The Congruence Subgroup Property for Groups of Tree Automorphisms

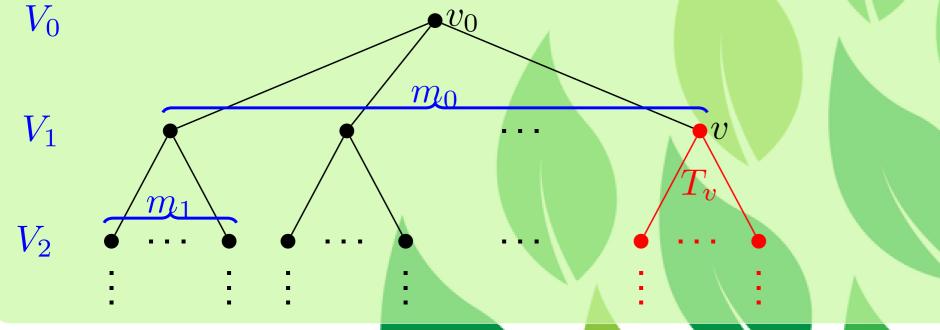
Alejandra Garrido

University of Oxford garrid

garridoangul@maths.ox.ac.uk

Rooted Trees

Let $(m_n)_{n\geq 0}$ be a sequence of integers with $m_n \geq 2$. A rooted tree of type $(m_n)_n$ is a tree T with root v_0 of degree m_0 such that every vertex at distance $n \geq 1$ from v_0 has degree $m_n + 1$.



(Weakly) branch actions

Let G act faithfully on T. Define

• $\operatorname{St}_G(v) := \{g \in G \mid vg = v\}$, the stabilizer of $v \in T$

- $\operatorname{St}_G(n) := \bigcap_{v \in V_n} \operatorname{St}_G(v)$, the *n*th level stabilizer
- $\operatorname{rist}_G(v) := \{g \in G \mid g \text{ fixes } T \setminus T_v \text{ pointwise}\}$
- $\operatorname{rist}_G(n) := \prod_{v \in V_n} \operatorname{rist}_G(v)$, the *n*th level rigid stabilizer.

This faithful action is a (weakly) branch action if for all n

(i) the action is transitive on V_n

(ii) $(\operatorname{rist}_G(n) \text{ is infinite}) |G : \operatorname{rist}_G(n)|$ is finite.

A group is a (weakly) branch group if it has a (weakly) branch action on some T.

Congruence Subgroup Property (CSP)

Let G act faithfully on T. Write \widehat{G} for the profinite completion of G.

• \overline{G} is the congruence completion of G, obtained by taking $\{\operatorname{St}_G(n)\}_n$ as a basis of neighbourhoods of the identity. It is also the closure of G in $\operatorname{Aut} T$. There is a natural homomorphism $\psi: \widehat{G} \twoheadrightarrow \overline{G}$ whose kernel C is called the congruence kernel.

• *G* has the **congruence subgroup property (CSP)** if C = 1; i.e., each finite index subgroup contains some $St_G(n)$. If the action of *G* on *T* is a **branch action**,

- \widetilde{G} is the completion of G obtained by taking $\{\operatorname{rist}_G(n)\}_n$ as a basis of neighbourhoods of the identity.
- The branch kernel B is the kernel of the natural homomorphism $\widehat{G} \to \widehat{G}$. We also have $\widetilde{G} \to \overline{G}$.

CSP is independent of weakly branch action

If G has two weakly branch actions then it has the CSP with respect to one iff it has the CSP with respect to the other (this answers Question 2 from [1]):

Theorem 1 ([2]). Let $\rho: G \hookrightarrow \operatorname{Aut}(T_{\rho})$ and $\sigma: G \hookrightarrow \operatorname{Aut}(T_{\sigma})$ be two weakly branch actions of *G*. Then $\{\operatorname{St}_{\rho}(n)\}_n$ and $\{\operatorname{St}_{\sigma}(n)\}_n$ define the same topology on *G*, so $\overline{G_{\rho}} = \overline{G_{\sigma}}$ and $C_{\rho} = C_{\sigma}$. Similarly,

Theorem 2 ([2]). Let $\rho: G \hookrightarrow \operatorname{Aut}(T_{\rho})$ and $\sigma: G \hookrightarrow \operatorname{Aut}(T_{\sigma})$ be two branch actions of G. Then $\widetilde{G_{\rho}} = \widetilde{G_{\sigma}}$ and $B_{\rho} = B_{\sigma}$.

Proof sketch

- For every weakly branch action of G on T, and every $v \in T$:
- $\operatorname{rist}_G(vg) = g^{-1} \operatorname{rist}_G(v)g$ for every $g \in G$,

• if $\operatorname{rist}_G(vg) \cap \operatorname{rist}_G(v) \neq 1$ then $\operatorname{rist}_G(vg) = \operatorname{rist}_G(v)$. **Proposition ([3]).** For every $u \in T_\rho$ there exists $v \in T_\sigma$ such that $\operatorname{rist}_\rho(u) \geq \operatorname{rist}_\sigma(v)' \neq 1$.

Claim. For every *n* there exists *m* such that $\operatorname{St}_{\rho}(n) \geq \operatorname{St}_{\sigma}(m)$. *Proof.* Let $u \in V_n \subset T_{\rho}$. By the Proposition, there exists $v \in V_m \subset T_{\sigma}$ with $\operatorname{rist}_{\rho}(u) \geq \operatorname{rist}_{\sigma}(v)' \neq 1$. For any $g \in \operatorname{St}_{\sigma}(m)$, we have $1 \neq \operatorname{rist}_{\sigma}(vg)' = \operatorname{rist}_{\sigma}(v)' \leq \operatorname{rist}_{\rho}(u^g) \cap \operatorname{rist}_{\rho}(u)$, so $\operatorname{rist}_{\rho}(u^g) = \operatorname{rist}_{\rho}(u)$ and $g \in \operatorname{St}_{\rho}(u)$. The claim follows using the transitive action of *G* on V_n and V_m . \Box

Hence $\{\operatorname{St}_{\rho}(n)\}_{n}$ and $\{\operatorname{St}_{\sigma}(n)\}_{n}$ define the same topology on G, so the completions are the same. A similar argument holds for branch actions and $\{\operatorname{rist}_{G}(n)\}_{n}$.

Examples: GGS groups

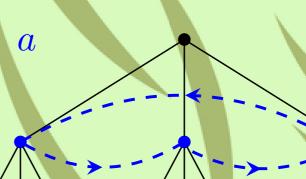
GGS-groups: Subgroups of $\operatorname{Aut} T$ where *T* is *p*-regular tree, $p = \operatorname{odd} prime$.

 $G := \langle a, b \rangle$ where a acts as the p-cycle $(1 \ 2 \ \dots p)$ on V_1 and

 $b := (a^{e_1}, a^{e_2}, \dots, a^{e_{p-1}}, b) \in \operatorname{St}_G(1)$

with $\mathbf{e} := (e_1, e_2, \dots, e_{p-1}) \in \mathbb{F}_p^{p-1}$. (See figures for p = 3). If \mathbf{e} is not constant then G is a branch group; otherwise it is weakly branch.

Theorem 3 ([4]). A GGS-group G has CSP iff e is not constant.



Profinite vs Pro-*p* **Completions**

Any GGS group with constant e does *not* have the CSP. However, its pro-p completion is the same as its closure in Aut T: **Theorem 4** ([4]). Let G be a GGS-group. Then

 $\gamma_n(G) \geq \operatorname{St}_G(n)$ for all $n \in \mathbb{N}$

where $\gamma_n(G)$ is the *n*th term of the lower central series. This theorem also holds for the wider class of **spinal groups**.

L. Bartholdi, O. Siegenthaler and P. Zalesskii. The congruence subgroup problem for branch groups, Isr. J. Math. 187 (2012), 419–450.
A. Garrido. On the congruence subgroup problem for branch groups. *To appear in Isr. J. Math.* arXiv:1405.3237.
A. Garrido and J.S. Wilson. On subgroups of finite index in branch groups, J. Algebra 397 (2014), 32–38.
G.A. Fernández-Alcober, A. Garrido and J. Uria. *In preparation.*