Rooted Trees

Let $\left(m_{n}\right)_{n>0}$ be a sequence of integers with $m_{n} \geq 2$. A rooted tree of type $\left(m_{n}\right)_{n}$ is a tree T with root v_{0} of degree m_{0} such that every vertex at distance $n \geq 1$ from v_{0} has degree $m_{n}+1$. V_{0}
V_{1}
V_{2}

(Weakly) branch actions

Let G act faithfully on T. Define

- $\operatorname{St}_{G}(v):=\{g \in G \mid v g=v\}$, the stabilizer of $v \in T$
- $\operatorname{St}_{G}(n):=\bigcap_{v \in V_{n}} \operatorname{St}_{G}(v)$, the nth level stabilizer
- $\operatorname{rist}_{G}(v):=\left\{g \in G \mid g\right.$ fixes $T \backslash T_{v}$ pointwise $\}$
- $\operatorname{rist}_{G}(n):=\prod_{v \in V_{n}} \operatorname{rist}_{G}(v)$, the nth level rigid stabilizer.

This faithful action is a (weakly) branch action if for all n
(i) the action is transitive on V_{n}
(ii) (rist ${ }_{G}(n)$ is infinite) $\left|G: \operatorname{rist}_{G}(n)\right|$ is finite.

A group is a (weakly) branch group if it has a (weakly) branch action on some T.

Congruence Subgroup Property (CSP)

Let G act faithfully on T. Write \widehat{G} for the profinite completion of G.

- \bar{G} is the congruence completion of G, obtained by taking $\left\{\operatorname{St}_{G}(n)\right\}_{n}$ as a basis of neighbourhoods of the identity. It is also the closure of G in Aut T. There is a natural homomorphism $\psi: \widehat{G} \Longrightarrow \bar{G}$ whose kernel C is called the congruence kernel.
- G has the congruence subgroup property (CSP) if $C=1$; i.e., each finite index subgroup contains some $\operatorname{St}_{G}(n)$.

If the action of G on T is a branch action,

- \widetilde{G} is the completion of G obtained by taking $\left\{\operatorname{rist}_{G}(n)\right\}_{n}$ as a basis of neighbourhoods of the identity.
- The branch kernel B is the kernel of the natural homomorphism $\widehat{G} \rightarrow \widetilde{G}$. We also have $\widetilde{G} \rightarrow \bar{G}$.

CSP is independent of weakly branch action

If G has two weakly branch actions then it has the CSP with respect to one iff it has the CSP with respect to the other (this answers Question 2 from [1]):

Theorem 1 ([2]). Let $\rho: G \hookrightarrow \operatorname{Aut}\left(T_{\rho}\right)$ and $\sigma: G \hookrightarrow \operatorname{Aut}\left(T_{\sigma}\right)$ be two weakly branch actions of G. Then $\left\{\operatorname{St}_{\rho}(n)\right\}_{n}$ and $\left\{\operatorname{St}_{\sigma}(n)\right\}_{n}$ define the same topology on G, so $\overline{G_{\rho}}=\overline{G_{\sigma}}$ and $C_{\rho}=C_{\sigma}$.
Similarly,
Theorem 2 ([2]). Let $\rho: G \hookrightarrow \operatorname{Aut}\left(T_{\rho}\right)$ and $\sigma: G \hookrightarrow \operatorname{Aut}\left(T_{\sigma}\right)$ be two branch actions of G. Then $\widetilde{G_{\rho}}=\widetilde{G_{\sigma}}$ and $B_{\rho}=B_{\sigma}$.

Proof sketch

For every weakly branch action of G on T, and every $v \in T$

- $\operatorname{rist}_{G}(v g)=g^{-1} \operatorname{rist}_{G}(v) g$ for every $g \in G$,
- if $\operatorname{rist}_{G}(v g) \cap \operatorname{rist}_{G}(v) \neq 1$ then $\operatorname{rist}_{G}(v g)=\operatorname{rist}_{G}(v)$.

Proposition ([3]). For every $u \in T_{\rho}$ there exists $v \in T_{\sigma}$ such that $\operatorname{rist}_{\rho}(u) \geq \operatorname{rist}_{\sigma}(v)^{\prime} \neq 1$.
Claim. For every n there exists m such that $\mathrm{St}_{\rho}(n) \geq \mathrm{St}_{\sigma}(m)$. Proof. Let $u \in V_{n} \subset T_{\rho}$. By the Proposition, there exists $v \in$ $V_{m} \subset T_{\sigma}$ with $\operatorname{rist}_{\rho}(u) \geq \operatorname{rist}_{\sigma}(v)^{\prime} \neq 1$. For any $g \in \operatorname{St}_{\sigma}(m)$, we have $1 \neq \operatorname{rist}_{\sigma}(v g)^{\prime}=\operatorname{rist}_{\sigma}(v)^{\prime} \leq \operatorname{rist}_{\rho}\left(u^{g}\right) \cap \operatorname{rist}_{\rho}(u)$, so $\operatorname{rist}_{\rho}\left(u^{g}\right)=\operatorname{rist}_{\rho}(u)$ and $g \in \operatorname{St}_{\rho}(u)$. The claim follows using the transitive action of G on V_{n} and V_{m}. \square

Hence $\left\{\operatorname{St}_{\rho}(n)\right\}_{n}$ and $\left\{\operatorname{St}_{\sigma}(n)\right\}_{n}$ define the same topology on G, so the completions are the same.
A similar argument holds for branch actions and $\left\{\operatorname{rist}_{G}(n)\right\}_{n}$.

Profinite vs Pro- p Completions

Any GGS group with constant e does not have the CSP. However, its pro- p completion is the same as its closure in Aut T : Theorem 4 ([4]). Let G be a GGS-group. Then

$$
\gamma_{n}(G) \geq \operatorname{St}_{G}(n) \text { for all } n \in \mathbb{N}
$$ where $\gamma_{n}(G)$ is the nth term of the lower central series. This theorem also holds for the wider class of spinal groups.

Examples: GGS groups

GGS-groups: Subgroups of Aut T where T is p-regular tree, $p=$ odd prime.
$G:=\langle a, b\rangle$ where a acts as the p-cycle $(12 \ldots p)$ on V_{1} and
$b:=\left(a^{e_{1}}, a^{e_{2}}, \ldots, a^{e_{p-1}}, b\right) \in \operatorname{St}_{G}(1)$
with $\mathbf{e}:=\left(e_{1}, e_{2}, \ldots, e_{p-1}\right) \in \mathbb{F}_{p}^{p-1}$. (See figures for $p=3$).
If e is not constant then G is a branch group; otherwise it is weakly branch.
Theorem 3 ([4]). A GGS-group G has CSP iffe is not constant.

