Subgroup structure of branch groups

Alejandra Garrido

University of Oxford

Groups St Andrews, St Andrews 3–11 August 2013

3 × 4 3 ×

Outline

2 Why do we study them?

э

(B)

What is a branch group?

2 definitions:

Algebraic Groups whose lattice of subnormal subgroups is similar to the structure of a regular rooted tree.

Geometric Groups acting level-transitively on a spherically homogeneous rooted tree T and having a subnormal subgroup structure similar to that of Aut(T).

Definition

 $(m_n)_{n\geq 0}$ sequence of integers ≥ 2 .

T is a spherically homogeneous rooted tree of type $(m_n)_n$ if *T* is a tree with root v_0 of degree m_0 s.t. every vertex at distance $n \ge 1$ from v_0 has degree $m_n + 1$.

 $\mathcal{L}_n =$ vertices at distance *n* from root

 T_v is subtree rooted at v

Alejandra Garrido (Oxford)

∃ → (∃ →

Rigid Stabilisers

Definition

T - spherically homogeneous tree of type $(m_n)_{n}$. G acts faithfully on T.

 $rist_G(v) := \{g \in G : g \text{ fixes all vertices outside } T_v\}$ is the **rigid stabiliser** of $v \in T$.

 $rist_G(n) := \prod_{v \in \mathcal{L}_n} rist_G(v)$ is the rigid stabiliser of level n.

Branch Group Definition and Example

Definition

G acts as a branch group on T iff for every n:

- G acts transitively on \mathcal{L}_n ('acts level-transitively on \mathcal{T} ')
- $|G: rist_G(n)| < \infty$

Branch Group Definition and Example

Definition

G acts as a branch group on T iff for every n:

- G acts transitively on \mathcal{L}_n ('acts level-transitively on \mathcal{T} ')
- $|G: rist_G(n)| < \infty$

Definition

G is branch if it acts faithfully as a branch group on some T.

(個) () ヨト (ヨト) ヨ

Branch Group Definition and Example

Definition

G acts as a branch group on T iff for every n:

• G acts transitively on \mathcal{L}_n ('acts level-transitively on \mathcal{T} ')

$$|G: rist_G(n)| < \infty$$

Definition

G is branch if it acts faithfully as a branch group on some T.

Example

For all n, A = Aut(T) acts transitively on \mathcal{L}_n with kernel $rist_A(n)$.

(日) (周) (日) (日) (日)

Example: Gupta–Sidki *p*-groups

T = T(p), p - odd prime

$$\begin{array}{ll} \textbf{a} := (1 \ 2 \ \dots \ p) \ \text{on} \ \mathcal{L}_1 & G := \langle \textbf{a}, b \rangle \\ \textbf{b} := (\textbf{a}, \textbf{a}^{-1}, 1, \dots, 1, b). \end{array}$$

Example: Gupta–Sidki p-groups

T = T(p), p - odd prime

★ ○ ★ ○ ★ ○ ★ ○ ★ ○ ○ ○

Example: Gupta–Sidki p-groups

$$T = T(2)$$
 - binary tree $(m_n = 2)$

$$a := (12) \text{ on } \mathcal{L}_1$$

 $b := (a, c)$
 $c := (a, d)$
 $\Gamma := \langle a, b, c, d \rangle$

э

・ 伺 ト ・ ヨ ト ・ ヨ ト

.

▲御入 ★ 国入 ★ 国入 二 国

Outline

1) What is a branch group?

∃ → (∃ →

э

Solve Open Problems

General Burnside Problem

Is every finitely generated torsion group finite?

Gupta–Sidki, '83 Gupta–Sidki p-groups are just infinite p-groups. Every finite p-group is contained in the Gupta–Sidki p-group. Grigorchuk, '80 Grigorchuk group is a just infinite 2-group.

Solve Open Problems

General Burnside Problem

Is every finitely generated torsion group finite?

Gupta–Sidki, '83 Gupta–Sidki p-groups are just infinite p-groups. Every finite p-group is contained in the Gupta–Sidki p-group. Grigorchuk, '80 Grigorchuk group is a just infinite 2-group.

Other problems

Grigorchuk group is first group shown to have intermediate word growth. Also first group shown to be amenable but not elementary amenable.

Definition

G is just infinite if it is infinite and all its proper quotients are finite.

Lemma

Every infinite finitely generated (f.g.) group has a just infinite quotient.

A B M A B M

Definition

G is just infinite if it is infinite and all its proper quotients are finite.

Lemma

Every infinite finitely generated (f.g.) group has a just infinite quotient.

Theorem (Wilson, '70)

The class of f.g. just infinite groups splits into 3 classes:

Definition

G is just infinite if it is infinite and all its proper quotients are finite.

Lemma

Every infinite finitely generated (f.g.) group has a just infinite quotient.

Theorem (Wilson, '70)

The class of f.g. just infinite groups splits into 3 classes:

• (just infinite) branch groups

Definition

G is just infinite if it is infinite and all its proper quotients are finite.

Lemma

Every infinite finitely generated (f.g.) group has a just infinite quotient.

Theorem (Wilson, '70)

The class of f.g. just infinite groups splits into 3 classes:

- (just infinite) branch groups
- groups with a finite index subgroup H s.t. $H = \prod_k L$ for some k and L is
 - hereditarily just infinite (all subgroups of finite index are just infinite)
 - simple

Proved by looking at lattice of subnormal subgroups.

Alejandra Garrido (Oxford) Subgroup structure of branch groups St Andrews, August 2013 11 / 17

Outline

э

A B A A B A

-57

Definition

G and H are (abstractly) commensurable if they have isomorphic finite index subgroups.

Definition

G and H are (abstractly) commensurable if they have isomorphic finite index subgroups.

How many commensurability classes of (f.g.) subgroups can a group have?

Definition

G and H are (abstractly) commensurable if they have isomorphic finite index subgroups.

How many commensurability classes of (f.g.) subgroups can a group have?

1 class finite groups

Definition

G and *H* are **(abstractly) commensurable** if they have isomorphic finite index subgroups.

How many commensurability classes of (f.g.) subgroups can a group have?

- 1 class finite groups
- 2 classes $\,\mathbb{Z},$ Grigorchuk group [Grigorchuk–Wilson, '03]

A B A A B A

Definition

G and H are (abstractly) commensurable if they have isomorphic finite index subgroups.

How many commensurability classes of (f.g.) subgroups can a group have?

- 1 class finite groups
- 2 classes $\,\mathbb{Z},$ Grigorchuk group [Grigorchuk–Wilson, '03]
- 3 classes free non-abelian groups,

A B M A B M

Definition

G and H are (abstractly) commensurable if they have isomorphic finite index subgroups.

How many commensurability classes of (f.g.) subgroups can a group have?

- 1 class finite groups
- 2 classes $\,\mathbb{Z},$ Grigorchuk group [Grigorchuk–Wilson, '03]
- 3 classes free non-abelian groups, Gupta-Sidki 3-group?

A B M A B M

Definition

G and H are (abstractly) commensurable if they have isomorphic finite index subgroups.

How many commensurability classes of (f.g.) subgroups can a group have?

- 1 class finite groups
- 2 classes $\,\mathbb{Z},$ Grigorchuk group [Grigorchuk–Wilson, '03]
- 3 classes free non-abelian groups, Gupta-Sidki 3-group?

Theorem (G, '12)

All finitely generated infinite subgroups of the Gupta–Sidki 3-group G are commensurable with G or $G \times G$.

(日) (周) (日) (日) (日)

Definition

G and H are (abstractly) commensurable if they have isomorphic finite index subgroups.

How many commensurability classes of (f.g.) subgroups can a group have?

- 1 class finite groups
- 2 classes $\,\mathbb{Z},$ Grigorchuk group [Grigorchuk–Wilson, '03]
- 3 classes free non-abelian groups, Gupta-Sidki 3-group?

Theorem (G, '12)

All finitely generated infinite subgroups of the Gupta–Sidki 3-group G are commensurable with G or $G \times G$.

Are these classes different?

Theorem (Grigorchuk, '00)

If G is branch and $K \trianglelefteq G$ then there exists n such that $rist_G(n)' \le K$.

A B A A B A

Theorem (Grigorchuk, '00)

If G is branch and $K \trianglelefteq G$ then there exists n such that $rist_G(n)' \le K$.

Theorem (G–Wilson, '13)

Let G branch, $K \triangleleft H \leq_f G$. For $n \gg 1$ there is some H-orbit X on \mathcal{L}_n such that

 $rist_G(X)' \leq K$ and $K \cap rist_G(\mathcal{L}_n \setminus X)' = 1$.

▲帰▶ ▲注▶ ▲注▶ - 注 - のへの

Theorem (Grigorchuk, '00)

If G is branch and $K \trianglelefteq G$ then there exists n such that $rist_G(n)' \le K$.

Theorem (G–Wilson, '13)

Let G branch, $K \triangleleft H \leq_f G$. For $n \gg 1$ there is some H-orbit X on \mathcal{L}_n such that

$$rist_G(X)' \leq K$$
 and $K \cap rist_G(\mathcal{L}_n \setminus X)' = 1$.

We can use this to give an isomorphism invariant for H:

Definition

b(H) := maximum number of infinite normal subgroups of H that generate their direct product.

Alejandra Garrido (Oxford) Subgroup structure of branch groups St Andrews, August 2013 14 / 17

Theorem (G–Wilson, '13)

Let G branch, $K \triangleleft H \leq_f G$. For $n \gg 1$ there is some H-orbit X on \mathcal{L}_n such that

 $rist_G(X)' \leq K$ and $K \cap rist_G(\mathcal{L}_n)' = 1$.

Theorem (G–Wilson, '13)

Let G branch, $K \triangleleft H \leq_f G$. For $n \gg 1$ there is some H-orbit X on \mathcal{L}_n such that

$$\operatorname{rist}_G(X)' \leq K$$
 and $K \cap \operatorname{rist}_G(\mathcal{L}_n)' = 1$.

Remark

The number of *H*-orbits on any layer is bounded (by |G : H|). Say $\mathcal{L}_n = X_1 \sqcup \ldots \sqcup X_r$, each X_i an *H*-orbit. Then $rist_G(X_i)' \triangleleft H$ and $rist_G(n)' = \prod rist_G(X_i)' \triangleleft H$.

(個) () ヨト (ヨト) ヨ

Theorem (G–Wilson, '13)

Let G branch, $K \triangleleft H \leq_f G$. For $n \gg 1$ there is some H-orbit X on \mathcal{L}_n such that

$$\operatorname{rist}_G(X)' \leq K$$
 and $K \cap \operatorname{rist}_G(\mathcal{L}_n)' = 1$.

Remark

The number of *H*-orbits on any layer is bounded (by |G : H|). Say $\mathcal{L}_n = X_1 \sqcup \ldots \sqcup X_r$, each X_i an *H*-orbit. Then $rist_G(X_i)' \triangleleft H$ and $rist_G(n)' = \prod rist_G(X_i)' \triangleleft H$.

Corollary

b(H) = maximum number of orbits of H on any layer of T.

Alejandra Garrido (Oxford)

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

b(H) behaves well under direct products

Let $H \leq_f H_1 \times \ldots \times H_r$ be subdirect; $b(H_i)$ finite. Then $b(H) = b(H_1) + \ldots + b(H_r)$.

・ 伊 ト ・ ヨ ト ・ ヨ ト …

b(H) behaves well under direct products

Let $H \leq_f H_1 \times \ldots \times H_r$ be subdirect; $b(H_i)$ finite. Then $b(H) = b(H_1) + \ldots + b(H_r)$.

Easy lemma

Let $H \leq_f G$ act like a *p*-group on every layer of the *p*-regular tree. Then $b(H) \equiv 1 \mod p - 1$.

b(H) behaves well under direct products

Let $H \leq_f H_1 \times \ldots \times H_r$ be subdirect; $b(H_i)$ finite. Then $b(H) = b(H_1) + \ldots + b(H_r)$.

Easy lemma

Let $H \leq_f G$ act like a *p*-group on every layer of the *p*-regular tree. Then $b(H) \equiv 1 \mod p - 1$.

Corollary

Let Γ_1, Γ_2 be direct products of n_1, n_2 branch groups acting like *p*-groups on every layer of the *p*-regular tree.

If Γ_1 and Γ_2 are commensurable, then $n_1 \equiv n_2 \mod p - 1$.

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ● ●

b(H) behaves well under direct products

Let $H \leq_f H_1 \times \ldots \times H_r$ be subdirect; $b(H_i)$ finite. Then $b(H) = b(H_1) + \ldots + b(H_r)$.

Easy lemma

Let $H \leq_f G$ act like a *p*-group on every layer of the *p*-regular tree. Then $b(H) \equiv 1 \mod p - 1$.

Corollary

Let Γ_1, Γ_2 be direct products of n_1, n_2 branch groups acting like *p*-groups on every layer of the *p*-regular tree.

If Γ_1 and Γ_2 are commensurable, then $n_1 \equiv n_2 \mod p - 1$.

So the Gupta–Sidki 3-group has 3 commensurability classes of f.g. subgroups.

Alejandra Garrido (Oxford)

b(H) behaves well under direct products

Let $H \leq_f H_1 \times \ldots \times H_r$ be subdirect; $b(H_i)$ finite. Then $b(H) = b(H_1) + \ldots + b(H_r)$.

Easy lemma

Let $H \leq_f G$ act like a *p*-group on every layer of the *p*-regular tree. Then $b(H) \equiv 1 \mod p - 1$.

Corollary

Let Γ_1, Γ_2 be direct products of n_1, n_2 branch groups acting like *p*-groups on every layer of the *p*-regular tree.

If Γ_1 and Γ_2 are commensurable, then $n_1 \equiv n_2 \mod p - 1$.

So the Gupta–Sidki 3-group has 3 commensurability classes of f.g. subgroups. :)

Alejandra Garrido (Oxford)

Thank you!

Alejandra Garrido (Oxford) Subgroup structure of branch groups St Andrews, August 2013 17 / 17

イロン 不聞と 不同と 不同と

Ξ.