

Tv is subtree rooted at v
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What is a branch group?

Rigid Stabilisers

Definition
T - spherically homogeneous tree of type (mn)n. G acts faithfully on T .
ristG (v) := {g ∈ G : g fixes all vertices outside Tv} is the rigid stabiliser
of v ∈ T .
ristG (n) :=

∏
v∈Ln

ristG (v) is the rigid stabiliser of level n.

v

Tv
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What is a branch group?

Branch Group
Definition and Example

Definition
G acts as a branch group on T iff for every n:

1 G acts transitively on Ln (‘acts level-transitively on T ’)
2 |G : ristG (n)| <∞

Definition
G is branch if it acts faithfully as a branch group on some T .

Example

For all n, A = Aut(T ) acts transitively on Ln with kernel ristA(n).
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What is a branch group?

Example: Gupta–Sidki p-groups

T = T (p), p - odd prime

a := (1 2 . . . p) on L1
b := (a, a−1, 1, . . . , 1, b).

G := 〈a, b〉
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What is a branch group?

Example: (First) Grigorchuk Group

T = T (2) - binary tree (mn = 2)

a := (12) on L1
b := (a, c)
c := (a, d)

d := (1, b)

Γ := 〈a, b, c , d〉
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Why do we study them?

Solve Open Problems

General Burnside Problem
Is every finitely generated torsion group finite?
Gupta–Sidki, ’83 Gupta–Sidki p-groups are just infinite p-groups.

Every finite p-group is contained in the Gupta–Sidki p-group.
Grigorchuk, ’80 Grigorchuk group is a just infinite 2-group.

Other problems
Grigorchuk group is first group shown to have intermediate word growth.
Also first group shown to be amenable but not elementary amenable.
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Why do we study them?

Just infinite groups

Definition
G is just infinite if it is infinite and all its proper quotients are finite.

Lemma
Every infinite finitely generated (f.g.) group has a just infinite quotient.

Theorem (Wilson, ’70)

The class of f.g. just infinite groups splits into 3 classes:

(just infinite) branch groups
groups with a finite index subgroup H s.t. H =

∏
k L for some k and

L is
hereditarily just infinite (all subgroups of finite index are just infinite)
simple

Proved by looking at lattice of subnormal subgroups.
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Subgroup structure

Commensurability

Definition
G and H are (abstractly) commensurable if they have isomorphic finite
index subgroups.

How many commensurability classes of (f.g.) subgroups can a group have?

1 class finite groups
2 classes Z, Grigorchuk group [Grigorchuk–Wilson, ’03]
3 classes free non-abelian groups,

Gupta–Sidki 3-group?

Theorem (G, ’12)

All finitely generated infinite subgroups of the Gupta–Sidki 3-group G are
commensurable with G or G × G.

Are these classes different?
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Subgroup structure

Finite index subgroups of branch groups

Theorem (Grigorchuk, ’00)

If G is branch and K E G then there exists n such that ristG (n)′ ≤ K.

Theorem (G–Wilson, ’13)

Let G branch, K / H ≤f G.
For n� 1 there is some H-orbit X on Ln such that

ristG (X )′ ≤ K and K ∩ ristG (Ln \ X )′ = 1.

We can use this to give an isomorphism invariant for H:

Definition
b(H) := maximum number of infinite normal subgroups of H that generate
their direct product.
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Subgroup structure

Finite index subgroups of branch groups

Theorem (G–Wilson, ’13)

Let G branch, K / H ≤f G.
For n� 1 there is some H-orbit X on Ln such that

ristG (X )′ ≤ K and K ∩ ristG (Ln)′ = 1.

Remark
The number of H-orbits on any layer is bounded (by |G : H|).
Say Ln = X1 t . . . t Xr , each Xi an H-orbit.
Then ristG (Xi )

′ / H and ristG (n)′ =
∏

ristG (Xi )
′ / H.

Corollary

b(H) = maximum number of orbits of H on any layer of T .
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Subgroup structure

How it all fits together

b(H) behaves well under direct products

Let H ≤f H1 × . . .× Hr be subdirect; b(Hi ) finite.
Then b(H) = b(H1) + . . . + b(Hr ).

Easy lemma
Let H ≤f G act like a p-group on every layer of the p-regular tree.
Then b(H) ≡ 1 mod p − 1.

Corollary
Let Γ1, Γ2 be direct products of n1, n2 branch groups acting like p-groups
on every layer of the p-regular tree.
If Γ1 and Γ2 are commensurable, then n1 ≡ n2 mod p − 1.

So the Gupta–Sidki 3-group has 3 commensurability classes of f.g.
subgroups. :)
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Subgroup structure

Thank you!
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